Journal Home > Volume 17 , Issue 5

It is of great significance to synthesize carbon dots (CDs) with desirable hydrophilicity for the ever-growing application of CDs in different fields. In this study, the hydrophilic and hydrophobic CDs were facilely prepared by solvothermal treatment of o-dihydroxybenzene and urea in N,N-dimethylformamide (DMF). Optimization experiments revealed that the solvothermal temperature has a great impact on the surface states of the CDs. The hydrophobic CDs with a contact angle of 110.7° was obtained at 200 °C. The structural and optical characterizations, along with theoretical calculations elucidated that the lipophilic nature of the CDs was resulting from the formation of polymer chains. The presence of extended conjugated sp2-domains and amino groups contributed to the red emission of the CDs synthesized at low reaction temperatures (160–200 °C). With the further increase of solvothermal temperature, the hydrophobic CDs were gradually transformed to the hydrophilic state accompanying the blue shift of the fluorescence of the CDs. The highly hydrophilic CDs with a contact angle of 25.9° were obtained at 240 °C due to the increased formation of hydrophilic functional groups on the surface of CDs. The red emissive CDs exhibited a sensitive color and fluorescence response to ethanol content while the fluorescence of the blue emissive CDs remained constant. By combining the two kinds of CDs, a dual-emission sensor was constructed, which was successfully applied for the evaluation of the alcoholic strength in commercial Baijiu commodities in both fluorometric and colorimetric modes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Surface-state controlled synthesis of hydrophobic and hydrophilic carbon dots

Show Author's information Chan Wang1( )Yuan Fang1Mi Zhang2Huan Zhuo1Qijun Song1Han Zhu1( )
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
Jiangsu Snow Leopard Household Chemical Co., Ltd., Wuxi 214400, China

Abstract

It is of great significance to synthesize carbon dots (CDs) with desirable hydrophilicity for the ever-growing application of CDs in different fields. In this study, the hydrophilic and hydrophobic CDs were facilely prepared by solvothermal treatment of o-dihydroxybenzene and urea in N,N-dimethylformamide (DMF). Optimization experiments revealed that the solvothermal temperature has a great impact on the surface states of the CDs. The hydrophobic CDs with a contact angle of 110.7° was obtained at 200 °C. The structural and optical characterizations, along with theoretical calculations elucidated that the lipophilic nature of the CDs was resulting from the formation of polymer chains. The presence of extended conjugated sp2-domains and amino groups contributed to the red emission of the CDs synthesized at low reaction temperatures (160–200 °C). With the further increase of solvothermal temperature, the hydrophobic CDs were gradually transformed to the hydrophilic state accompanying the blue shift of the fluorescence of the CDs. The highly hydrophilic CDs with a contact angle of 25.9° were obtained at 240 °C due to the increased formation of hydrophilic functional groups on the surface of CDs. The red emissive CDs exhibited a sensitive color and fluorescence response to ethanol content while the fluorescence of the blue emissive CDs remained constant. By combining the two kinds of CDs, a dual-emission sensor was constructed, which was successfully applied for the evaluation of the alcoholic strength in commercial Baijiu commodities in both fluorometric and colorimetric modes.

Keywords: surface chemistry, carbon dots, hydrophilicity and hydrophobicity, solvothermal temperature, alcoholic strength evaluation

References(49)

[1]

Li, S.; Li, L.; Tu, H. Y.; Zhang, H.; Silvester, D. S.; Banks, C. E.; Zou, G. Q.; Hou, H. S.; Ji, X. B. The development of carbon dots: From the perspective of materials chemistry. Mater. Today 2021, 51, 188–207.

[2]

Wang, B. Y.; Waterhouse, G. I. N.; Lu, S. Y. Carbon dots: Mysterious past, vibrant present, and expansive future. Trends Chem. 2023, 5, 76–87.

[3]

Liu, C.; Fan, W. B.; Cheng, W. X.; Gu, Y. P.; Chen, Y. M.; Zhou, W. H.; Yu, X. F.; Chen, M. H.; Zhu, M. R.; Fan, K. L. et al. Red emissive carbon dot superoxide dismutase nanozyme for bioimaging and ameliorating acute lung injury. Adv. Funct. Mater. 2023, 33, 2213856.

[4]

Bao, K. L.; Shi, J.; Liao, F.; Huang, H.; Liu, Y.; Kang, Z. H. The advance and critical functions of energetic carbon dots in carbon dioxide photo/electroreduction reactions. Small Methods 2022, 6, 2200914.

[5]

Navrotskaya, A.; Aleksandrova, D.; Chekini, M.; Yakavets, I.; Kheiri, S.; Krivoshapkina, E.; Kumacheva, E. Nanostructured temperature indicator for cold chain logistics. ACS Nano 2022, 16, 8641–8650.

[6]

da Silva, L. E.; Calado, O. L. D. L.; de Oliveira Silva, S. F.; da Silva, K. R. M.; Henrique Almeida, J.; de Oliveira Silva, M.; da Silva Viana, R.; de Souza Ferro, J. N.; de Almeida Xavier, J.; Barbosa, C. D. A. E. S. Lemon-derived carbon dots as antioxidant and light emitter in fluorescent films applied to nanothermometry. J. Colloid Interface Sci. 2023, 651, 678–685.

[7]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[8]

Qin, K. Y.; Zhu, W. X.; Wang, M.; Wu, J.; Ma, M. J.; Chen, J. X.; Liao, F.; Kang, Z. H.; Shao, M. W. Carbon dots tailoring the interfacial proton and charge transfer of iridium nanowires with stress strain for boosting bifunctional hydrogen catalysis. J. Colloid Interface Sci. 2024, 653, 434–442.

[9]

Wang, C.; Huang, J. F.; He, Y. M.; Ran, G. X.; Song, Q. J. Preparation of multicolor carbon dots with thermally turn-on fluorescence for multidimensional information encryption. Chin. Chem. Lett. 2024, 35, 108420.

[10]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[11]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[12]

Yang, Y.; Zhao, M. W.; Lai, L. Surface activity, micellization, and application of nano-surfactants-amphiphilic carbon dots. Carbon 2023, 202, 398–413.

[13]

Zhao, B.; Ma, H. Y.; Jia, H. R.; Zheng, M. Y.; Xu, K. X.; Yu, R. N.; Qu, S. N.; Tan, Z. A. Triphenylamine-derived solid-state emissive carbon dots for multicolor high-efficiency electroluminescent light-emitting diodes. Angew. Chem., Int. Ed. 2023, 62, e202301651.

[14]

Shi, Y. X.; Su, W.; Yuan, F. L.; Yuan, T.; Song, X. Z.; Han, Y. Y.; Wei, S. Y.; Zhang, Y.; Li, Y. C.; Li, X. H. et al. Carbon dots for electroluminescent light-emitting diodes: Recent progress and future prospects. Adv. Mater. 2023, 35, 2210699.

[15]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[16]

Kwon, W.; Do, S.; Lee, J.; Hwang, S.; Kim, J. K.; Rhee, S. W. Freestanding luminescent films of nitrogen-rich carbon nanodots toward large-scale phosphor-based white-light-emitting devices. Chem. Mater. 2013, 25, 1893–1899.

[17]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[18]

Wen, Y. K.; Zhuang, Z. C.; Zhu, H.; Hao, J. C.; Chu, K. B.; Lai, F. L.; Zong, W.; Wang, C.; Ma, P. M.; Dong, W. F. et al. Isolation of metalloid boron atoms in intermetallic carbide boosts the catalytic selectivity for electrocatalytic N2 fixation. Adv. Energy Mater. 2021, 11, 2102138.

[19]

Mondal, T. K.; Kapuria, A.; Miah, M.; Saha, S. K. Solubility tuning of alkyl amine functionalized carbon quantum dots for selective detection of nitroexplosive. Carbon 2023, 209, 117972.

[20]

Xia, C. L.; Zhu, S. J.; Feng, T. L.; Yang, M. X.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316.

[21]

Ai, L.; Yang, Y. S.; Wang, B. Y.; Chang, J. B.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives. Sci. Bull. 2021, 66, 839–856.

[22]

Ðorđević, L.; Arcudi, F.; Cacioppo, M.; Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022, 17, 112–130.

[23]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[24]

Shamsipur, M.; Barati, A.; Taherpour, A. A.; Jamshidi, M. Resolving the multiple emission centers in carbon dots: From fluorophore molecular states to aromatic domain states and carbon-core states. J. Phys. Chem. Lett. 2018, 9, 4189–4198.

[25]

Wang, C.; He, Y. M.; Huang, J. F.; Sui, L.; Ran, G. X.; Zhu, H.; Song, Q. J. Intramolecular hydrogen bond-tuned thermal-responsive carbon dots and their application to abnormal body temperature imaging. J. Colloid Interface Sci. 2023, 634, 221–230.

[26]

Wang, C.; He, Y. M.; Xu, Y. L.; Sui, L.; Jiang, T.; Ran, G. X.; Song, Q. J. “Light on” fluorescence carbon dots with intramolecular hydrogen bond-regulated co-planarization for cell imaging and temperature sensing. J. Mater. Chem. A 2022, 10, 2085–2095.

[27]

Xu, Y. L.; Wang, C.; Zhuo, H.; Zhou, D. R.; Song, Q. J. The function-oriented precursor selection for the preparation of carbon dots. Nano Res. 2023, 16, 11221–11249.

[28]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[29]

Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.

[30]

Long, P.; Feng, Y. Y.; Cao, C.; Li, Y.; Han, J. K.; Li, S. W.; Peng, C.; Li, Z. Y.; Feng, W. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv. Funct. Mater. 2018, 28, 1800791.

[31]

Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620–1636.

[32]

Soni, N.; Singh, S.; Sharma, S.; Batra, G.; Kaushik, K.; Rao, C.; Verma, N. C.; Mondal, B.; Yadav, A.; Nandi, C. K. Absorption and emission of light in red emissive carbon nanodots. Chem. Sci. 2021, 12, 3615–3626.

[33]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[34]

Ding, H.; Wei, J. S.; Zhang, P.; Zhou, Z. Y.; Gao, Q. Y.; Xiong, H. M. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 2018, 14, 1800612.

[35]

Ding, H.; Zhou, X. X.; Zhang, Z. H.; Zhao, Y. P.; Wei, J. S.; Xiong, H. M. Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method. Nano Res. 2022, 15, 3548–3555.

[36]

Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667.

[37]

Wang, J. L.; Guo, Y. F.; Geng, X.; Hu, J. Y.; Yan, M. M.; Sun, Y. Q.; Zhang, K.; Qu, L. B.; Li, Z. H. Quantitative structure–activity relationship enables the rational design of lipid droplet-targeting carbon dots for visualizing bisphenol a-induced nonalcoholic fatty liver disease-like changes. ACS Appl. Mater. Interfaces 2021, 13, 44086–44095.

[38]

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

[39]

Bartolomei, B.; Bogo, A.; Amato, F.; Ragazzon, G.; Prato, M. Nuclear magnetic resonance reveals molecular species in carbon nanodot samples disclosing flaws. Angew. Chem., Int. Ed. 2022, 61, e202200038.

[40]

Wang, B. Y.; Song, H. Q.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Ethanol-derived white emissive carbon dots: The formation process investigation and multi-color/white LEDs preparation. Nano Res. 2022, 15, 942–949.

[41]

Zhang, Y. Q.; Liu, K. X.; Yu, J. K.; Chen, H. F.; Fu, R.; Zhu, S. Q.; Chen, Z. Q.; Wang, S. P.; Lu, S. Y. Single stain hyperspectral imaging for accurate fungal pathogens identification and quantification. Nano Res. 2022, 15, 6399–6406.

[42]

Yang, X.; Ai, L.; Yu, J. K.; Waterhouse, G. I. N.; Sui, L.; Ding, J.; Zhang, B. W.; Yong, X.; Lu, S. Y. Photoluminescence mechanisms of red-emissive carbon dots derived from non-conjugated molecules. Sci. Bull. 2022, 67, 1450–1457.

[43]

Yosefi, L.; Haghighi, M. Fabrication of nanostructured flowerlike p-BiOI/p-NiO heterostructure and its efficient photocatalytic performance in water treatment under visible-light irradiation. Appl. Catal. B: Environ. 2018, 220, 367–378.

[44]

Sun, Z. H.; Yan, F. Y.; Xu, J.; Zhang, H.; Chen, L. Solvent-controlled synthesis strategy of multicolor emission carbon dots and its applications in sensing and light-emitting devices. Nano Res. 2022, 15, 414–422.

[45]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[46]

Qin, Y. J.; Bai, Y. J.; Huang, P. C.; Wu, F. Y. Dual-emission carbon dots for ratiometric fluorescent water sensing, relative humidity sensing, and anticounterfeiting applications. ACS Appl. Nano Mater. 2021, 4, 10674–10681.

[47]

Thungon, P. D.; Kakoti, A.; Ngashangva, L.; Goswami, P. Advances in developing rapid, reliable and portable detection systems for alcohol. Biosens. Bioelectron. 2017, 97, 83–99.

[48]

Jalal, A. H.; Umasankar, Y.; Gonzalez, P. J.; Alfonso, A.; Bhansali, S. Multimodal technique to eliminate humidity interference for specific detection of ethanol. Biosens. Bioelectron. 2017, 87, 522–530.

[49]

Ajay, A. K.; Srivastava, D. N. Microtubular conductometric biosensor for ethanol detection. Biosens. Bioelectron. 2007, 23, 281–284.

File
12274_2023_6383_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 November 2023
Revised: 28 November 2023
Accepted: 28 November 2023
Published: 20 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51973083 and 22376081) and the Fundamental Research Funds for the Central Universities (No. JUSRP22027).

Return