Journal Home > Volume 17 , Issue 5

Single atom catalysts (SACs) play a crucial role in energy catalysis due to their distinct coordination environment and high atomic utilization efficiency. This study focuses on the synthesis of a monatomic Cu catalyst with Cu–N1C1 coordination anchored to N-doped Ti3C2Tx MXene (Cu SA@N-Ti3C2Tx) to achieve efficient reduction of CO2 to CO. Detailed characterization, including morphology and multispectral analysis, confirmed the uniform distribution of asymmetrically coordinated Cu atoms in unsaturated C–Cu–N bridge fragments on Ti3C2Tx. The Cu SA@N-Ti3C2Tx catalyst exhibited an excellent CO selectivity with Faraday efficiency of 97.4% at −0.58 V vs. reversible hydrogen electrode (RHE) and satisfactory durability. The in situ X-ray absorption fine structure (XAFS) results confirmed that the carbon dioxide reduction reaction (CO2RR) product distribution is mainly affected by potential-dependent valence change of Cu species. These findings highlight the extensive potential of tuning coordination structure of MXene-based single-atom catalysts for CO2 reduction reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Asymmetrically coordinated single atom Cu catalyst with unsaturated C–Cu–N structure for CO2 reduction to CO

Show Author's information Zheng Liu1,2Yuxuan Liu3Jingqiao Zhang1,2Ting Cao1,2Zhiyi Sun4Juzhe Liu3( )Huishan Shang4( )
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
SEPA Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
The Key Laboratory of Resources and Environmental System Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

Single atom catalysts (SACs) play a crucial role in energy catalysis due to their distinct coordination environment and high atomic utilization efficiency. This study focuses on the synthesis of a monatomic Cu catalyst with Cu–N1C1 coordination anchored to N-doped Ti3C2Tx MXene (Cu SA@N-Ti3C2Tx) to achieve efficient reduction of CO2 to CO. Detailed characterization, including morphology and multispectral analysis, confirmed the uniform distribution of asymmetrically coordinated Cu atoms in unsaturated C–Cu–N bridge fragments on Ti3C2Tx. The Cu SA@N-Ti3C2Tx catalyst exhibited an excellent CO selectivity with Faraday efficiency of 97.4% at −0.58 V vs. reversible hydrogen electrode (RHE) and satisfactory durability. The in situ X-ray absorption fine structure (XAFS) results confirmed that the carbon dioxide reduction reaction (CO2RR) product distribution is mainly affected by potential-dependent valence change of Cu species. These findings highlight the extensive potential of tuning coordination structure of MXene-based single-atom catalysts for CO2 reduction reactions.

Keywords: MXene, CO2 reduction, Ti3C2Tx, atomic regulation, cooper single atom

References(56)

[1]

Choi, C.; Cai, J.; Lee, C.; Lee, H. M.; Xu, M. J.; Huang, Y. Intimate atomic Cu−Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Res. 2021, 14, 3497–3501.

[2]

Eilert, A.; Roberts, F. S.; Friebel, D.; Nilsson, A. Formation of copper catalysts for CO2 reduction with high ethylene/methane product ratio investigated with in situ X-ray absorption spectroscopy. J. Phys. Chem. Lett. 2016, 7, 1466–1470.

[3]

He, M. Y.; Sun, Y. H.; Han, B. X. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew. Chem., Int. Ed. 2022, 61, e202112835.

[4]

Kong, S. Y.; Lv, X. M.; Wang, X.; Liu, Z. Z.; Li, Z. C.; Jia, B. Q.; Sun, D.; Yang, C.; Liu, L. J.; Guan, A. X. et al. Delocalization state-induced selective bond breaking for efficient methanol electrosynthesis from CO2. Nat. Catal. 2023, 6, 6–15.

[5]

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

[6]

Wang, J. J.; Li, X. P.; Cui, B. F.; Zhang, Z.; Hu, X. F.; Ding, J.; Deng, Y. D.; Han, X. P.; Hu, W. B. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met. 2021, 40, 3019–3037.

[7]

Seger, B.; Laursen, A. B.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Chorkendorff, I. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. Angew. Chem. 2012, 124, 9262–9265.

[8]
Zhang, H.; Wan, F.; Li, X. G.; Chen, X. H.; Xiong, X. L.; Xi, B. J. Ultrafine PtMo nanocrystals confined on N-doped carbon toward efficient pH-universal hydrogen evolution reaction. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202306340.
[9]

Zhang, H.; Xi, B. J.; Gu, Y.; Chen, W. H.; Xiong, S. L. Interface engineering and heterometal doping Mo-NiS/Ni(OH)2 for overall water splitting. Nano Res. 2021, 14, 3466–3473

[10]

Franco, F.; Rettenmaier, C.; Jeon, H. S.; Cuenya, B. R. Transition metal-based catalysts for the electrochemical CO2 reduction: From atoms and molecules to nanostructured materials. Chem. Soc. Rev. 2020, 49, 6884–6946.

[11]

Jin, S.; Hao, Z. M.; Zhang, K.; Yan, Z. H.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization. Angew. Chem. 2021, 133, 20795–20816.

[12]

Lv, X. M.; Zhao, H. Y.; Wang, Y. G. Continuous constant potential model for describing the potential-dependent energetics of CO2RR on single atom catalysts. J. Chem. Phys. 2023, 159, 094109.

[13]

Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.

[14]

Wang, J. L.; Tan, H. Y.; Zhu, Y. P.; Chu, H.; Chen, H. M. Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angew. Chem. 2021, 133, 17394–17407.

[15]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, 9120021.

[16]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[17]

Zhang, J. C.; Cai, W. Z.; Hu, F. X.; Yang, H. B.; Liu, B. Recent advances in single atom catalysts for the electrochemical carbon dioxide reduction reaction. Chem. Sci. 2021, 12, 6800–6819.

[18]

Zhu, H. J.; Lu, M.; Wang, Y. R.; Yao, S. J.; Zhang, M.; Kan, Y. H.; Liu, J.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nat. Commun. 2020, 11, 497.

[19]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[20]

Ye, K.; Zhou, Z.; Shao, J.; Lin, L.; Gao, D.; Ta, N.; Si, R.; Wang, G.; Bao, X. In situ reconstruction of a hierarchical Sn-Cu/SnO x core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 4814–4821.

[21]

Shen, J.; Wang, D. S. How to select heterogeneous CO2 reduction electrocatalyst. Nano Res. Energy 2024, 3, e9120096.

[22]
Li, J. J.; Sun, Y. J.; Zhang, Z. C. Revealing active Cu nanograins for electrocatalytic CO2 reduction through operando studies. SmartMat, in press, DOI: 10.1002/smm2.1209.
[23]

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+–N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

[24]

Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb–N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

[25]

Zhu, H.; Hu, J. W.; Zhang, Z. L.; Zhuang, Z. C.; Hao, J. C.; Duan, F.; Lu, S. L.; Wang, X. F.; Du, M. L. Lewis acid sites incorporation promotes CO2 electroreduction to multicarbon oxygenates over B-CuO nanotubes. Appl. Catal. B: Environ. 2023, 339, 123082.

[26]

Shang, H. S.; Liu, D. Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Res. 2023, 16, 6477–6506.

[27]

Li, Z.; Wu, R.; Zhao, L.; Li, P. B.; Wei, X. X.; Wang, J. J.; Chen, J. S.; Zhang, T. R. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Res. 2021, 14, 3795–3809.

[28]

Da, Y. M.; Jiang, R.; Tian, Z. L.; Han, X. P.; Chen, W.; Hu, W. B. The applications of single-atom alloys in electrocatalysis: Progress and challenges. SmartMat 2023, 4, e1136.

[29]

Sun, Z. Y.; Hu, Y. N.; Zhou, D. N.; Sun, M. R.; Wang, S.; Chen, W. X. Factors influencing the performance of copper-bearing catalysts in the CO2 reduction system. ACS Energy Lett. 2021, 6, 3992–4022.

[30]

Zhang, M.; Hu, Z.; Gu, L.; Zhang, Q. H.; Zhang, L. H.; Song, Q.; Zhou, W.; Hu, S. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res. 2020, 13, 3206–3211.

[31]

Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, 9120015.

[32]

Cheng, Y. J.; Wang, H.; Song, H. Q.; Zhang, K.; Waterhouse, G. I. N.; Chang, J. W.; Tang, Z. Y.; Lu, S. Y. Design strategies towards transition metal single atom catalysts for the oxygen reduction reaction—A review. Nano Res. Energy 2023, 2, e9120082.

[33]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[34]

Chen, K.; Zhang, Y.; Xiang, J. Q.; Zhao, X. L.; Li, X. G.; Chu, K. p-Block antimony single-atom catalysts for nitric oxide electroreduction to ammonia. ACS Energy Lett. 2023, 8, 1281–1288

[35]

Chen, K.; Ma, Z. Y.; Li, X. C.; Kang, J. L.; Ma, D. W.; Chu, K. Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2209890.

[36]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[37]

Hu, Y. N.; Ying, D.; Sun, Z. Y.; Li, B.; Zhou, H. X.; Wang, S.; Hu, X. M.; He, K.; Qu, M.; Chen, W. X. et al. Rational design, application and dynamic evolution of Cu-N-C single-atom catalysts. J. Mater. Chem. A 2022, 10, 21769–21796.

[38]

Li, X. G.; Tang, S. S.; Dou, S.; Fan, H. J.; Choksi, T. S.; Wang, X. Molecule confined isolated metal sites enable the electrocatalytic synthesis of hydrogen peroxide. Adv. Mater. 2022, 34, 2104891.

[39]

Du, W. Y.; Zhang, Y.; Chen, K.; Zhang, G. K.; Chu, K. Mo single-atom catalyst boosts nitrite electroreduction for ammonia synthesis. J. Clean. Prod. 2023, 424, 138875.

[40]

Wan, Y. Y.; Du, W. Y.; Chen, K.; Zhang, N. N.; Chu, K. Electrocatalytic nitrite-to-ammonia reduction on isolated Cu sites. J. Colloid Interf. Sci. 2023, 652, 2180–2185.

[41]

Chen, K.; Wang, J. X.; Zhang, H.; Ma, D. W.; Chu, K. Self-tandem electrocatalytic NO reduction to NH3 on a W single atom catalyst. Nano Lett. 2023, 23, 1735–1742.

[42]

Gao, W. Q.; Xu, Y. F.; Fu, L. K.; Chang, X. X.; Xu, B. J. Experimental evidence of distinct sites for CO2-to-CO and CO conversion on Cu in the electrochemical CO2 reduction reaction. Nat. Catal. 2023, 6, 885–894.

[43]

Wang, X. L.; Klingan, K.; Klingenhof, M.; Möller, T.; Ferreira de Araújo, J.; Martens, I.; Bagger, A.; Jiang, S.; Rossmeisl, J.; Dau, H. et al. Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 2021, 12, 794.

[44]

Yang, B. P.; Liu, K.; Li, H. J. W.; Liu, C. X.; Fu, J. W.; Li, H. M.; Huang, J. E.; Ou, P. F.; Alkayyali, T.; Cai, C. et al. Accelerating CO2 electroreduction to multicarbon products via synergistic electric-thermal field on copper nanoneedles. J. Am. Chem. Soc. 2022, 144, 3039–3049.

[45]

Su, X. Z.; Jiang, Z. L.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X. et al. Complementary operando spectroscopy identification of in- situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322.

[46]

Sun, Z. Y.; Yang, Y. Q.; Fang, C. H.; Yao, Y. C.; Qin, F. J.; Gu, H. F.; Liu, Q. Q.; Xu, W. J.; Tang, H.; Jiang, Z. et al. Atomic-level Pt electrocatalyst synthesized via iced photochemical method for hydrogen evolution reaction with high efficiency. Small 2022, 18, 2203422.

[47]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[48]
Liu, W. J.; Zhou, X.; Min, Y.; Huang, J. W.; Chen, J. J.; Wu, Y. E.; Yu, H. Q. Engineering of local coordination microenvironment in single-atom catalysts enabling sustainable conversion of biomass into a broad range of amines. Adv. Mater., in press, DOI: 10.1002/adma.202305924.
[49]

Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026.

[50]

Wang, Y. T.; Wang, Y. H. Recent progress in MXene layers materials for supercapacitors: High-performance electrodes. SmartMat 2023, 4, e1130.

[51]

Liu, Y.; Zou, W. Z.; Zhao, N.; Xu, J. Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy. Nat. Commun. 2023, 14, 5342.

[52]

Wei, C. L.; Xi, B. J.; Wang, P.; Wang, Z. R.; An, X. G.; Tian, K. D.; Feng, J. K.; Xiong, S. L. In situ growth engineering on 2D MXenes for next-generation rechargeable batteries. Adv. Energy Sustain. Res. 2023, 4, 2300103.

[53]

Diao, J. Y.; Hu, M. M.; Lian, Z.; Li, Z. J.; Zhang, H.; Huang, F.; Li, B.; Wang, X. H.; Su, D. S.; Liu, H. Y. Ti3C2T x MXene catalyzed ethylbenzene dehydrogenation: Active sites and mechanism exploration from both experimental and theoretical aspects. ACS Catal. 2018, 8, 10051–10057.

[54]

Wang, Y. X.; Yue, Y.; Cheng, F.; Cheng, Y. F.; Ge, B. H.; Liu, N. S.; Gao, Y. H. Ti3C2T x MXene-based flexible piezoresistive physical sensors. ACS Nano 2022, 16, 1734–1758.

[55]

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005

[56]

Hao, J. C.; Zhu, H.; Zhao, Q.; Hao, J. C.; Lu, S. L.; Wang, X. F.; Duan, F.; Du, M. L. Interatomic electron transfer promotes electroreduction CO2-to-CO efficiency over a CuZn diatomic site. Nano Res. 2023, 16, 8863–8870.

File
12274_2023_6386_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 October 2023
Revised: 19 November 2023
Accepted: 30 November 2023
Published: 12 January 2024
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Open Research Fund of State Environmental Protection Key Laboratory of Eco-industry, Chinese Research Academy of Environmental Sciences (No. 2022KFF-07), the National Natural Science Foundation of China (Nos. 22201262, 52302092, and 22375019), Natural Science Foundation of Henan Province (No. 222300420290), Fundamental Research Funds for the Central Universities (No. 2023MS057), and Beijing Institute of Technology Research Fund Program for Young Scholars (No. 2022CX01011). The authors also thank the BL14W1 in the Shanghai Synchrotron Radiation Facility (SSRF) for help with characterizations.

Return