Journal Home > Volume 17 , Issue 5

Transparent solar-blind ultraviolet photodetectors (SBUV PDs) have extensive applications in versatile scenarios, such as optical communication. However, it is still challenging to simultaneously achieve high responsivity, high transparency, and satisfying self-powered capability. Here, we demonstrated high-performance, transparent, and self-powered photoelectrochemical-type (PEC) SBUV PDs based on vertically grown ultrathin In2O3 nanosheet arrays (NAs) with a three-dimensional (3D) porous structure. The 3D porous structure simultaneously improves the transmittance in the visible light region, accelerates interfacial reaction kinetics, and promotes photogenerated carrier transport. The performance of In2O3 NAs photoanodes exceeds most reported self-powered PEC SBUV PDs, exhibiting a high transmittance of approximately 80% in the visible light region, a high responsivity of 86.15 mA/W for 254 nm light irradiation, a fast response speed of 15/18 ms, and good multicycle stability. The In2O3 NAs also show excellent spectral selectivity with an ultrahigh solar-blind rejection ratio of 1319.30, attributed to the quantum confinement effect induced by the ultrathin feature (2–3 nm). Furthermore, In2O3 NAs photoanodes show good capability in underwater optical communication. Our work demonstrated that a 3D porous structure is a powerful strategy to synchronously achieve high responsivity and transparency and provides a new perspective for designing high-performance, transparent, and self-powered PEC SBUV PDs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Three-dimensional porous In2O3 arrays for self-powered transparent solar-blind photodetectors with high responsivity and excellent spectral selectivity

Show Author's information Nana Zhang1,§Xinyu Gao1,§Haoran Guan1Simin Sun1Jiaming Liu1Zhitao Shao1Qiyue Gao1Yuan Zhang1Ruyu Sun1Guang Yang1( )Feng Gao2( )Wei Feng1( )
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China

§ Nana Zhang and Xinyu Gao contributed equally to this work.

Abstract

Transparent solar-blind ultraviolet photodetectors (SBUV PDs) have extensive applications in versatile scenarios, such as optical communication. However, it is still challenging to simultaneously achieve high responsivity, high transparency, and satisfying self-powered capability. Here, we demonstrated high-performance, transparent, and self-powered photoelectrochemical-type (PEC) SBUV PDs based on vertically grown ultrathin In2O3 nanosheet arrays (NAs) with a three-dimensional (3D) porous structure. The 3D porous structure simultaneously improves the transmittance in the visible light region, accelerates interfacial reaction kinetics, and promotes photogenerated carrier transport. The performance of In2O3 NAs photoanodes exceeds most reported self-powered PEC SBUV PDs, exhibiting a high transmittance of approximately 80% in the visible light region, a high responsivity of 86.15 mA/W for 254 nm light irradiation, a fast response speed of 15/18 ms, and good multicycle stability. The In2O3 NAs also show excellent spectral selectivity with an ultrahigh solar-blind rejection ratio of 1319.30, attributed to the quantum confinement effect induced by the ultrathin feature (2–3 nm). Furthermore, In2O3 NAs photoanodes show good capability in underwater optical communication. Our work demonstrated that a 3D porous structure is a powerful strategy to synchronously achieve high responsivity and transparency and provides a new perspective for designing high-performance, transparent, and self-powered PEC SBUV PDs.

Keywords: transparent, photoelectrochemical, In2O3, solar-blind photodetectors, three-dimensional porous

References(49)

[1]

Cai, Q.; You, H. F.; Guo, H.; Wang, J.; Liu, B.; Xie, Z. L.; Chen, D. J.; Lu, H.; Zheng, Y. D.; Zhang, R. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light: Sci. Appl. 2021, 10, 94.

[2]

Long, M. S.; Shen, Z.; Wang, R. J.; Dong, Q. S.; Liu, Z. Y.; Hu, X.; Hou, J.; Lu, Y.; Wang, F.; Zhao, D. X. et al. Ultrasensitive solar-blind ultraviolet photodetector based on FePSe3/MoS2 heterostructure response to 10.6 μm. Adv. Funct. Mater. 2022, 32, 2204230.

[3]

Ping, Y.; Long, H. R.; Liu, H.; Chen, C.; Zhang, N. N.; Jing, H. M.; Lu, J. B.; Zhao, Y. W.; Yang, Z. M.; Li, W. et al. Polarization sensitive solar-blind ultraviolet photodetectors based on ultrawide bandgap KNb3O8 nanobelt with fringe-like atomic lattice. Adv. Funct. Mater. 2022, 32, 2111673.

[4]

Yan, Y.; Yang, J. H.; Du, J.; Zhang, X. M.; Liu, Y. Y.; Xia, C. X.; Wei, Z. M. Cross-substitution promoted ultrawide bandgap up to 4.5 eV in a 2D semiconductor: Gallium thiophosphate. Adv. Mater. 2021, 33, 2008761.

[5]

Fang, S.; Wang, D. H.; Wang, X. N.; Liu, X.; Kang, Y.; Yu, H. B.; Zhang, H. C.; Hu, W.; He, J. H.; Sun, H. D. et al. Tuning the charge transfer dynamics of the nanostructured GaN photoelectrodes for efficient photoelectrochemical detection in the ultraviolet band. Adv. Funct. Mater. 2021, 31, 2103007.

[6]

Liu, X.; Wang, D. H.; Shao, P. F.; Sun, H. D.; Fang, S.; Kang, Y.; Liang, K.; Jia, H. F.; Luo, Y. M.; Xue, J. J. et al. Achieving record high external quantum efficiency > 86.7% in solar-blind photoelectrochemical photodetection. Adv. Funct. Mater. 2022, 32, 2201604.

[7]

Luo, Y. M.; Wang, D. H.; Kang, Y.; Liu, X.; Fang, S.; Memon, M. H.; Yu, H. B.; Zhang, H. C.; Luo, D. Y.; Sun, X. Y. et al. Demonstration of photoelectrochemical-type photodetectors using seawater as electrolyte for portable and wireless optical communication. Adv. Opt. Mater. 2022, 10, 2102839.

[8]

Xiao, S. D.; Yu, H. B.; Jia, H. F.; Memon, M. H.; Wang, R.; Zhang, H. C.; Sun, H. D. Performance evaluation of tunnel junction-based N-polar AlGaN deep-ultraviolet light-emitting diodes. Opt. Lett. 2022, 47, 4187–4190.

[9]

Fang, H. J.; Zheng, C.; Wu, L. L.; Li, Y.; Cai, J.; Hu, M. X.; Fang, X. S.; Ma, R.; Wang, Q.; Wang, H. Solution-processed self-powered transparent ultraviolet photodetectors with ultrafast response speed for high-performance communication system. Adv. Funct. Mater. 2019, 29, 1809013.

[10]

Kee, S.; Kim, N.; Park, B.; Kim, B. S.; Hong, S.; Lee, J. H.; Jeong, S.; Kim, A.; Jang, S. Y.; Lee, K. Highly deformable and see-through polymer light-emitting diodes with all-conducting-polymer electrodes. Adv. Mater. 2018, 30, 1703437.

[11]

Rana, A. K.; Park, J. T.; Kim, J.; Wong, C. P. See-through metal oxide frameworks for transparent photovoltaics and broadband photodetectors. Nano Energy 2019, 64, 103952.

[12]

Wang, D.; Li, Y. H.; Zhou, G. Q.; Gu, E.; Xia, R. X.; Yan, B. Y.; Yao, J. Z.; Zhu, H. M.; Lu, X. H.; Yip, H. L. et al. High-performance see-through power windows. Energy Environ. Sci. 2022, 15, 2629–2637.

[13]

Ma, H. L.; Fang, H. J.; Liu, Y. Y.; Li, J. Q.; Jing, K.; Hong, J. W.; Wang, H. Fully transparent ultraviolet photodetector with ultrahigh responsivity enhanced by MXene-induced photogating effect. Adv. Opt. Mater. 2023, 11, 2300393.

[14]

Feng, S. Y.; Liu, Z. T.; Feng, L. Z.; Wang, J. C.; Xu, H. N.; Deng, L. J.; Zhou, O. X.; Jiang, X.; Liu, B. D.; Zhang, X. L. High-performance self-powered ultraviolet photodetector based on Ga2O3/GaN heterostructure for optical imaging. J. Alloys Compd. 2023, 945, 169274.

[15]

Mao, J. T.; Zhang, Y. Q.; Zhang, Y. N.; Lin, Y. N.; Feng, Y.; Hu, Y. Q.; Shafa, M.; Pan, Y. Wafer-Scale 1T' MoTe2 for fast response self-powered wide-range photodetectors. ACS Appl. Mater. Interfaces 2023, 15, 28267–28276.

[16]

Ouyang, T.; Zhao, X.; Xun, X. C.; Gao, F. F.; Zhao, B.; Bi, S. X.; Li, Q.; Liao, Q. L.; Zhang, Y. Boosting charge utilization in self-powered photodetector for real-time high-throughput ultraviolet communication. Adv. Sci. 2023, 10, 2301585.

[17]

Vieira, E. M. F.; Silva, J. P. B.; Gwozdz, K.; Kaim, A.; Gomes, N. M.; Chahboun, A.; Gomes, M. J. M.; Correia, J. H. Disentangling the role of the SnO layer on the pyro-phototronic effect in ZnO-based self-powered photodetectors. Small 2023, 10, 2300607.

[18]

Zhang, X. Y.; Li, Z. Q.; Yan, T. T.; Su, L.; Fang, X. S. Phase-modulated multidimensional perovskites for high-sensitivity self-powered UV photodetectors. Small 2023, 19, 2206310.

[19]

Zuo, C. T.; Zhang, L. X.; Pan, X. Y.; Tian, H.; Yan, K. Y.; Cheng, Y. H.; Jin, Z. W.; Yi, C. Y.; Zhang, X. L.; Wu, W. Q. et al. Perovskite films with gradient bandgap for self-powered multiband photodetectors and spectrometers. Nano Res. 2023, 16, 10256–10262.

[20]

Zhou, J. Y.; Chen, L. L.; Wang, Y. Q.; He, Y. M.; Pan, X. J.; Xie, E. Q. An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors. Nanoscale 2016, 8, 50–73.

[21]

Wang, Y. F.; Xue, Y. X.; Su, J.; Lin, Z. H.; Zhang, J. C.; Chang, J. J.; Hao, Y. Realization of cost-effective and high-performance solar-blind ultraviolet photodetectors based on amorphous Ga2O3 prepared at room temperature. Mater. Today Adv. 2022, 16, 100324.

[22]

Yu, H.; Qu, L. H.; Zhang, M. X.; Wang, Y. X.; Lou, C. Q.; Xu, Y.; Cui, M. Q.; Shao, Z. T.; Liu, X.; Hu, P. A. et al. Achieving high responsivity of photoelectrochemical solar-blind ultraviolet photodetectors via oxygen vacancy engineering. Adv. Opt. Mater. 2023, 11, 2202341.

[23]

Wei, W. Q.; Wei, Z.; Li, R. Z.; Li, Z. H.; Shi, R.; Ouyang, S. X.; Qi, Y. H.; Philips, D. L.; Yuan, H. Subsurface oxygen defects electronically interacting with active sites on In2O3 for enhanced photothermocatalytic CO2 reduction. Nat. Commun. 2022, 13, 3199.

[24]

Mori, T.; Kajihara, K.; Kanamura, K.; Toda, Y.; Hiramatsu, H.; Hosono, H. Indium-based ultraviolet-transparent electroconductive oxyfluoride InOF: Ambient-pressure synthesis and unique electronic properties in comparison with In2O3. J. Am. Chem. Soc. 2013, 135, 13080–13088.

[25]

Zheng, R. J.; Zhang, M.; Sun, X.; Chen, R. P.; Sun, X. Perylene-3,4,9,10-tetracarboxylic acid accelerated light-driven water oxidation on ultrathin indium oxide porous sheets. Appl. Catal. B: Environ. 2019, 254, 667–676.

[26]

Lin, J.; Huang, Y.; Bando, Y.; Tang, C. C.; Li, C.; Golberg, D. Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties. ACS Nano 2010, 4, 2452–2458.

[27]

Deng, B. W.; Song, H.; Wang, Q.; Hong, J. N.; Song, S.; Zhang, Y. W.; Peng, K.; Zhang, H. W.; Kako, T.; Ye, J. H. Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure. Appl. Catal. Environ. 2023, 327, 122471.

[28]

Cui, M. Q.; Shao, Z. T.; Qu, L. H.; Liu, X.; Yu, H.; Wang, Y. X.; Zhang, Y. X.; Fu, Z. D.; Huang, Y. W.; Feng, W. MOF-derived In2O3 microrods for high-performance photoelectrochemical ultraviolet photodetectors. ACS Appl. Mater. Interfaces 2022, 14, 39046–39052.

[29]

Zhang, M. X.; Yu, H.; Li, H.; Jiang, Y.; Qu, L. H.; Wang, Y. X.; Gao, F.; Feng, W. Ultrathin In2O3 nanosheets toward high responsivity and rejection ratio visible-blind UV photodetection. Small 2023, 19, 2205623.

[30]

Li, M.; Tu, X. L.; Su, Y. J.; Lu, J.; Hu, J.; Cai, B. F.; Zhou, Z. H.; Yang, Z.; Zhang, Y. F. Controlled growth of vertically aligned ultrathin In2S3 nanosheet arrays for photoelectrochemical water splitting. Nanoscale 2018, 10, 1153–1161.

[31]

Zhang, S.; Song, P.; Liu, L.; Yang, Z. X.; Wang, Q. In2O3 nanosheets array directly grown on Al2O3 ceramic tube and their gas sensing performance. Ceram. Int. 2017, 43, 7942–7947.

[32]

Patil, S. P.; Patil, V. L.; Vanalakar, S. A.; Shendage, S. S.; Pawar, S. A.; Kim, J. H.; Ryu, J.; Patil, D. R.; Patil, P. S. Porous In2O3 thick films as a low temperature NO2 gas detector. Mater. Lett. 2022, 306, 130916.

[33]

Labram, J. G.; Treat, N. D.; Lin, Y. H.; Burgess, C. H.; McLachlan, M. A.; Anthopoulos, T. D. Energy quantization in solution-processed layers of indium oxide and their application in resonant tunneling diodes. Adv. Funct. Mater. 2016, 26, 1656–1663.

[34]

Garcia-Domene, B.; Ortiz, H. M.; Gomis, O.; Sans, J. A.; Manjón, F. J.; Muñoz, A.; Rodríguez-Hernández, P.; Achary, S. N.; Errandonea, D.; Martínez-García, D. et al. High-pressure lattice dynamical study of bulk and nanocrystalline In2O3. J. Appl. Phys. 2012, 112, 123511.

[35]

Lalitha, K.; Kumari, V. D.; Subrahmanyam, M. In2O3/TiO2 Nano photocatalysts for solar hydrogen production from methanol: Water mixtures. Indian J. Chem. 2014, 53A, 472–477.

[36]

Shruthi, J.; Jayababu, N.; Ghosal, P.; Reddy, M. V. R. Ultrasensitive sensor based on Y2O3-In2O3 nanocomposites for the detection of methanol at room temperature. Ceram. Int. 2019, 45, 21497–21504.

[37]

Yang, C. S.; Pei, C. L.; Luo, R.; Liu, S. H.; Wang, Y. N.; Wang, Z. Y.; Zhao, Z. J.; Gong, J. L. Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol. J. Am. Chem. Soc. 2020, 142, 19523–19531.

[38]

Zhang, C.; Huan, Y. C.; Sun, D. J.; Lu, Y. L. Synthesis and NO2 sensing performances of CuO nanoparticles loaded In2O3 hollow spheres. J. Alloys Compd. 2020, 842, 155857.

[39]

Zhang, Q.; Wang, S. P.; Wang, L. W.; Huang, Y. L.; Wang, Y. H.; Yu, K. F.; Gao, L. P. Vapor-phase modulated sphere-like In2O3@N-C complexes for improving gas sensitivity. J. Alloys Compd. 2021, 865, 158702.

[40]

Jiang, M.; Zhang, J. Y.; Yang, W. X.; Wu, D. M.; Zhao, Y. K.; Wu, Y. Y.; Zhou, M.; Lu, S. L. Flexible self-powered photoelectrochemical photodetector with ultrahigh detectivity, ultraviolet/visible reject ratio, stability, and a quasi-invisible functionality based on lift-off vertical (Al,Ga)N nanowires. Adv. Mater. Int. 2022, 9, 2200028.

[41]

Jiang, M.; Zhao, Y. K.; Bian, L. F.; Yang, W. X.; Zhang, J. Y.; Wu, Y. Y.; Zhou, M.; Lu, S. L.; Qin, H. Self-powered photoelectrochemical (Al,Ga)N photodetector with an ultrahigh ultraviolet/visible reject ratio and a quasi-invisible functionality for 360° omnidirectional detection. ACS Photonics 2021, 8, 3282–3290.

[42]

Yang, X. X.; Liu, X.; Qu, L. H.; Gao, F.; Xu, Y.; Cui, M. Q.; Yu, H.; Wang, Y. X.; Hu, P. A.; Feng, W. Boosting photoresponse of self-powered InSe-based photoelectrochemical photodetectors via suppression of interface doping. ACS Nano 2022, 16, 8440–8448.

[43]

Yang, X. X.; Qu, L. H.; Gao, F.; Hu, Y. X.; Yu, H.; Wang, Y. X.; Cui, M. Q.; Zhang, Y. X.; Fu, Z. D.; Huang, Y. W. et al. High-performance broadband photoelectrochemical photodetectors based on ultrathin Bi2O2S nanosheets. ACS Appl. Mater. Interfaces 2022, 14, 7175–7183.

[44]

Fang, S.; Li, L. A.; Wang, D. H.; Chen, W.; Kang, Y.; Wang, W. Y.; Liu, X.; Luo, Y. M.; Yu, H. B.; Zhang, H. C. et al. Breaking the responsivity-bandwidth trade-off limit in GaN photoelectrodes for high-response and fast-speed optical communication application. Adv. Funct. Mater. 2023, 33, 2214408.

[45]

Kang, Y.; Wang, D. H.; Gao, Y. Z.; Guo, S. Q.; Hu, K. J.; Liu, B. Y.; Fang, S.; Memon, M. H.; Liu, X.; Luo, Y. M. et al. Achieving record-high photoelectrochemical photoresponse characteristics by employing Co3O4 nanoclusters as hole charging layer for underwater optical communication. ACS Nano 2023, 17, 3901–3912.

[46]

Tan, J.; Kang, B.; Kim, K.; Kang, D.; Lee, H.; Ma, S.; Jang, G.; Lee, H.; Moon, J. Hydrogel protection strategy to stabilize water-splitting photoelectrodes. Nat. Energy 2022, 7, 537–547.

[47]

Zhang, J. H.; Jiao, S. J.; Wang, D. B.; Ni, S. M.; Gao, S. Y.; Wang, J. Z. Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure. J. Mater. Chem. C 2019, 7, 6867–6871.

[48]

Wang, D. H.; Liu, X.; Fang, S.; Huang, C.; Kang, Y.; Yu, H. B.; Liu, Z. L.; Zhang, H. C.; Long, R.; Xiong, Y. J. et al. Pt/AlGaN nanoarchitecture: Toward high responsivity, self-powered ultraviolet-sensitive photodetection. Nano Lett. 2021, 21, 120–129.

[49]

Zhang, J. H.; Jiao, S. J.; Wang, D. B.; Gao, S. Y.; Wang, J. Z.; Zhao, L. C. Nano tree-like branched structure with α-Ga2O3 covered by γ-Al2O3 for highly efficient detection of solar-blind ultraviolet light using self-powered photoelectrochemical method. Appl. Surf. Sci. 2021, 541, 148380.

File
12274_2023_6370_MOESM1_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 September 2023
Revised: 23 November 2023
Accepted: 27 November 2023
Published: 29 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors gratefully acknowledge support from Fundamental Research Funds for the Central Universities (No. 2572023AW26) and the Innovation Foundation for the Doctoral Program of Forestry Engineering of Northeast Forestry University (No. LYGC202227).

Return