Journal Home > Volume 17 , Issue 2

Living photovoltaics are microbial electrochemical devices that use whole cell–electrode interactions to convert solar energy to electricity. The bottleneck in these technologies is the limited electron transfer between the microbe and the electrode surface. This study focuses on enhancing this transfer by engineering a polydopamine (PDA) coating on the outer membrane of the photosynthetic microbe Synechocystis sp. PCC6803. This coating provides a conductive nanoparticle shell to increase electrode adhesion and improve microbial charge extraction. A combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis absorption, and Raman spectroscopy measurements were used to characterize the nanoparticle shell under various synthesis conditions. The cell viability and activity were further assessed through oxygen evolution, growth curve, and confocal fluorescence microscopy measurements. The results show sustained cell growth and detectable PDA surface coverage under slightly alkaline conditions (pH 7.5) and at low initial dopamine (DA) concentrations (1 mM). The exoelectrogenicity of the cells prepared under these conditions was also characterized through cyclic voltammetry (CV) and chronoamperometry (CA). The measurements show a three-fold enhancement in the photocurrent at an applied bias of 0.3 V (vs. Ag/AgCl [3 M KCl]) compared to non-coated cells. This study thus lays the framework for engineering the next generation of living photovoltaics with improved performances using biosynthetic electrodes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polydopamine-coated photoautotrophic bacteria for improving extracellular electron transfer in living photovoltaics

Show Author's information Melania Reggente1( )Charlotte Roullier1Mohammed Mouhib1Patricia Brandl1Hanxuan Wang1Stefano Tacconi2Francesco Mura3Luciana Dini2Rossella Labarile4Massimo Trotta4Fabian Fischer5,6Ardemis A. Boghossian1( )
Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
Research Center on Nanotechnology Applied for Engineering of Sapienza (CNIS), University of Rome Sapienza, Rome 00185, Italy
CNR-IPCF Consiglio Nazionale delle Ricerche – Istituto per i Processi Chimico Fisici, Bari 70126, Italy
Institute of Life Technologies, HES-SO Valais-Wallis, Sion 1950, Switzerland
Institute for Renewable Energy, HES-SO Valais-Wallis, Sion 1950, Switzerland

Abstract

Living photovoltaics are microbial electrochemical devices that use whole cell–electrode interactions to convert solar energy to electricity. The bottleneck in these technologies is the limited electron transfer between the microbe and the electrode surface. This study focuses on enhancing this transfer by engineering a polydopamine (PDA) coating on the outer membrane of the photosynthetic microbe Synechocystis sp. PCC6803. This coating provides a conductive nanoparticle shell to increase electrode adhesion and improve microbial charge extraction. A combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis absorption, and Raman spectroscopy measurements were used to characterize the nanoparticle shell under various synthesis conditions. The cell viability and activity were further assessed through oxygen evolution, growth curve, and confocal fluorescence microscopy measurements. The results show sustained cell growth and detectable PDA surface coverage under slightly alkaline conditions (pH 7.5) and at low initial dopamine (DA) concentrations (1 mM). The exoelectrogenicity of the cells prepared under these conditions was also characterized through cyclic voltammetry (CV) and chronoamperometry (CA). The measurements show a three-fold enhancement in the photocurrent at an applied bias of 0.3 V (vs. Ag/AgCl [3 M KCl]) compared to non-coated cells. This study thus lays the framework for engineering the next generation of living photovoltaics with improved performances using biosynthetic electrodes.

Keywords: bioelectronics, polydopamine, biophotovoltaics, cyanobacteria, adherence, photosynthetic bacteria

References(59)

[1]

McCormick, A. J.; Bombelli, P.; Bradley, R. W.; Thorne, R.; Wenzel, T.; Howe, C. J. Biophotovoltaics: Oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 1092–1109.

[2]

Mouhib, M.; Antonucci, A.; Reggente, M.; Amirjani, A.; Gillen, A. J.; Boghossian, A. A. Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials. Nano Res. 2019, 12, 2184–2199.

[3]

Schuergers, N.; Werlang, C.; Ajo-Franklin, C. M.; Boghossian, A. A. A synthetic biology approach to engineering living photovoltaics. Energy Environ. Sci. 2017, 10, 1102–1115.

[4]

Tschörtner, J.; Lai, B.; Krömer, J. O. Biophotovoltaics: Green power generation from sunlight and water. Front. Microbiol. 2019, 10, 866.

[5]

Wey, L. T.; Bombelli, P.; Chen, X. L.; Lawrence, J. M.; Rabideau, C. M.; Rowden, S. J.; Zhang, Z.; Howe, C. J. The development of biophotovoltaic systems for power generation and biological analysis. ChemElectroChem 2019, 6, 5375–5386.

[6]

Lea-Smith, D. J.; Bombelli, P.; Vasudevan, R.; Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta 2016, 1857, 247–255.

[7]

Tanaka, K.; Kashiwagi, N.; Ogawa, T. Effects of light on the electrical output of bioelectrochemical fuel-cells containing Anabaena variabilis M-2: Mechanism of the post-illumination burst. J. Chem. Technol. Biotechnol. 1988, 42, 235–240.

[8]

Pisciotta, J. M.; Zou, Y. J.; Baskakov, I. V. Light-dependent electrogenic activity of cyanobacteria. PLoS One 2010, 5, e10821.

[9]

Pisciotta, J. M.; Zou, Y. J.; Baskakov, I. V. Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria. Appl. Microbiol. Biotechnol. 2011, 91, 377–385.

[10]

Saper, G.; Kallmann, D.; Conzuelo, F.; Zhao, F. Y.; Tóth, T. N.; Liveanu, V.; Meir, S.; Szymanski, J.; Aharoni, A.; Schuhmann, W. et al. Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems. Nat. Commun. 2018, 9, 2168.

[11]
Mouhib, M.; Reggente, M.; Li, L.; Schuergers, N.; Boghossian, A. A. Tailored extracellular electron transfer pathways enhance the electroactivity of Escherichia coli. bioRxiv 2021 , https://www.biorxiv.org/content/10.1101/2021.08.28.458029v1 (accessed Jun 19, 2023).
DOI
[12]

Longatte, G.; Rappaport, F.; Wollman, F. A.; Guille-Collignon, M.; Lemaître, F. Electrochemical harvesting of photosynthetic electrons from unicellular algae population at the preparative scale by using 2, 6-dichlorobenzoquinone. Electrochim. Acta 2017, 236, 337–342.

[13]

Bombelli, P.; Zarrouati, M.; Thorne, R. J.; Schneider, K.; Rowden, S. J. L.; Ali, A.; Yunus, K.; Cameron, P. J.; Fisher, A. C.; Ian Wilson, D.; et al. Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Phys. Chem. Chem. Phys. 2012, 14, 12221–12229.

[14]

Liu, L.; Choi, S. Self-sustainable, high-power-density bio-solar cells for lab-on-a-chip applications. Lab Chip 2017, 17, 3817–3825.

[15]

Wenzel, T.; Härtter, D.; Bombelli, P.; Howe, C. J.; Steiner, U. Porous translucent electrodes enhance current generation from photosynthetic biofilms. Nat. Commun. 2018, 9, 1299.

[16]

Hasan, K.; Yildiz, H. B.; Sperling, E.; Conghaile, P. Ó.; Packer, M. A.; Leech, D.; Hägerhäll, C.; Gorton, L. Photo-electrochemical communication between cyanobacteria ( Leptolyngbia sp) and osmium redox polymer modified electrodes. Phys. Chem. Chem. Phys. 2014, 16, 24676–24680.

[17]

Hasan, K.; Çevik, E.; Sperling, E.; Packer, M. A.; Leech, D.; Gorton, L. Photoelectrochemical wiring of Paulschulzia pseudovolvox (algae) to osmium polymer modified electrodes for harnessing solar energy. Adv. Energy Mater. 2015, 5, 1501100.

[18]

Hasan, K.; Grippo, V.; Sperling, E.; Packer, M. A.; Leech, D.; Gorton, L. Evaluation of photocurrent generation from different photosynthetic organisms. ChemElectroChem 2017, 4, 412–417.

[19]

Sekar, N.; Umasankar, Y.; Ramasamy, R. P. Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells. Phys. Chem. Chem. Phys. 2014, 16, 7862–7871.

[20]

Zou, Y. J.; Pisciotta, J.; Billmyre, R. B.; Baskakov, I. V. Photosynthetic microbial fuel cells with positive light response. Biotechnol. Bioeng. 2009, 104, 939–946.

[21]

Reggente, M.; Politi, S.; Antonucci, A.; Tamburri, E.; Boghossian, A. A. Design of optimized PEDOT-based electrodes for enhancing performance of living photovoltaics based on phototropic bacteria. Adv. Mater. Technol. 2020, 5, 1900931.

[22]
Chen, X. L.; Lawrence, J. M.; Wey, L. T.; Schertel, L.; Jing, Q. S.; Vignolini, S.; Howe, C. J.; Kar-Narayan, S.; Zhang, J. Z. 3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis. Nat. Mater. 2022 , 21, 811–818.
DOI
[23]

Roullier, C.; Reggente, M.; Gilibert, P.; Boghossian, A. A. Polypyrrole electrodes show strain-specific enhancement of photocurrent from cyanobacteria. Adv. Mater. Technol. 2023, 8, 2201839.

[24]

Clifford, E. R.; Bradley, R. W.; Wey, L. T.; Lawrence, J. M.; Chen, X. L.; Howe, C. J.; Zhang, J. Z. Phenazines as model low-midpoint potential electron shuttles for photosynthetic bioelectrochemical systems. Chem. Sci. 2021, 12, 3328–3338.

[25]

Sekar, N.; Jain, R.; Yan, Y. J.; Ramasamy, R. P. Enhanced photo-bioelectrochemical energy conversion by genetically engineered cyanobacteria. Biotechnol. Bioeng. 2016, 113, 675–679.

[26]
Reggente, M.; Schurgers, N.; Mouhib, M.; Politi, S.; Antonucci, A.; Boghossian, A. A. Living photovoltaics based on recombinant expression of MtrA decaheme in photosynthetic bacteria. bioRxiv 2023.
DOI
[27]

Meng, H. K.; Zhang, W.; Zhu, H. W.; Yang, F.; Zhang, Y. P.; Zhou, J.; Li, Y. Over-expression of an electron transport protein OmcS provides sufficient NADH for D-lactate production in cyanobacterium. Biotechnol. Biofuels 2021, 14, 109.

[28]

Antonucci, A.; Reggente, M.; Roullier, C.; Gillen, A. J.; Schuergers, N.; Zubkovs, V.; Lambert, B. P.; Mouhib, M.; Carata, E.; Dini, L. et al. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics. Nat. Nanotechnol. 2022, 17, 1111–1119.

[29]

Liu, L.; Choi, S. Enhanced biophotoelectricity generation in cyanobacterial biophotovoltaics with intracellularly biosynthesized gold nanoparticles. J. Power Sources 2021, 506, 230251.

[30]

Wang, S.; Guo, Z. G. Bio-inspired encapsulation and functionalization of living cells with artificial shells. Colloids Surf. B Biointerfaces 2014, 113, 483–500.

[31]

Yang, S. H.; Lee, K. B.; Kong, B.; Kim, J. H.; Kim, H. S.; Choi, I. S. Biomimetic encapsulation of individual cells with silica. Angew. Chem., Int. Ed. 2009, 48, 9160–9163.

[32]

Fakhrullin, R. F.; Minullina, R. T. Hybrid cellular-inorganic core-shell microparticles: Encapsulation of individual living cells in calcium carbonate microshells. Langmuir 2009, 25, 6617–6621.

[33]

Yang, S. H.; Ko, E. H.; Choi, I. S. Cytocompatible encapsulation of individual Chlorella cells within titanium dioxide shells by a designed catalytic peptide. Langmuir 2012, 28, 2151–2155.

[34]

Apetrei, R. M.; Carac, G.; Bahrim, G.; Ramanaviciene, A.; Ramanavicius, A. Modification of Aspergillus niger by conducting polymer, Polypyrrole, and the evaluation of electrochemical properties of modified cells. Bioelectrochemistry 2018, 121, 46–55.

[35]

Song, R. B.; Wu, Y. C.; Lin, Z. Q.; Xie, J.; Tan, C. H.; Loo, J. S. C.; Cao, B.; Zhang, J. R.; Zhu, J. J.; Zhang, Q. C. Living and conducting: Coating individual bacterial cells with in situ formed polypyrrole. Angew. Chem. 2017, 129, 10652–10656.

[36]

Labarile, R.; Varsalona, M.; Vona, D.; Stufano, P.; Grattieri, M.; Farinola, G. M.; Trotta, M. A novel route for anoxygenic polymerization of dopamine via purple photosynthetic bacteria metabolism. MRS Adv. 2023, 8, 423–428.

[37]

Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

[38]

Kim, J. H.; Lee, M.; Park, C. B. Polydopamine as a biomimetic electron gate for artificial photosynthesis. Angew. Chem. 2014, 126, 6482–6486.

[39]

Du, Q.; Li, T.; Li, N.; Wang, X. Protection of electroactive biofilm from extreme acid shock by polydopamine encapsulation. Environ. Sci. Technol. Lett. 2017, 4, 345–349.

[40]

Yang, S. H.; Kang, S. M.; Lee, K. B.; Chung, T. D.; Lee, H.; Choi, I. S. Mussel-inspired encapsulation and functionalization of individual yeast cells. J. Am. Chem. Soc. 2011, 133, 2795–2797.

[41]

Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W. Perspectives on poly(dopamine). Chem. Sci. 2013, 4, 3796–3802.

[42]

Wang, L.; Hu, Z. Y.; Yang, X. Y.; Zhang, B. B.; Geng, W.; van Tendeloo, G.; Su, B. L. Polydopamine nanocoated whole-cell asymmetric biocatalysts. Chem. Commun. 2017, 53, 6617–6620.

[43]

Liu, S. R.; Cai, L. F.; Wang, L. Y.; Yi, X. F.; Peng, Y. J.; He, N.; Xue, X. E.; Wang, Y. P. Polydopamine coating on individual cells for enhanced extracellular electron transfer. Chem. Commun. 2019, 55, 10535–10538.

[44]

Buscemi, G.; Vona, D.; Stufano, P.; Labarile, R.; Cosma, P.; Agostiano, A.; Trotta, M.; Farinola, G. M.; Grattieri, M. Bio-inspired redox-adhesive polydopamine matrix for intact bacteria biohybrid photoanodes. ACS Appl. Mater. Interfaces 2022, 14, 26631–26641.

[45]

Rippka, R.; Deruelles, J.; Waterbury, J. B.; Herdman, M.; Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979, 111, 1–61.

[46]

Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosyn. Res. 2006, 89, 27–41.

[47]

Zubkovs, V.; Antonucci, A.; Schuergers, N.; Lambert, B.; Latini, A.; Ceccarelli, R.; Santinelli, A.; Rogov, A.; Ciepielewski, D.; Boghossian, A. A. Spinning-disc confocal microscopy in the second near-infrared window (NIR-II). Sci. Rep. 2018, 8, 13770.

[48]

Hyun Ryu, J.; Messersmith, P. B.; Lee, H. Polydopamine surface chemistry: A decade of discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540.

[49]

Wei, Q.; Zhang, F. L.; Li, J.; Li, B. J.; Zhao, C. S. Oxidant-induced dopaminepolymerization for multifunctional coatings. Polym. Chem. 2010, 1, 1430–1433.

[50]

Jehlička, J.; Edwards, H. G. M.; Osterrothová, K.; Novotná, J.; Nedbalová, L.; Kopecký, J.; Němec, I.; Oren, A. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: Implications for astrobiology. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20140199.

[51]

Alfieri, M. L.; Panzella, L.; Oscurato, S. L.; Salvatore, M.; Avolio, R., Errico, M. E.; Maddalena, P.; Napolitano, A.; D’Ischia, M. The chemistry of polydopamine film formation: The amine-quinone interplay. Biomimetics 2018, 3, 26.

[52]
Scheer, H. Chlorophylls; CRC Press: Boca Raton, 1991.
[53]

Schulze, K.; López, D. A.; Tillich, U. M.; Frohme, M. A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ. BMC Biotechnol. 2011, 11, 118.

[54]

Ponzio, F.; Ball, V. Persistence of dopamine and small oxidation products thereof in oxygenated dopamine solutions and in “polydopamine” films. Colloids Surf. A Physicochem. Eng. Aspects 2014, 443, 540–543.

[55]

Bu, T.; Tian, Y. M.; Ma, J.; Zhang, M.; Bai, F. E.; Zhao, S.; He, K. Y.; Sun, X. Y.; Wang, Y.; Wang, L. Polydopamine-mediated photothermal effect enables a new method for point-of-care testing of biothiols using a portable photothermal sensor. Sens. Actuators B Chem. 2021, 346, 130498.

[56]

Fan, S. B.; Lin, W. S.; Huang, Y. F.; Xia, J. J.; Xu, J. F.; Zhang, J. H.; Pi, J. Advances and potentials of polydopamine nanosystem in photothermal-based antibacterial infection therapies. Front. Pharmacol. 2022, 13, 829712.

[57]

Tasaka, Y.; Gombos, Z.; Nishiyama, Y.; Mohanty, P.; Ohba, T.; Ohki, K.; Murata, N. Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: Evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J. 1996, 15, 6416–6425.

[58]

Hasunuma, T.; Matsuda, M.; Kato, Y.; Vavricka, C. J.; Kondo, A. Temperature enhanced succinate production concurrent with increased central metabolism turnover in the cyanobacterium Synechocystis sp. PCC 6803. Metab. Eng. 2018, 48, 109–120

[59]

Červený, J.; Sinetova, M. A.; Zavřel, T.; Los, D. A. Mechanisms of high temperature resistance of Synechocystis sp. PCC 6803: An impact of histidine kinase 34. Life 2015, 5, 676–699

File
12274_2023_6396_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 June 2023
Revised: 03 November 2023
Accepted: 04 November 2023
Published: 25 January 2024
Issue date: February 2024

Copyright

© The Author(s) 2024

Acknowledgements

Acknowledgements

The authors are thankful for support from the Swiss National Science Foundation (Sinergia Project, No. IZLIZ2_182972).

Return