Journal Home > Volume 17 , Issue 5

Strain engineering, as a cutting-edge method for modulating the electronic structure of catalysts, plays a crucial role in regulating the interaction between the catalytic surface and the adsorbed molecules. The electrocatalytic performance is influenced by the electronic structure, which can be achieved by introducing the external forces or stresses to adjust interatomic spacing between surface atoms. The challenges in strain engineering research lie in accurately understanding the mechanical impact of strain on performance. This paper first introduces the basic strategy for generating the strain, summarizes the different strain generation forms and their advantages and disadvantages. The progress in researching the characterization means for the lattice strains and their applications in the field of electrocatalysis is also emphasized. Finally, the challenges of strain engineering are introduced, and an outlook on the future research directions is provided.


menu
Abstract
Full text
Outline
About this article

Strain engineering in electrocatalysis: Strategies, characterization, and insights

Show Author's information Qibo Deng1,7Peng Xu1Hassanien Gomaa1,2Mohamed A. Shenashen3,4Sherif A. El-Safty4Cuihua An1( )Li-Hua Shao6( )Ning Hu1,5( )
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
Department of Chemistry, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
Department of Petrochemical, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt
Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki-ken, 305-0047, Japan
State Key Laboratory of Reliability and Intelligence Electrical Equipment, Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
National Key Laboratory of Strength and Structural Integrity, Institute of Solid Mechanics, School of Aeronautic Science and Engineering, Beihang University, Beijing100191, China
Advanced Equipment Research Institute Co., Ltd. of HEBUT, Tianjin 300401, China

Abstract

Strain engineering, as a cutting-edge method for modulating the electronic structure of catalysts, plays a crucial role in regulating the interaction between the catalytic surface and the adsorbed molecules. The electrocatalytic performance is influenced by the electronic structure, which can be achieved by introducing the external forces or stresses to adjust interatomic spacing between surface atoms. The challenges in strain engineering research lie in accurately understanding the mechanical impact of strain on performance. This paper first introduces the basic strategy for generating the strain, summarizes the different strain generation forms and their advantages and disadvantages. The progress in researching the characterization means for the lattice strains and their applications in the field of electrocatalysis is also emphasized. Finally, the challenges of strain engineering are introduced, and an outlook on the future research directions is provided.

Keywords: characterization, electrocatalysis, strain, lattice mismatch, chemical reaction kinetics

References(157)

[1]

Chen, Y. Z.; Yang, Y. Y.; Yan, P. D.; Li, J. Economic optimization of renewable energy system under complex uncertainties. J. Hebei Univ. Technol. 2020, 49, 52–59.

[2]

Pang, W. B.; Xu, S. W.; Zhang, Y. H. Thin-film-based miniaturized flexible robots: A brief review. J. Hebei Univ. Technol. 2021, 50, 1–22.

[3]

Hu, L.; Li, J.; Sun, B.; Feng, S. F.; Wang, L. D.; Hao, Z. K. Preparation and photocatalytic properties of PW12/Bi2WO6. J. Hebei Univ. Technol. 2023, 52, 85–90.

[4]

Jiang, K. Z.; Kang, K. L.; Xu, Z. B.; Zheng, S. J. Research progress of high entropy alloy catalysts in the field of hydrogen electroconversion. J. Hebei Univ. Technol. 2023, 52, 1–15.

[5]

Yang, Z. H.; Du, X. Q.; Ye, X. Q.; Qu, X. D.; Duan, H. L.; Xing, Y. F.; Shao, L. H.; Chen, C. A. The free-standing nanoporous palladium for hydrogen isotope storage. J. Alloys Compd. 2021, 854, 157062.

[6]

Wang, L. F.; Yang, R. X.; Fu, J. Z.; Cao, Y. Y.; Ding, R. F.; Xu, X. H. Vertically aligned W(Mo)S2/N-W(Mo)C-based light-assisted electrocatalysis for hydrogen evolution in acidic solutions. Rare Met. 2023, 42, 1535–1544.

[7]

Yu, F. S.; Tian, L. Y. The progress on rational catalyst design for electrochemical N2 reduction. J. Hebei Univ. Technol. 2022, 51, 55–64.

[8]

Si, M.; Shen, B. X. The effect of SO2 and O3 on NO catalytic oxidation by manganese-cobalt catalyst. J. Hebei Univ. Technol. 2021, 50, 69–76.

[9]

Feng, Y.; Yang, H. T.; Wang, X.; Hu, C. Q.; Jing, H. L.; Cheng, J. X. Role of transition metals in catalyst designs for oxygen evolution reaction: A comprehensive review. Int. J. Hydrogen Energy 2022, 47, 17946–17970.

[10]

Jiao, P. G.; Ye, D. H.; Zhu, C. Y.; Wu, S.; Qin, C. L.; An, C. H.; Hu, N.; Deng, Q. B. Non-precious transition metal single-atom catalysts for the oxygen reduction reaction: Progress and prospects. Nanoscale 2022, 14, 14322–14340.

[11]

Xu, J.; Yin, Y. Q.; Xiong, H. Q.; Du, X. D.; Jiang, Y. J.; Guo, W.; Wang, Z.; Xie, Z. Z.; Qu, D. Y.; Tang, H. L. et al. Improving catalytic activity of metal telluride by hybridization: An efficient Ni3Te2-CoTe composite electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 2019, 490, 516–521.

[12]

Sun, J. P.; Zhao, Z.; Li, J.; Li, Z. Z.; Meng, X. C. Recent advances in electrocatalytic seawater splitting. Rare Met. 2023, 42, 751–768.

[13]

Li, Z. X.; Hu, M. L.; Wang, P.; Liu, J. H.; Yao, J. S.; Li, C. Y. Heterojunction catalyst in electrocatalytic water splitting. Coord. Chem. Rev. 2021, 439, 213953.

[14]

Yin, X.; Yang, L. C.; Gao, Q. S. Core–shell nanostructured electrocatalysts for water splitting. Nanoscale 2020, 12, 15944–15969.

[15]

Meng, X. C.; Yuan, S.; An, X.; Jing, Y. K.; Liu, Z.; Fan, C.; Wang, M. J.; Zhen, H. X. First-principle study of electronic structure and optical properties of In-doped SnS2. J. Hebei Univ. Technol. 2021, 50, 30–36.

[16]

Li, X. Q.; Xing, Y. F.; Xu, J.; Deng, Q. B.; Shao, L. H. Uniform yolk–shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery. Chem. Commun. 2020, 56, 364–367.

[17]

Xu, W. J.; Cao, M. Q.; Luo, J.; Mao, H. L.; Gu, H. F.; Sun, Z. Y.; Liu, Q. Q.; Zhang, S. Research progress on single atom and particle synergistic catalysts for electrocatalytic reactions. Mater. Chem. Front. 2023, 7, 1992–2013.

[18]

Li, K.; Xu, J.; Chen, C.; Xie, Z. Z.; Liu, D.; Qu, D. Y.; Tang, H. L.; Wei, Q.; Deng, Q. B.; Li, J. S. et al. Activating the hydrogen evolution activity of Pt electrode via synergistic interaction with NiS2. J. Colloid Interface Sci. 2021, 582, 591–597.

[19]

Cheng, W. R.; Zhao, X.; Su, H.; Tang, F. M.; Che, W.; Zhang, H.; Liu, Q. H. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115–122.

[20]

Liu, M. X.; Liu, K.; Gao, C. B. Effects of ligands on synthesis and surface-engineering of noble metal nanocrystals for electrocatalysis. ChemElectroChem 2022, 9, e202200651.

[21]

Wang, J.; Wei, J. K.; An, C. H.; Tang, H. L.; Deng, Q. B.; Li, J. S. Electrocatalyst design for the conversion of energy molecules: Electronic state modulation and mass transport regulation. Chem. Commun. 2022, 58, 10907–10924.

[22]

Deng, Q. B.; Jia, H. X.; An, C. H.; Wu, S.; Zhao, S.; Hu, N. Progress and prospective of electrochemical actuator materials. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107336.

[23]

Hou, J. B.; Yang, M.; Zhang, J. L. Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale 2020, 12, 6900–6920.

[24]

Jansonius, R. P.; Reid, L. M.; Virca, C. N.; Berlinguette, C. P. Strain engineering electrocatalysts for selective CO2 reduction. ACS Energy Lett. 2019, 4, 980–986.

[25]

Khorshidi, A.; Violet, J.; Hashemi, J.; Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 2018, 1, 263–268.

[26]

Tiwari, A. P.; Bae, G.; Yoon, Y.; Kim, K.; Kim, J.; Lee, Y. L.; An, K. S.; Jeon, S. Chemical strain engineering of copper atoms on continuous three-dimensional-nanopatterned nickel nitride to accelerate alkaline hydrogen evolution. ACS Sustainable Chem. Eng. 2023, 11, 5229–5237.

[27]

Lin, Y.; Chen, X. M.; Tuo, Y.; Pan, Y.; Zhang, J. In-situ doping-induced lattice strain of NiCoP/S nanocrystals for robust wide pH hydrogen evolution electrocatalysis and supercapacitor. J. Energy Chem. 2022, 70, 27–35

[28]

Guan, D. Q.; Zhong, J.; Xu, H. Y.; Huang, Y. C.; Hu, Z. W.; Chen, B.; Zhang, Y.; Ni, M.; Xu, X. M.; Zhou, W. et al. A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Appl. Phys. Rev. 2022, 9, 011422.

[29]

Deng, Q. B.; Jia, H. X.; Yang, B.; Qi, Z. P.; Zhang, Z. Y.; Lee, A.; Hu, N. The electro-chemo-mechanical coupling at the solid–liquid interfaces and its applications to electrocatalysis. Adv. Mech. 2022, 52, 221–252.

[30]

Wu, G.; Han, X.; Cai, J. Y.; Yin, P. Q.; Cui, P. X.; Zheng, X. S.; Li, H.; Chen, C.; Wang, G. M.; Hong, X. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat. Commun. 2022, 13, 4200.

[31]

Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036.

[32]

Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Luo, M. C.; Zhang, Q. H.; Qin, Y. N.; Tao, L.; Yin, K.; Chao, Y. G.; Gu, L. et al. Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 8243–8250.

[33]

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

[34]

Ling, T.; Yan, D. Y.; Wang, H.; Jiao, Y.; Hu, Z. P.; Zheng, Y.; Zheng, L. R.; Mao, J.; Liu, H.; Du, X. W. et al. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nat. Commun. 2017, 8, 1509.

[35]

Deng, Q. B.; Huang, R.; Shao, L. H.; Mumyatov, A. V.; Troshin, P. A.; An, C. H.; Wu, S.; Gao, L. X.; Yang, B.; Hu, N. Atomic understanding of the strain-induced electrocatalysis from DFT calculation: Progress and perspective. Phys. Chem. Chem. Phys. 2023, 25, 12565–12586.

[36]

Li, C.; Yan, S. H.; Fang, J. Y. Construction of lattice strain in bimetallic nanostructures and its effectiveness in electrochemical applications. Small 2021, 17, 2102244.

[37]

Pishgar, S.; Gulati, S.; Strain, J. M.; Liang, Y.; Mulvehill, M. C.; Spurgeon, J. M. In situ analytical techniques for the investigation of material stability and interface dynamics in electrocatalytic and photoelectrochemical applications. Small Methods 2021, 5, 2100322

[38]

An, C. H.; Dong, C. H.; Shao, L. H.; Deng, Q. B. Monitoring the length change of Ni@C composite electrodes during charging/discharging processes. Electrochem. Commun. 2019, 103, 94–99.

[39]

You, B.; Tang, M. T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X. L.; Li, H. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 2019, 31, 1807001.

[40]

Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

[41]

Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.

[42]

Zhong, H. Y.; Wang, X. P.; Sun, G. X.; Tang, Y. X.; Tan, S. D.; He, Q.; Zhang, J.; Xiong, T.; Diao, C. Z.; Yu, Z. G. et al. Optimization of oxygen evolution activity by tuning e*g band broadening in nickel oxyhydroxide. Energy Environ. Sci. 2023, 16, 641–652.

[43]

Zhang, L. C.; Wang, J. Q.; Liu, P. Y.; Liang, J.; Luo, Y. S.; Cui, G. W.; Tang, B.; Liu, Q.; Yan, X. D.; Hao, H. G. et al. Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 2022, 15, 6084–6090.

[44]

Xiong, L. W.; Qiu, Y. F.; Peng, X.; Liu, Z. T.; Chu, P. K. Electronic structural engineering of transition metal-based electrocatalysts for the hydrogen evolution reaction. Nano Energy 2022, 104, 107882.

[45]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano. 2022, 16, 3251–3263.

[46]

Jiang, F. L.; Zhu, F. J.; Yang, F.; Yan, X. H.; Wu, A. M.; Luo, L. X.; Li, X. L.; Zhang, J. L. Comparative investigation on the activity degradation mechanism of Pt/C and PtCo/C electrocatalysts in PEMFCs during the accelerate degradation process characterized by an in situ X-ray absorption fine structure. ACS Catal. 2020, 10, 604–612.

[47]

Yin, J.; Jin, J.; Zhang, H.; Lu, M.; Peng, Y.; Huang, B. L.; Xi, P. X.; Yan, C. H. Atomic arrangement in metal-doped NiS2 boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2019, 58, 18676–18682.

[48]

Liu, X. F.; Liu, T. Y.; Xiao, W. J.; Wang, W. T.; Zhang, Y. F.; Wang, G.; Luo, Z. J.; Liu, J. C. Strain engineering in single-atom catalysts: GaPS4 for bifunctional oxygen reduction and evolution. Inorg. Chem. Front. 2022, 9, 4272–4280.

[49]

Gao, B.; Du, X. Y.; Zhao, Y. W.; Seok Cheon, W.; Ding, S. J.; Xiao, C. H.; Song, Z. X.; Jang, H. W. Electron strain-driven phase transformation in transition-metal-co doped MoTe2 for electrocatalytic hydrogen evolution. Chem. Eng. J. 2022, 433, 133768.

[50]

Yin, Y. Q.; Liu, T. T.; Liu, D.; Wang, Z.; Deng, Q. B.; Qu, D. Y.; Xie, Z. Z.; Tang, H. L.; Li, J. S. Confining nano-sized platinum in nitrogen doped ordered mesoporous carbon: An effective approach toward efficient and robust hydrogen evolution electrocatalyst. J. Colloid Interface Sci. 2018, 530, 595–602.

[51]

Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Roldan Cuenya, B. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.

[52]

Bolar, S.; Shit, S.; Murmu, N. C.; Samanta, P.; Kuila, T. Activation strategy of MoS2 as HER electrocatalyst through doping-induced lattice strain, band gap engineering, and active crystal plane design. ACS Appl. Mater. Interfaces 2021, 13, 765–780.

[53]

Guo, R. Y.; Zhang, K.; Liu, Y. M.; He, Y. C.; Wu, C.; Jin, M. S. Hydrothermal synthesis of palladium nitrides as robust multifunctional electrocatalysts for fuel cells. J. Mater. Chem. A 2021, 9, 6196–6204.

[54]

Guo, R. Y.; Bi, W.; Zhang, K.; Liu, Y. M.; Wang, C. Q.; Zheng, Y. Z.; Jin, M. S. Phosphorization treatment improves the catalytic activity and durability of platinum catalysts toward oxygen reduction reaction. Chem. Mater. 2019, 31, 8205–8211.

[55]

Guo, R. Y.; Zhang, K.; Ji, S. D.; Zheng, Y. Z.; Jin, M. S. Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications. Chin. Chem. Lett. 2021, 32, 2679–2692.

[56]

Pierucci, D.; Henck, H.; Ben Aziza, Z.; Naylor, C. H.; Balan, A.; Rault, J. E.; Silly, M. G.; Dappe, Y. J.; Bertran, F.; Le Fèvre, P. et al. Tunable doping in hydrogenated single layered molybdenum disulfide. ACS Nano 2017, 11, 1755–1761.

[57]

Zhai, Z. B.; Li, H. W.; Zhou, C. A.; Zheng, H.; Liu, Y.; Yan, W.; Zhang, J. J. Anisotropic strain boosted hydrogen evolution reaction activity of F-NiCoMo LDH for overall water splitting. J. Electrochem. Soc. 2023, 170, 036509.

[58]

Xiong, Y. J.; Ma, Y. A.; Zou, L. L.; Han, S. B.; Chen, H.; Wang, S.; Gu, M.; Shen, Y.; Zhang, L. P.; Xia, Z. H. et al. N-doping induced tensile-strained Pt nanoparticles ensuring an excellent durability of the oxygen reduction reaction. J. Catal. 2020, 382, 247–255.

[59]

Mao, Q. Q.; Jiao, S. Q.; Ren, K. L.; Wang, S. Q.; Xu, Y.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Transition metal and phosphorus co-doping induced lattice strain in mesoporous Rh-based nanospheres for pH-universal hydrogen evolution electrocatalysis. Chem. Eng. J. 2021, 426, 131227.

[60]

Chattot, R.; Bordet, P.; Martens, I.; Drnec, J.; Dubau, L.; Maillard, F. Building practical descriptors for defect engineering of electrocatalytic materials. ACS Catal. 2020, 10, 9046–9056.

[61]

Qiu, Y. S.; Gao, R.; Yang, W. Y.; Huang, L.; Mao, Q. J.; Yang, J. B.; Sun, L. M.; Hu, Z. B.; Liu, X. F. Understanding the enhancement mechanism of a-site-deficient La X NiO3 as an oxygen redox catalyst. Chem. Mater. 2020, 32, 1864–1875.

[62]

Sun, Y. J.; Liang, Y. X.; Luo, M. C.; Lv, F.; Qin, Y. N.; Wang, L.; Xu, C.; Fu, E. G.; Guo, S. J. Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small 2018, 14, 1702259.

[63]

Wang, L.; Stoerzinger, K. A.; Chang, L.; Yin, X. M.; Li, Y. Y.; Tang, C. S.; Jia, E. D.; Bowden, M. E.; Yang, Z. Z.; Abdelsamie, A. et al. Strain effect on oxygen evolution reaction activity of epitaxial NdNiO3 thin films. ACS Appl. Mater. Interfaces 2019, 11, 12941–12947.

[64]

Kutsuzawa, D.; Oka, D.; Fukumura, T. Thickness effects on crystal growth and metal-insulator transition in rutile-type RuO2(100) Thin films. Phys. Status Solidi B 2020, 257, 2000188.

[65]

Fatima, Z.; Oka, D.; Fukumura, T. Systematic application of extremely large strain to rutile-type RuO2(100) epitaxial thin films on substrates with large lattice mismatches. Cryst. Growth Des. 2021, 21, 4083–4089.

[66]

Xu, H. J.; Yang, Y. W.; Yang, X. X.; Cao, J.; Liu, W. S.; Tang, Y. Stringing MOF-derived nanocages: A strategy for the enhanced oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 8284–8291.

[67]

Adiga, P.; Nunn, W.; Wong, C.; Manjeshwar, A. K.; Nair, S.; Jalan, B.; Stoerzinger, K. A. Breaking OER and CER scaling relations via strain and its relaxation in RuO2 (101). Mater. Today Energy 2022, 28, 101087.

[68]

Fernandez, A.; Caretta, L.; Das, S.; Klewe, C.; Lou, D.; Parsonnet, E.; Gao, R.; Luo, A.; Shafer, P.; Martin, L. W. Strain-induced orbital contributions to oxygen electrocatalysis in transition-metal perovskites. Adv. Energy Mater. 2021, 11, 2102175.

[69]

Jia, D. D.; Qi, Z.; Li, X. Q.; Li, L. L.; Shao, L. H.; Liu, H. 3D hierarchical macro/mesoporous TiO2 with nanoporous or nanotubular structures and their core/shell composites achieved by anodization. CrystEngComm 2017, 19, 2509–2516

[70]

Wang, C.; An, C. H.; Qin, C. L.; Gomaa, H.; Deng, Q. B.; Wu, S.; Hu, N. Noble metal-based catalysts with core–shell structure for oxygen reduction reaction: Progress and prospective. Nanomaterials 2022, 12, 2480.

[71]

Wu, Y. Q.; Zeng, J. C.; Yang, Y.; Li, Z. J.; Zhang, W. B.; Li, D.; Gao, Q. S. Bromine anion mediated epitaxial growth of core–shell Pd@Ag towards efficient electrochemical CO2 reduction. Mater. Chem. Front. 2021, 5, 4327–4333.

[72]

Ahn, H.; Ahn, H.; An, J. H.; Kim, H.; Hong, J. W.; Han, S. W. Role of surface strain at nanocrystalline Pt{110} facets in oxygen reduction catalysis. Nano Lett. 2022, 22, 9115–9121.

[73]

Ding, H.; Wang, P.; Su, C. J.; Liu, H. F.; Tai, X. L.; Zhang, N.; Lv, H. F.; Lin, Y.; Chu, W. S.; Wu, X. J. et al. Epitaxial growth of ultrathin highly crystalline Pt-Ni nanostructure on a metal carbide template for efficient oxygen reduction reaction. Adv. Mater. 2022, 34, 2109188.

[74]

Zhao, G. Q.; Luo, Z. X.; Zhang, B. H.; Chen, Y. P.; Cui, X. Z.; Chen, J.; Liu, Y. F.; Gao, M. X.; Pan, H. G.; Sun, W. P. Epitaxial interface stabilizing iridium dioxide toward the oxygen evolution reaction under high working potentials. Nano Res. 2023, 16, 4767–4774.

[75]

Wang, K.; Deng, Q. B. Constructing core–shell Co@N-rich carbon additives toward enhanced hydrogen storage performance of magnesium hydride. Front. Chem. 2020, 8, 223.

[76]

An, C. H.; Wang, T. Y.; Wang, S. K.; Chen, X. D.; Han, X. P.; Wu, S.; Deng, Q. B.; Zhao, L. B.; Hu, N. Ultrasonic-assisted preparation of two-dimensional materials for electrocatalysts. Ultrason. Sonochem. 2023, 98, 106503.

[77]

Berning, T.; Becher, M.; Wree, J. L.; Jagosz, J.; Kostka, A.; Ostendorf, A.; Devi, A.; Bock, C. Nucleation and growth studies of large-area deposited WS2 on flexible substrates. Mater. Res. Express 2022, 9, 116401.

[78]

Li, Z. W.; Lv, Y. W.; Ren, L. W.; Li, J.; Kong, L. A.; Zeng, Y. J.; Tao, Q. Y.; Wu, R. X.; Ma, H. F.; Zhao, B. et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 2020, 11, 1151.

[79]

Ren, L. W.; Li, Z. W.; Lv, Y. W.; Li, X.; Zhang, D. L.; Li, W. Y.; Liu, L. T.; Kong, L. A.; Duan, X. D.; Wang, X. et al. Efficient modulation of MoS2/WSe2 interlayer excitons via uniaxial strain. Appl. Phys. Lett. 2022, 120, 053107.

[80]

Xing, H. D.; Wang, X. J.; Xu, C. C.; Du, H. Z.; Li, R. B.; Zhao, Z. H.; Qiu, W. Spectral mechanical investigation of the elastic interface between a MoS2/graphene heterostructure and a soft substrate. Carbon 2023, 204, 566–574.

[81]

Dong, M.; Young, R. J.; Dunstan, D. J.; Papageorgiou, D. G. Interfacial stress transfer in monolayer and few-layer MoS2 nanosheets in model nanocomposites. Compos. Sci. Technol. 2023, 233, 109892.

[82]

Deng, S. K.; Sumant, A. V.; Berry, V. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 2018, 22, 14–35.

[83]

Wang, J. W.; Han, M. J.; Wang, Q.; Ji, Y. Q.; Zhang, X.; Shi, R.; Wu, Z. F.; Zhang, L.; Amini, A.; Guo, L. et al. Strained epitaxy of monolayer transition metal dichalcogenides for wrinkle arrays. ACS Nano 2021, 15, 6633–6644.

[84]

Martella, C.; Mennucci, C.; Cinquanta, E.; Lamperti, A.; Cappelluti, E.; de Mongeot, F. B.; Molle, A. Anisotropic MoS2 nanosheets grown on self-organized nanopatterned substrates. Adv. Mater. 2017, 29, 1605785.

[85]

Liu, B. S.; Liao, Q. L.; Zhang, X. K.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z.; Zhang, Z.; Zhang, Y. Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano 2019, 13, 9057–9066.

[86]

He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

[87]

Ma, Y.; Ding, B.; Chen, Y. L.; Wen, D. S. A novel method to predict nanofilm morphology on arbitrary-topographical substrate. Int. J. Mech. Sci. 2022, 232, 107621.

[88]

Yang, S. X.; Chen, Y. J.; Jiang, C. B. Strain engineering of two-dimensional materials: Methods, properties, and applications. InfoMat 2021, 3, 397–420.

[89]

Sun, Y. F.; Pan, J. B.; Zhang, Z. T.; Zhang, K. N.; Liang, J.; Wang, W. J.; Yuan, Z. Q.; Hao, Y. K.; Wang, B. L.; Wang, J. W. et al. Elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe2. Nano Lett. 2019, 19, 761–769.

[90]

Jiang, H. J.; Zheng, L.; Wei, Y.; Wang, X. W. In-situ investigation of the elastic behavior of two-dimensional MoS2 on flexible substrate by nanoindentation. J. Phys. D Appl. Phys. 2021, 54, 504006

[91]

Won, K.; Lee, C.; Jung, J.; Kwon, S.; Gebredingle, Y.; Lim, J. G.; Kim, M. K.; Jeong, M. S.; Lee, C. Raman scattering measurement of suspended graphene under extreme strain induced by nanoindentation. Adv. Mater. 2022, 34, 2200946.

[92]

Shao, L. H.; Qu, X. D.; Wang, T. Y.; Cui, Z.; Liu, Y. X.; Zhu, Y. Interfacial shear stress transfer between elastoplastic fiber and elastic matrix. J. Mech. Phys. Solids. 2023, 173, 105218

[93]

Li, X.; Sun, M.; Shan, C. X.; Chen, Q.; Wei, X. L. Mechanical properties of 2D materials studied by in situ microscopy techniques. Adv. Mater. Interfaces 2018, 5, 1701246.

[94]

Christopher, J. W.; Vutukuru, M.; Lloyd, D.; Bunch, J. S.; Goldberg, B. B.; Bishop, D. J.; Swan, A. K. Monolayer MoS2 strained to 1.3% with a microelectromechanical system. J. Microelectromech. Syst. 2019, 28, 254–263.

[95]

Jansonius, R. P.; Schauer, P. A.; Dvorak, D. J.; MacLeod, B. P.; Fork, D. K.; Berlinguette, C. P. Strain influences the hydrogen evolution activity and absorption capacity of palladium. Angew. Chem., Int. Ed. 2020, 59, 12192–12198.

[96]

Huang, Y. Q.; Ye, Z. G.; Pei, F.; Ma, G.; Peng, X. Y.; Li, D. S. Strain in a platinum plate induced by an ultrahigh energy laser boosts the hydrogen evolution reaction. RSC Adv. 2021, 11, 39087–39094.

[97]

Yan, K.; Maark, T. A.; Khorshidi, A.; Sethuraman, V. A.; Peterson, A. A.; Guduru, P. R. The influence of elastic strain on catalytic activity in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 6175–6181.

[98]

Niu, Z. J.; Wan, Y. Y.; Li, X.; Zhang, M.; Liu, B. Y.; Chen, Z.; Lu, G.; Yan, K. In-situ regulation of formic acid oxidation via elastic strains. J. Catal. 2020, 389, 631–635

[99]

Wang, A. Q.; Zhao, Z. L.; Hu, D.; Niu, J. F.; Zhang, M.; Yan, K.; Lu, G. Tuning the oxygen evolution reaction on a nickel-iron alloy via active straining. Nanoscale 2019, 11, 426–430.

[100]

Smetanin, M.; Kramer, D.; Mohanan, S.; Herr, U.; Weissmüller, J. Response of the potential of a gold electrode to elastic strain. Phys. Chem. Chem. Phys. 2009, 11, 9008–9012.

[101]

Smetanin, M.; Deng, Q. B.; Weissmüller, J. Dynamic electro-chemo-mechanical analysis during cyclic voltammetry. Phys. Chem. Chem. Phys. 2011, 13, 17313–17322.

[102]

Deng, Q. B.; Smetanin, M.; Weissmüller, J. Mechanical modulation of reaction rates in electrocatalysis. J. Catal. 2014, 309, 351–361.

[103]

Deng, Q. B.; Weissmüller, J. Electrocapillary coupling during electrosorption. Langmuir 2014, 30, 10522–10530.

[104]

Deng, Q. B.; Gosslar, D. H.; Smetanin, M.; Weissmüller, J. Electrocapillary coupling at rough surfaces. Phys. Chem. Chem. Phys. 2015, 17, 11725–11731.

[105]

Yang, M. Z.; Zhang, H. X.; Deng, Q. B. Understanding the copper underpotential deposition process at strained gold surface. Electrochem. Commun. 2017, 82, 125–128.

[106]

Deng, Q. B.; Yuan, A. T. Monitoring and modeling the variation of electrochemical current induced by dynamic strain at gold surfaces. J. Electrochem. Soc. 2019, 166, H480–H484.

[107]

Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 2010, 464, 571–574.

[108]

Su, D. Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy Environ. 2017, 2, 70–83.

[109]

Xu, T.; Sun, L. T. Dynamic in-situ experimentation on nanomaterials at the atomic scale. Small 2015, 11, 3247–3262.

[110]

Nelli, D.; Roncaglia, C.; Minnai, C. Strain engineering in alloy nanoparticles. Adv. Phys. X 2023, 8, 2127330.

[111]

Guo, Z. W.; Kang, X. W.; Zheng, X. S.; Huang, J.; Chen, S. W. PdCu alloy nanoparticles supported on CeO2 nanorods: Enhanced electrocatalytic activity by synergy of compressive strain, PdO and oxygen vacancy. J. Catal. 2019, 374, 101–109.

[112]

Wang, L.; Zeng, Z. H.; Gao, W. P.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X. Q.; Wang, C.; Greeley, J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019, 363, 870–874.

[113]

Wang, T. L.; Chutia, A.; Brett, D. J. L.; Shearing, P. R.; He, G. J.; Chai, G. L.; Parkin, I. P. Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci. 2021, 14, 2639–2669.

[114]

Gao, W. P.; Hood, Z. D.; Chi, M. F. Interfaces in heterogeneous catalysts: Advancing mechanistic understanding through atomic-scale measurements. Acc. Chem. Res. 2017, 50, 787–795.

[115]

Wu, Z. X.; Yang, B.; Miao, S.; Liu, W.; Xie, J. L.; Lee, S.; Pellin, M. J.; Xiao, D. Q.; Su, D. S.; Ma, D. Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane. ACS Catal. 2019, 9, 2693–2700.

[116]

Di, J.; Song, P.; Zhu, C.; Chen, C.; Xiong, J.; Duan, M. L.; Long, R.; Zhou, W. Q.; Xu, M. Z.; Kang, L. X. et al. Strain-engineering of Bi12O17Br2 nanotubes for boosting photocatalytic CO2 reduction. ACS Mater. Lett. 2020, 2, 1025–1032.

[117]

Mukherjee, D.; Gamler, J. T. L.; Skrabalak, S. E.; Unocic, R. R. Lattice strain measurement of core@shell electrocatalysts with 4D scanning transmission electron microscopy nanobeam electron diffraction. ACS Catal. 2020, 10, 5529–5541.

[118]

Ke, X. X.; Zhang, M. C.; Zhao, K. N.; Su, D. Moiré fringe method via scanning transmission electron microscopy. Small Methods 2022, 6, 2101040.

[119]

Deng, Y.; Xie, N.; Hu, W. Y.; Ma, Z. Y.; Xu, F. J.; Chen, L. Q.; Qiu, W. B.; Zhao, L.; Tao, H.; Wu, B. et al. Atomic plane misorientation assisted crystalline quality improvement in epitaxial growth of AlN on a nanopatterned sapphire (0001) surface for deep ultraviolet photoelectric devices. ACS Appl. Nano Mater. 2023, 6, 4262–4270.

[120]

Zhao, Y.; Yang, Y.; Wen, H. H.; Liu, C.; Huang, X. F.; Liu, Z. W. Evaluation of interfacial misfit strain field of heterostructures using STEM nano secondary Moiré method. Phys. Chem. Chem. Phys. 2022, 24, 9848–9854.

[121]

Feng, Q. L.; Zhu, C. Z.; Sheng, G.; Sun, T. L.; Li, Y. J.; Zhu, Y. H. Four-dimensional scanning transmission electron microscopy: From material microstructures to physicochemical properties. Acta Phys. Chim. Sin. 2023, 39, 2210017.

[122]

Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 2019, 25, 563–582.

[123]

Musavigharavi, P.; Meng, A. C.; Wang, D. X.; Zheng, J.; Foucher, A. C.; Olsson, R. H.; Stach, E. A. Nanoscale structural and chemical properties of ferroelectric aluminum scandium nitride thin films. J. Phys. Chem. C 2021, 125, 14394–14400.

[124]

Shi, C. Q.; Cao, M. C.; Rehn, S. M.; Bae, S. H.; Kim, J.; Jones, M. R.; Muller, D. A.; Han, Y. M. Uncovering material deformations via machine learning combined with four-dimensional scanning transmission electron microscopy. Npj Comput. Mater. 2022, 8, 114.

[125]

Wang, S. H.; Eldred, T. B.; Smith, J. G.; Gao, W. P. AutoDisk: Automated diffraction processing and strain mapping in 4D-STEM. Ultramicroscopy 2022, 236, 113513.

[126]

Vicente, R. A.; Neckel, I. T.; Sankaranarayanan, S. K. R. S.; Solla-Gullon, J.; Fernández, P. S. Bragg coherent diffraction imaging for in situ studies in electrocatalysis. ACS Nano 2021, 15, 6129–6146.

[127]

Lahiri, A.; Lakshya, A. K.; Guan, S. L.; Anguilano, L.; Chowdhury, A. Impact of different metallic forms of nickel on hydrogen evolution reaction. Scr. Mater. 2022, 218, 114829.

[128]

Thomas, O.; Labat, S.; Cornelius, T.; Richard, M. I. X-ray diffraction imaging of deformations in thin films and nano-objects. Nanomaterials 2022, 12, 1363.

[129]

Zhao, G. Q.; Jiang, Y. Z.; Dou, S. X.; Sun, W. P.; Pan, H. G. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci. Bull. 2021, 66, 85–96.

[130]

Chen, Y. M.; Yang, F.; Dai, Y.; Wang, W. Q.; Chen, S. L. Ni@Pt core–shell nanoparticles: Synthesis, structural and electrochemical properties. J. Phys. Chem. C 2008, 112, 1645–1649.

[131]

Kong, Z. J.; Maswadeh, Y.; Vargas, J. A.; Shan, S. Y.; Wu, Z. P.; Kareem, H.; Leff, A. C.; Tran, D. T.; Chang, F. F.; Yan, S. et al. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions. J. Am. Chem. Soc. 2020, 142, 1287–1299.

[132]

Nath, D.; Singh, F.; Das, R. X-ray diffraction analysis by Williamson–Hall, Halder–Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Mater. Chem. Phys. 2020, 239, 122021.

[133]

Bagus, P. S.; Ilton, E. S.; Nelin, C. J. The interpretation of XPS spectra: Insights into materials properties. Surf. Sci. Rep. 2013, 68, 273–304.

[134]

Wang, W. W.; Bai, X. Y.; Yuan, X. C.; Liu, Y. M.; Yang, L.; Chang, F. F. Platinum-cobalt nanowires for efficient alcohol oxidation electrocatalysis. Materials 2023, 16, 840.

[135]

Ren, M. Y.; Chang, F. F.; Miao, R. F.; He, X. H.; Yang, L.; Wang, X. L.; Bai, Z. Y. Strained lattice platinum-palladium alloy nanowires for efficient electrocatalysis. Inorg. Chem. Front. 2020, 7, 1713–1718.

[136]

Miao, R. F.; Chang, F. F.; Ren, M. Y.; He, X. H.; Yang, L.; Wang, X. L.; Bai, Z. Y. Platinum-palladium alloy nanotetrahedra with tuneable lattice-strain for enhanced intrinsic activity. Catal. Sci. Technol. 2020, 10, 6173–6179.

[137]

Wang, X. Y.; Tuo, Y. X.; Zhou, Y.; Wang, D.; Wang, S. T.; Zhang, J. Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chem. Eng. J. 2021, 403, 126297.

[138]

Azcatl, A.; Qin, X. Y.; Prakash, A.; Zhang, C. X.; Cheng, L. X.; Wang, Q. X.; Lu, N.; Kim, M. J.; Kim, J.; Cho, K. et al. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 2016, 16, 5437–5443.

[139]

Xu, C. C.; Yang, J.; Liu, E. S.; Jia, Q. Y.; Veith, G. M.; Nair, G.; DiPietro, S.; Sun, K.; Chen, J. X.; Pietrasz, P. et al. Physical vapor deposition process for engineering Pt based oxygen reduction reaction catalysts on NbO x templated carbon support. J. Power Sources. 2020, 451, 227709.

[140]

Zhou, Z. Y.; Xie, Y. N.; Sun, L. Z.; Wang, Z. M.; Wang, W. K.; Jiang, L. Z.; Tao, X.; Li, L. N.; Li, X. H.; Zhao, G. H. Strain-induced in situ formation of NiOOH species on Co–Co bond for selective electrooxidation of 5-hydroxymethylfurfural and efficient hydrogen production. Appl. Catal. B Environ. 2022, 305, 121072.

[141]

Chen, Z. L.; Yang, H. Y.; Mebs, S.; Dau, H.; Driess, M.; Wang, Z. W.; Kang, Z. H.; Menezes, P. W. Reviving oxygen evolution electrocatalysis of bulk La-Ni intermetallics via gaseous hydrogen engineering. Adv. Mater. 2023, 35, 2208337.

[142]

Xie, H. M.; Song, H. B.; Guo, J. G.; Kang, Y. L.; Yang, W.; Zhang, Q. In situ measurement of rate-dependent strain/stress evolution and mechanism exploration in graphene electrodes during electrochemical process. Carbon 2019, 144, 342–350

[143]

Jiao, W. L.; Chen, C.; You, W. B.; Chen, G. Y.; Xue, S. Y.; Zhang, J.; Liu, J. W.; Feng, Y. Z.; Wang, P.; Wang, Y. Z. et al. Tuning strain effect and surface composition in PdAu hollow nanospheres as highly efficient ORR electrocatalysts and SERS substrates. Appl. Catal. B Environ. 2020, 262, 118298.

[144]

Du, M. S.; Wan, Q.; Wang, Z. Q.; Cui, L. S. Elastic strain induced improvement in the photocatalytic activity of semiconducting film exerted by the surface relief of Fe-Ni-Co-Ti alloy substrate. Mater. Lett. 2016, 168, 192–195.

[145]

Liu, L. Y.; Su, L. J.; Lu, Y. L.; Zhang, Q. N.; Zhang, L.; Lei, S. L.; Shi, S. Q.; Levi, M. D.; Yan, X. B. The origin of electrochemical actuation of MnO2/Ni bilayer film derived by redox pseudocapacitive process. Adv. Funct. Mater. 2019, 29, 1806778.

[146]

Tsai, W. Y.; Wang, R. C.; Boyd, S.; Augustyn, V.; Balke, N. Probing local electrochemistry via mechanical cyclic voltammetry curves. Nano Energy 2021, 81, 105592.

[147]

Khadka, R.; Zhang, P. K.; Nguyen, N. T.; Tamm, T.; Travas-Sejdic, J.; Otero, T. F.; Kiefer, R. Role of polyethylene oxide content in polypyrrole linear actuators. Mater. Today Commun. 2020, 23, 100908.

[148]

Gao, Q.; Come, J.; Naguib, M.; Jesse, S.; Gogotsi, Y.; Balke, N. Synergetic effects of K+ and Mg2+ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti3C2 MXene. Faraday Discuss. 2017, 199, 393–403.

[149]

Schmidt, T. O.; Ngoipala, A.; Arevalo, R. L.; Watzele, S. A.; Lipin, R.; Kluge, R. M.; Hou, S. J.; Haid, R. W.; Senyshyn, A.; Gubanova, E. L. et al. Elucidation of structure–activity relations in proton electroreduction at Pd surfaces: Theoretical and experimental study. Small 2022, 18, 2202410.

[150]

Pfisterer, J. H. K.; Liang, Y. C.; Schneider, O.; Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 2017, 549, 74–77.

[151]

Mitterreiter, E.; Liang, Y. C.; Golibrzuch, M.; McLaughlin, D.; Csoklich, C.; Bartl, J. D.; Holleitner, A.; Wurstbauer, U.; Bandarenka, A. S. In-situ visualization of hydrogen evolution sites on helium ion treated molybdenum dichalcogenides under reaction conditions. Npj 2D Mater. Appl. 2019, 3, 25

[152]

Kluge, R. M.; Haid, R. W.; Riss, A.; Bao, Y.; Seufert, K.; Schmidt, T. O.; Watzele, S. A.; Barth, J. V.; Allegretti, F.; Auwärter, W. et al. A trade-off between ligand and strain effects optimizes the oxygen reduction activity of Pt alloys. Energy Environ. Sci. 2022, 15, 5181–5191.

[153]

Haid, R. W.; Kluge, R. M.; Liang, Y. C.; Bandarenka, A. S. In situ quantification of the local electrocatalytic activity via electrochemical scanning tunneling microscopy. Small Methods 2021, 5, 2000710

[154]

Liao, M. S.; Zhu, Q. M.; Li, S. H.; Li, Q. Q.; Tao, Z. T.; Fu, Y. C. In-situ imaging of strain-induced enhancement of hydrogen evolution activity on the extruded MoO2 sheets. Nano Res. 2023, 16, 5419–5426

[155]

Atlan, C.; Chatelier, C.; Martens, I.; Dupraz, M.; Viola, A.; Li, N.; Gao, L.; Leake, S. J.; Schülli, T. U.; Eymery, J. et al. Imaging the strain evolution of a platinum nanoparticle under electrochemical control. Nat. Mater. 2023, 22, 754–761.

[156]

Shade, P. A.; Musinski, W. D.; Obstalecki, M.; Pagan, D. C.; Beaudoin, A. J.; Bernier, J. V.; Turner, T. J. Exploring new links between crystal plasticity models and high-energy X-ray diffraction microscopy. Curr. Opin. Solid State Mater. Sci. 2019, 23, 100763.

[157]

Li, Z.; Wang, Q.; Bai, X. W.; Wang, M. Y.; Yang, Z. Z.; Du, Y. G.; Sterbinsky, G. E.; Wu, D. J.; Yang, Z. Z.; Tian, H. J. et al. Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc-air batteries. Energy Environ. Sci. 2021, 14, 5035–5043.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 October 2023
Revised: 01 December 2023
Accepted: 03 December 2023
Published: 05 February 2024
Issue date: May 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12172118, 52071125, and 12227801), the Research Program of Local Science and Technology Development under the Guidance of Central (No. 216Z4402G), Science Research Project of Hebei Education Department (No. JZX2023004), Opening fund of State Key Laboratory of Nonlinear Mechanics (LNM), and National Key Research and Development Program of China (No. 2019YFC0840709). We also acknowledge support from “Yuanguang” Scholar Program of Hebei University of Technology.

Return