Journal Home > Volume 17 , Issue 2

Recent advances in coupling light-harvesting microorganisms with electronic components have led to a new generation of biohybrid devices based on microbial photocatalysts. These devices are limited by the poorly conductive interface between phototrophs and synthetic materials that inhibit charge transfer. This study focuses on overcoming this bottleneck through the metabolically-driven encapsulation of photosynthetic cells with a bio-inspired conductive polymer. Cells of the purple non sulfur bacterium Rhodobacter sphaeroides were coated with a polydopamine (PDA) nanoparticle layer via the self-polymerization of dopamine under anaerobic conditions. The treated cells show preserved light absorption of the photosynthetic pigments in the presence of dopamine concentrations ranging between 0.05–3.5 mM. The thickness and nanoparticle formation of the membrane-associated PDA matrix were further shown to vary with the dopamine concentrations in this range. Compared to uncoated cells, the encapsulated cells show up to a 20-fold enhancement in transient photocurrent measurements under mediatorless conditions. The biologically synthesized PDA can thus act as a matrix for electronically coupling the light-harvesting metabolisms of cells with conductive surfaces.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In vivo polydopamine coating of Rhodobacter sphaeroides for enhanced electron transfer

Show Author's information Rossella Labarile1( )Danilo Vona2Maria Varsalona1,2Matteo Grattieri1,2Melania Reggente3Roberto Comparelli1Gianluca M. Farinola2Fabian Fischer4,5Ardemis A. Boghossian3Massimo Trotta1( )
Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, Bari 70126, Italy
Dipartimento di Chimica, Università degli Studi di Bari, Bari 70126, Italy
Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
Institute of Life Technologies, HES-SO Valais-Wallis, 1950 Sion, Switzerland
Institute for Renewable Energy, HES-SO Valais-Wallis, 1950 Sion, Switzerland

Abstract

Recent advances in coupling light-harvesting microorganisms with electronic components have led to a new generation of biohybrid devices based on microbial photocatalysts. These devices are limited by the poorly conductive interface between phototrophs and synthetic materials that inhibit charge transfer. This study focuses on overcoming this bottleneck through the metabolically-driven encapsulation of photosynthetic cells with a bio-inspired conductive polymer. Cells of the purple non sulfur bacterium Rhodobacter sphaeroides were coated with a polydopamine (PDA) nanoparticle layer via the self-polymerization of dopamine under anaerobic conditions. The treated cells show preserved light absorption of the photosynthetic pigments in the presence of dopamine concentrations ranging between 0.05–3.5 mM. The thickness and nanoparticle formation of the membrane-associated PDA matrix were further shown to vary with the dopamine concentrations in this range. Compared to uncoated cells, the encapsulated cells show up to a 20-fold enhancement in transient photocurrent measurements under mediatorless conditions. The biologically synthesized PDA can thus act as a matrix for electronically coupling the light-harvesting metabolisms of cells with conductive surfaces.

Keywords: bioelectronics, polydopamine, electron transfer, biophotovoltaics, photosynthetic bacteria, purple bacteria

References(48)

[1]

Schröder, U.; Harnisch, F.; Angenent, L. T. Microbial electrochemistry and technology: Terminology and classification. Energy Environ. Sci. 2015, 8, 513–519.

[2]

Rabaey, K.; Girguis, P.; Nielsen, L. K. Metabolic and practical considerations on microbial electrosynthesis. Curr. Opin. Biotechnol. 2011, 22, 371–377.

[3]

Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375–381.

[4]

Lovley, D. R. Bug juice: Harvesting electricity with microorganisms. Nat. Rev. Microbiol. 2006, 4, 497–508.

[5]

Reguera, G. Harnessing the power of microbial nanowires. Microb. Biotechnol. 2018, 11, 979–994.

[6]

Borole, A. P.; Reguera, G.; Ringeisen, B.; Wang, Z. W.; Feng, Y. J.; Kim, B. H. Electroactive biofilms: Current status and future research needs. Energy Environ. Sci. 2011, 4, 4813–4834.

[7]

Sydow, A.; Krieg, T.; Mayer, F.; Schrader, J.; Holtmann, D. Electroactive bacteriaMolecular mechanisms and genetic tools. Appl. Microbiol. Biotechnol. 2014, 98, 8481–8495

[8]

TerAvest, M. A.; Zajdel, T. J.; Ajo-Franklin, C. M. The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli. ChemElectroChem 2014, 1, 1874–1879.

[9]
Mouhib, M.; Reggente, M.; Li, L.; Schuergers, N.; Boghossian, A.A. Tailored extracellular electron transfer pathways enhance theelectroactivity of Escherichia coli. bioRxiv 2021.08.28.458029. https://doi.org/10.1101/2021.08.28.458029 (accessed Dec 4, 2023).
DOI
[10]
Reggente, M.; Schurgers, N.; Mouhib, M.; Politi, S.; Antonucci, A.;Boghossian, A. A. Living photovoltaics based on recombinantexpression of MtrA decaheme in photosynthetic bacteria. bioRxiv 2023.02.28.530417. https://doi.org/10.1101/2023.02.28.530417 (accessed Dec 4, 2023).
DOI
[11]

Zou, Y. J.; Pisciotta, J.; Billmyre, R. B.; Baskakov, I. V. Photosynthetic microbial fuel cells with positive light response. Biotechnol. Bioeng. 2009, 104, 939–946.

[12]

Schuergers, N.; Werlang, C.; Ajo-Franklin, C. M.; Boghossian, A. A. A synthetic biology approach to engineering living photovoltaics. Energy Environ. Sci. 2017, 10, 1102–1115.

[13]

Mouhib, M.; Antonucci, A.; Reggente, M.; Amirjani, A.; Gillen, A. J.; Boghossian, A. A. Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials. Nano Res. 2019, 12, 2184–2199.

[14]
Hunter, C. N.; Daldal, F.; Thurnauer, M. C.; Beatty, J. T. The Purple Phototrophic Bacteria; Springer: Dordrecht, 2009.
DOI
[15]

Giotta, L.; Agostiano, A.; Italiano, F.; Milano, F.; Trotta, M. Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 2006, 62, 1490–1499.

[16]

Grattieri, M.; Labarile, R.; Buscemi, G.; Trotta, M. The periodic table of photosynthetic purple non -sulfur bacteria: Intact cell -metal ions interactions. Photochem. Photobiol. Sci. 2022, 21, 101–111.

[17]
Labarile, R.; Farinola, G. M.; Varsalona, M.; Italiano, F.; Buscemi, G.; Trotta, M.; Grattieri, M. Halotolerance of Rhodobacter sphaeroides for saline and hypersaline wastewater bioremediation. In 2021 International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Reggio Calabria, 2021, pp 37–42.
DOI
[18]

Reggente, M.; Politi, S.; Antonucci, A.; Tamburri, E.; Boghossian, A. A. Design of optimized PEDOT-based electrodes for enhancing performance of living photovoltaics based on phototropic bacteria. Adv. Mater. Technol. 2020, 5, 1900931.

[19]

Hasan, K.; Yildiz, H. B.; Sperling, E.; Conghaile, P. Ó.; Packer, M. A.; Leech, D.; Hägerhäll, C.; Gorton, L. Photo -electrochemical communication between cyanobacteria ( Leptolyngbia sp.) and osmium redox polymer modified electrodes. Phys. Chem. Chem. Phys. 2014, 16, 24676–24680.

[20]

Beauzamy, L.; Delacotte, J.; Bailleul, B.; Tanaka, K.; Nakanishi, S.; Wollman, F. A.; Lemaître, F. Mediator -microorganism interaction in microbial solar cell: A fluo -electrochemical insight. Anal. Chem. 2020, 92, 7532–7539.

[21]

Gemünde, A.; Lai, B.; Pause, L.; Krömer, J.; Holtmann, D. Redox mediators in microbial electrochemical systems. ChemElectroChem 2022, 9, e202200216.

[22]

Antonucci, A.; Reggente, M.; Roullier, C.; Gillen, A. J.; Schuergers, N.; Zubkovs, V.; Lambert, B. P.; Mouhib, M.; Carata, E.; Dini, L. et al. Carbon nanotube uptake in cyanobacteria for near -infrared imaging and enhanced bioelectricity generation in living photovoltaics. Nat. Nanotechnol. 2022, 17, 1111–1119.

[23]

Liu, S. R.; Yi, X. F.; Wu, X. E.; Li, Q. B.; Wang, Y. P. Internalized carbon dots for enhanced extracellular electron transfer in the dark and light. Small 2020, 16, 2004194.

[24]

Song, R. B.; Wu, Y. C.; Lin, Z. Q.; Xie, J.; Tan, C. H.; Loo, J. S. C.; Cao, B.; Zhang, J. R.; Zhu, J. J.; Zhang, Q. C. Living and conducting: Coating individual bacterial cells with in situ formed polypyrrole. Angew. Chem., Int. Ed. 2017, 56, 10516–10520.

[25]

Kaneko, M.; Ishihara, K.; Nakanishi, S. Redox -active polymers connecting living microbial cells to an extracellular electrical circuit. Small 2020, 16, 2001849.

[26]

Liu, S. R.; Cai, L. F.; Wang, L. Y.; Yi, X. F.; Peng, Y. J.; He, N.; Wu, X. E.; Wang, Y. P. Polydopamine coating on individual cells for enhanced extracellular electron transfer. Chem. Commun. 2019, 55, 10535–10538.

[27]

Vona, D.; Cicco, S. R.; Ragni, R.; Vicente-Garcia, C.; Leone, G.; Giangregorio, M. M.; Palumbo, F.; Altamura, E.; Farinola, G. M. Polydopamine coating of living diatom microalgae. Photochem. Photobiol. Sci. 2022, 21, 949–958.

[28]

Cui, X. Q.; Xu, S. J.; Jin, C.; Ji, Y. B. Recent advances in the preparation and application of mussel -inspired polydopamine -coated capillary tubes in microextraction and miniaturized chromatography systems. Anal. Chim. Acta 2018, 1033, 35–48.

[29]

Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel -inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

[30]

Wang, G. Y.; Huang, X. Y.; Jiang, P. K. Mussel -inspired fluoro -polydopamine functionalization of titanium dioxide nanowires for polymer nanocomposites with significantly enhanced energy storage capability. Sci. Rep. 2017, 7, 43071.

[31]

Buscemi, G.; Vona, D.; Labarile, R.; Ragni, R.; Milano, F.; Farinola, G. M.; Trotta, M. Ethylenediammine is not detrimental to the photoactivity of the bacterial photosynthetic reaction center. MRS Adv. 2021, 6, 265–269.

[32]

Buscemi, G.; Vona, D.; Ragni, R.; Comparelli, R.; Trotta, M.; Milano, F.; Farinola, G. M. Polydopamine /ethylenediamine nanoparticles embedding a photosynthetic bacterial reaction center for efficient photocurrent generation. Adv. Sustainable Syst. 2021, 5, 2000303.

[33]

Buscemi, G.; Vona, D.; Stufano, P.; Labarile, R.; Cosma, P.; Agostiano, A.; Trotta, M.; Farinola, G. M.; Grattieri, M. Bio -inspired redox -adhesive polydopamine matrix for intact bacteria biohybrid photoanodes. ACS Appl. Mater. Interfaces 2022, 14, 26631–26641.

[34]

Labarile, R.; Varsalona, M.; Vona, D.; Stufano, P.; Grattieri, M.; Farinola, G. M.; Trotta, M. A novel route for anoxygenic polymerization of dopamine via purple photosynthetic bacteria metabolism. MRS Adv. 2023, 8, 423–428.

[35]

Yu, Y. Y.; Wang, Y. Z.; Fang, Z.; Shi, Y. T.; Cheng, Q. W.; Chen, Y. X.; Shi, W. D.; Yong, Y. C. Single cell electron collectors for highly efficient wiring -up electronic abiotic /biotic interfaces. Nat. Commun. 2020, 11, 4087.

[36]

Glaeser, J.; Klug, G. Photo -oxidative stress in Rhodobacter sphaeroides: Protective role of carotenoids and expression of selected genes. Microbiology 2005, 151, 1927–1938.

[37]

Kushkevych, I.; Procházka, J.; Gajdács, M.; Rittmann, S. K. M. R.; Vítězová, M. Molecular physiology of anaerobic phototrophic purple and green sulfur bacteria. Int. J. Mol. Sci. 2021, 22, 6398.

[38]

Tucker, J. D.; Siebert, C. A.; Escalante, M.; Adams, P. G.; Olsen, J. D.; Otto, C.; Stokes, D. L.; Hunter, C. N. Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles. Mol. Microbiol. 2010, 76, 833–847.

[39]

D’Amici, G. M.; Rinalducci, S.; Murgiano, L.; Italiano, F.; Zolla, L. Oligomeric characterization of the photosynthetic apparatus of Rhodobacter sphaeroides R26.1 by nondenaturing electrophoresis methods. J. Proteome Res. 2010, 9, 192–203.

[40]

Buccolieri, A.; Italiano, F.; Dell’Atti, A.; Buccolieri, G.; Giotta, L.; Agostiano, A.; Milano, F.; Trotta, M. Testing the photosynthetic bacterium Rhodobacter sphaeroides as heavy metal removal tool. Ann. di Chim. 2006, 96, 195–203.

[41]

Ball, V. Polydopamine nanomaterials: Recent advances in synthesis methods and applications. Front. Bioeng. Biotechnol. 2018, 6, 109.

[42]

Volpicella, M.; Costanza, A.; Palumbo, O.; Italiano, F.; Claudia, L.; Placido, A.; Picardi, E.; Carella, M.; Trotta, M.; Ceci, L. R. Rhodobacter sphaeroides adaptation to high concentrations of cobalt ions requires energetic metabolism changes. FEMS Microbiol. Ecol. 2014, 88, 345–357

[43]

Papagiannakis, E.; Kennis, J. T. M.; van Stokkum, I. H. M.; Cogdell, R. J.; van Grondelle, R. An alternative carotenoid -to -bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting. Proc. Natl. Acad. Sci. USA 2002, 99, 6017–6022.

[44]

Zangmeister, R. A.; Morris, T. A.; Tarlov, M. J. Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 2013, 29, 8619–8628.

[45]

Mehwish, N.; Xu, M. D.; Zaeem, M.; Lee, B. H. Mussel -inspired surface functionalization of porous albumin cryogels supporting synergistic antibacterial /antioxidant activity and bone -like apatite formation. Gels 2022, 8, 679.

[46]
Reggente, M.; Roullier, C.; Mouhib, M.; Brandl, P.; Wang, H.; Tacconi, S.; Mura, F.; Dini, L.; Labarile, R.; Trotta, M. et al. Polydopamine-coated photoautotrophic bacteria for improving extracellular electron transfer in living photovoltaics. Nano Res. in press, https://doi.org/10.1007/s12274-023-6396-1.
DOI
[47]

Salomaki, M.; Marttila, L.; Kivelä, H.; Ouvinen, T.; Lukkari, J. Effects of pH and oxidants on the first steps of polydopamine formation: A thermodynamic approach. J. Phys. Chem. B 2018, 122, 6314–6327.

[48]

Červený, J.; Sinetova, M. A.; Zavřel, T.; Los, D. A. Mechanisms of high temperature resistance of Synechocystis sp. PCC 6803: An impact of histidine kinase 34. Life 2015, 5, 676–699

File
12274_2023_6398_MOESM1_ESM.pdf (293.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 July 2023
Revised: 04 December 2023
Accepted: 05 December 2023
Published: 12 January 2024
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

M. T., R. L., D. V., and G. M. F acknowledge the useful discussion with Dr. Gabriella Buscemi. Authors wish to thank Mr. Giovanni Lasorella for his technical support. This work was funded by the Fonds National Suisse de la Recherche Scientifique, project Phosbury-Photosynthetic bacteria in Self-assembled Biocompatible coatings for the transduction of energy (Project Nr CRSII5_205925/1). M. G. acknowledges the funding from Fondazione CON IL SUD, Grant “Brains to South 2018” (project number 2018-PDR-00914).

Return