Journal Home > Volume 17 , Issue 5

The efficient and rapid removal of volatile organic compounds (VOCs) holds significant importance for ensuring food quality and human health, particularly within the low-temperature confined spaces in refrigerators. However, achieving effective VOCs degradation under such conditions poses challenges in terms of activating inert bonds and facilitating mass transfer. In this study, we propose a novel solution by designing a cleaner module that incorporates 1.07% single Fe atom-anchored manganese dioxide catalysts (FeSAs-MnO2). The combination of single Fe atoms and defect-rich MnO2 substrate efficiently activates molecular oxygen, leading to enhanced generation of highly reactive oxygen species (ROS). Non-thermal plasma (NTP) and circulating fan are introduced to facilitate the regeneration of catalytic activity and improve mass transfer. The FeSAs-MnO2 cleaner module demonstrates exceptional performance in trimethylamine (TMA) removal, achieving a conversion efficiency of 98.9% for 9 ppm within just 9 min. Furthermore, accelerated aging tests predict an extended service life of up to 45 years for the FeSAs-MnO2 cleaner module, surpassing the expected lifespan of refrigerators significantly.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single Fe atom-anchored manganese dioxide for efficient removal of volatile organic compounds in refrigerator

Show Author's information Yiwen Wang1,2,§Jun Zhang3,§Yongfei Zhang3Yu Zhang2Zhe Wang3( )Jing Wang4( )Yuen Wu1,2( )
Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Hefei Hualing Co., Ltd, Hefei 230088, China
Linkway Technology Co., Ltd, Research Institute of Single Atom Catalysts Industry Technology, Nanning 530000, China

§ Yiwen Wang and Jun Zhang contributed equally to this work.

Abstract

The efficient and rapid removal of volatile organic compounds (VOCs) holds significant importance for ensuring food quality and human health, particularly within the low-temperature confined spaces in refrigerators. However, achieving effective VOCs degradation under such conditions poses challenges in terms of activating inert bonds and facilitating mass transfer. In this study, we propose a novel solution by designing a cleaner module that incorporates 1.07% single Fe atom-anchored manganese dioxide catalysts (FeSAs-MnO2). The combination of single Fe atoms and defect-rich MnO2 substrate efficiently activates molecular oxygen, leading to enhanced generation of highly reactive oxygen species (ROS). Non-thermal plasma (NTP) and circulating fan are introduced to facilitate the regeneration of catalytic activity and improve mass transfer. The FeSAs-MnO2 cleaner module demonstrates exceptional performance in trimethylamine (TMA) removal, achieving a conversion efficiency of 98.9% for 9 ppm within just 9 min. Furthermore, accelerated aging tests predict an extended service life of up to 45 years for the FeSAs-MnO2 cleaner module, surpassing the expected lifespan of refrigerators significantly.

Keywords: single atom catalysts, volatile organic compounds (VOCs), trimethylamine (TMA), non-thermal plasma (NTP), refrigerator

References(57)

[1]

Qiu, Z. L.; Li, G. Y.; An, T. C. In vitro toxic synergistic effects of exogenous pollutants-trimethylamine and its metabolites on human respiratory tract cells. Sci. Total Environ. 2021, 783, 146915

[2]

Spengler, J. D.; Sexton, K. Indoor air pollution: A public health perspective. Science 1983, 221, 9–17.

[3]

Huang, H. B.; Xu, Y.; Feng, Q. Y.; Leung, D. Y. C. Low temperature catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. 2015, 5, 2649–2669.

[4]

Jiang, C. J.; Li, D. D.; Zhang, P. Y.; Li, J. G.; Wang, J.; Yu, J. G. Formaldehyde and volatile organic compound (VOC) emissions from particleboard: Identification of odorous compounds and effects of heat treatment. Build. Environ. 2017, 117, 118–126.

[5]

Wi, S.; Kim, M. G.; Myung, S. W.; Baik, Y. K.; Lee, K. B.; Song, H. S.; Kwak, M. J.; Kim, S. Evaluation and analysis of volatile organic compounds and formaldehyde emission of building products in accordance with legal standards: A statistical experimental study. J. Hazard. Mater. 2020, 393, 122381.

[6]

Kamal, M. S.; Razzak, S. A.; Hossain, M. M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134.

[7]

Rumchev, K.; Spickett, J.; Bulsara, M.; Phillips, M.; Stick, S. Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 2004, 59, 746–751.

[8]

Guo, H.; Lee, S. C.; Chan, L. Y.; Li, W. M. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ. Res. 2004, 94, 57–66.

[9]

Kujawa, J.; Cerneaux, S.; Kujawski, W. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J. Membr. Sci. 2015, 474, 11–19.

[10]

Chung, K. H.; Lee, K. Y. Removal of trimethylamine by adsorption over zeolite catalysts and deodorization of fish oil. J. Hazard. Mater. 2009, 172, 922–927.

[11]

Chen, D. K.; Wan, P.; Cai, B. N.; Ye, Z. Q.; Chen, H.; Chen, X.; Sun, H. L.; Pan, J. Y. Trimethylamine adsorption mechanism on activated carbon and removal in water and oyster proteolytic solution. J. Ocean Univ. China 2021, 20, 1578–1586.

[12]

Huang, S. W.; Lou, J. C.; Lin, Y. C. Treatment of VOCs with molecular sieve catalysts in regenerative catalytic oxidizer. J. Hazard. Mater. 2010, 183, 641–647.

[13]

Wu, P.; Dai, S. Q.; Chen, G. X.; Zhao, S. Q.; Xu, Z.; Fu, M. L.; Chen, P. R.; Chen, Q.; Jin, X. J.; Qiu, Y. C. et al. Interfacial effects in hierarchically porous α-MnO2/Mn3O4 heterostructures promote photocatalytic oxidation activity. Appl. Catal. B: Environ. 2020, 268, 118418.

[14]

Mamaghani, A. H.; Haghighat, F.; Lee, C. S. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal. B: Environ. 2017, 203, 247–269.

[15]

Li, X. X.; Wang, Y. R.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. A highly dispersed Pt/copper modified-MnO2 catalyst for the complete oxidation of volatile organic compounds: The effect of oxygen species on the catalytic mechanism. Green Energy Environ. 2023, 8, 538–547.

[16]

Sun, H.; Yu, X. L.; Yang, X. Q.; Ma, X. Y.; Lin, M. Y.; Shao, C. F.; Zhao, Y.; Wang, F. Y.; Ge, M. F. Au/Rod-like MnO2 catalyst via thermal decomposition of manganite precursor for the catalytic oxidation of toluene. Catal. Today 2019, 332, 153–159.

[17]

Huang, S. Y.; Zhang, C. B.; He, H. Complete oxidation of o-xylene over Pd/Al2O3 catalyst at low temperature. Catal. Today 2008, 139, 15–23.

[18]

Liu, R.; Wu, H.; Shi, J. H.; Xu, X. M.; Zhao, D.; Ng, Y. H.; Zhang, M. L.; Liu, S. J.; Ding, H. Recent progress on catalysts for catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. 2022, 12, 6945–6991.

[19]

Liotta, L. F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B: Environ. 2010, 100, 403–412.

[20]

Zhao, S. Z.; Wen, Y. F.; Liu, X. J.; Pen, X.; Lü, F.; Gao, F. Y.; Xie, X. Z.; Du, C. C.; Yi, H. H.; Kang, D. J. et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544–1551.

[21]

Chen, J.; Yan, D. X.; Xu, Z.; Chen, X.; Chen, X.; Xu, W. J.; Jia, H. P.; Chen, J. A novel redox precipitation to synthesize Au-doped α-MnO2 with high dispersion toward low-temperature oxidation of formaldehyde. Environ. Sci. Technol. 2018, 52, 4728–4737.

[22]

Wang, L. G.; Liu, H.; Zhuang, J. H.; Wang, D. S. Small-scale big science: From nano-to atomically dispersed catalytic materials. Small Sci. 2022, 2, 2200036.

[23]

Zhai, C. Y.; Chen, Y. P.; Huang, X. X.; Isaev, A. B.; Zhu, M. S. Recent progress on single-atom catalysts in advanced oxidation processes for water treatment. Environ. Funct. Mater. 2022, 1, 219–229.

[24]

Tian, M. Z.; Liu, S. J.; Wang, L. L.; Ding, H.; Zhao, D.; Wang, Y. Q.; Cui, J. H.; Fu, J. F.; Shang, J.; Li, G. K. Complete degradation of gaseous methanol over Pt/FeO x catalysts by normal temperature catalytic ozonation. Environ. Sci. Technol. 2020, 54, 1938–1945.

[25]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

[26]
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, DOI: 10.1007/s12274-023-5700-4.
DOI
[27]
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res., in press, DOI: 10.1007/s12274-023-6037-8.
DOI
[28]

Nguyen Dinh, M. T.; Giraudon, J. M.; Vandenbroucke, A. M.; Morent, R.; De Geyter, N.; Lamonier, J. F. Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air. J. Hazard. Mater. 2016, 314, 88–94.

[29]

Feng, X. B.; Chen, C. W.; He, C.; Chai, S. N.; Yu, Y. K.; Cheng, J. Non-thermal plasma coupled with MOF-74 derived Mn-Co-Ni-O porous composite oxide for toluene efficient degradation. J. Hazard. Mater. 2020, 383, 121143.

[30]

Bo, Z.; Yang, S. L.; Kong, J.; Zhu, J. H.; Wang, Y. L.; Yang, H. C.; Li, X. D.; Yan, J. H.; Cen, K. F.; Tu, X. Solar-enhanced plasma-catalytic oxidation of toluene over a bifunctional graphene fin foam decorated with nanofin-like MnO2. ACS Catal. 2020, 10, 4420–4432.

[31]

Bogaerts, A.; Tu, X.; Whitehead, J. C.; Centi, G.; Lefferts, L.; Guaitella, O.; Azzolina-Jury, F.; Kim, H. H.; Murphy, A. B.; Schneider, W. F. et al. The 2020 plasma catalysis roadmap. J. Phys. D: Appl. Phys. 2020, 53, 443001.

[32]

Thevenet, F.; Sivachandiran, L.; Guaitella, O.; Barakat, C.; Rousseau, A. Plasma-catalyst coupling for volatile organic compound removal and indoor air treatment: A review. J. Phys. D: Appl. Phys. 2014, 47, 224011.

[33]

Zhang, H. B.; Chen, Q. Recent progress of non-thermal plasma material surface treatment and functionalization. Acta Phys. Sin. 2021, 70, 095203.

[34]

Wu, P.; Jin, X. J.; Qiu, Y. C.; Ye, D. Q. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts. Environ. Sci. Technol. 2021, 55, 4268–4286.

[35]

Yang, R. J.; Guo, Z. J.; Cai, L. X.; Zhu, R. S.; Fan, Y. Y.; Zhang, Y. F.; Han, P. P.; Zhang, W. J.; Zhu, X. G.; Zhao, Q. T. et al. Investigation into the phase-activity relationship of MnO2 nanomaterials toward ozone-assisted catalytic oxidation of toluene. Small 2021, 17, 2103052.

[36]

Yang, R. J.; Fan, Y. Y.; Ye, R. Q.; Tang, Y. X.; Cao, X. H.; Yin, Z. Y.; Zeng, Z. Y. MnO2-based materials for environmental applications. Adv. Mater. 2021, 33, 2004862.

[37]

Ma, Z. M.; Liu, S. Q.; Tang, N. F.; Song, T.; Motokura, K.; Shen, Z. M.; Yang, Y. Coexistence of Fe nanoclusters boosting Fe single atoms to generate singlet oxygen for efficient aerobic oxidation of primary amines to imines. ACS Catal. 2022, 12, 5595–5604.

[38]

Kim, H. H.; Teramoto, Y.; Ogata, A.; Takagi, H.; Nanba, T. Plasma catalysis for environmental treatment and energy applications. Plasma Chem. Plasma Process. 2016, 36, 45–72.

[39]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[40]

Allen, G. C.; Curtis, M. T.; Hooper, A. J.; Tucker, P. M. X-ray photoelectron spectroscopy of iron-oxygen systems. J. Chem. Soc. Dalton Trans. 1974, 14, 1525–1530.

[41]

Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.

[42]

Fang, M.; Han, D.; Xu, W. B.; Shen, Y.; Lu, Y. M.; Cao, P. J.; Han, S.; Xu, W. Y.; Zhu, D. L.; Liu, W. J. et al. Surface-guided formation of amorphous mixed-metal oxyhydroxides on ultrathin MnO2 nanosheet arrays for efficient electrocatalytic oxygen evolution. Adv. Energy Mater. 2020, 10, 2001059.

[43]

Gu, H. Y.; Liu, X.; Liu, X. F.; Ling, C. C.; Wei, K.; Zhan, G. M.; Guo, Y. B.; Zhang, L. Z. Adjacent single-atom irons boosting molecular oxygen activation on MnO2. Nat. Commun. 2021, 12, 5422.

[44]

Zhang, L. S.; Jiang, X. H.; Zhong, Z. A.; Tian, L.; Sun, Q.; Cui, Y. T.; Lu, X.; Zou, J. P.; Luo, S. L. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity. Angew. Chem., Int. Ed. 2021, 60, 21751–21755.

[45]

Xu, T. Z.; Zhang, P. Y.; Zhang, H. Y. Ultrathin δ-MnO2 nanoribbons for highly efficient removal of a human-related low threshold odorant-acetic acid. Appl. Catal. B: Environ. 2022, 309, 121273.

[46]

Feng, J.; Luo, S. H.; Qian, L. X.; Yan, S. X.; Wang, Q.; Ji, X. B.; Zhang, Y. H.; Liu, X.; Hou, P. Q.; Teng, F. Properties of the “Z”-phase in Mn-rich P2-Na0.67Ni0.1Mn0.8Fe0.1O2 as sodium-ion-battery cathodes. Small 2023, 19, 2208005.

[47]

Cao, R. R.; Li, L. X.; Zhang, P. Y.; Gao, L. L.; Rong, S. P. Regulating oxygen vacancies in ultrathin δ-MnO2 nanosheets with superior activity for gaseous ozone decomposition. Environ. Sci.: Nano 2021, 8, 1628–1641.

[48]

Yang, W. H.; Su, Z. A.; Xu, Z. H.; Yang, W. N.; Peng, Y.; Li, J. H. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates. Appl. Catal. B: Environ. 2020, 260, 118150.

[49]

Dong, C.; Qu, Z. P.; Jiang, X.; Ren, Y. W. Tuning oxygen vacancy concentration of MnO2 through metal doping for improved toluene oxidation. J. Hazard. Mater. 2020, 391, 122181.

[50]

Kong, M.; Li, Y. Z.; Chen, X.; Tian, T. T.; Fang, P. F.; Zheng, F.; Zhao, X. J. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 2011, 133, 16414–16417.

[51]

Zhao, S. H.; Yang, Y.; Bi, F. K.; Chen, Y. F.; Wu, M. H.; Zhang, X. D.; Wang, G. Oxygen vacancies in the catalyst: Efficient degradation of gaseous pollutants. Chem. Eng. J. 2023, 454, 140376.

[52]

Liu, Y.; Bui, H. T. D.; Jadhav, A. R.; Yang, T.; Saqlain, S.; Luo, Y. G.; Yu, J. M.; Kumar, A.; Wang, H. D.; Wang, L. L. et al. Revealing the synergy of cation and anion vacancies on improving overall water splitting kinetics. Adv. Funct. Mater. 2021, 31, 2010718.

[53]

Fu, Z. Z.; Wang, D. W.; Yao, Y. B.; Gao, X. Y.; Liu, X.; Wang, S. Y.; Yao, S. Y.; Wang, X. X.; Chi, X. Y.; Zhang, K. X. et al. Local electric field induced by atomic-level donor-acceptor couple of O vacancies and Mn atoms enables efficient hybrid capacitive deionization. Small 2023, 19, 2205666.

[54]

Mo, S. P.; Zhang, Q.; Li, J. Q.; Sun, Y. H.; Ren, Q. M.; Zou, S. B.; Zhang, Q.; Lu, J. H.; Fu, M. L.; Mo, D. Q. et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl. Catal. B: Environ. 2020, 264, 118464.

[55]

Wang, Z.; Zhang, Y.; Neyts, E. C.; Cao, X. X.; Zhang, X. S.; Jang, B. W. L.; Liu, C. J. Catalyst preparation with plasmas: How does it work. ACS Catal. 2018, 8, 2093–2110.

[56]

Ren, T. F.; Yin, M. X.; Chen, S. N.; Ouyang, C. P.; Huang, X.; Zhang, X. Y. Single-atom Fe-N4 sites for catalytic ozonation to selectively induce a nonradical pathway toward wastewater purification. Environ. Sci. Technol. 2023, 57, 3623–3633.

[57]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

File
12274_2023_6390_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 October 2023
Revised: 29 November 2023
Accepted: 30 November 2023
Published: 13 January 2024
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB0450401), the National Natural Science Foundation of China (Nos. 92261105 and 22221003), the Anhui Provincial Natural Science Foundation (Nos. 2108085QB70 and 2108085UD06), the Anhui Provincial Key Research and Development Project (No. 2023z04020010), the Key Technologies Research and Development Program of Anhui Province (No. 2022a05020053), the Collaborative Innovation Program of Hefei Science Center, Chinese Academy of Sciences (No. 2021HSC-CIP002), and the Joint Funds from Hefei National Synchrotron Radiation Laboratory (Nos. KY2060000180 and KY2060000195). This work was partially carried out at the University of Science and Technology of China Center for Micro and Nanoscale Research and Fabrication. We acknowledge the Experimental Center of Engineering and Material Science in the University of Science and Technology of China. We thank the photo emission endstations BL1W1B in Beijing Synchrotron Radiation Facility (BSRF), BL14W1 in Shanghai Synchrotron Radiation Facility (SSRF), and BL10B and BL11U in National Synchrotron Radiation Laboratory (NSRL) for the help in characterizations.

Return