AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mn-based MXene with high lithium-ion storage capacity

Yanyan Wu1,2,3Dongqing Liu4Xiaonan Wang1,2Usman Ghani3Muhammad Asim Mushtaq3Jinfeng Yang1,2Huarui Sun1,2( )Panagiotis Tsiakaras5Xingke Cai3( )
School of Science and Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology Shenzhen, Shenzhen 518055
China Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece
Show Author Information

Graphical Abstract

Herein, we synthesized the first 3d-transition metal-based MXene, d-Mn2CTx by exfoliating the layered precursor derived from anti-perovskite bulk Mn3GaC. The prepared MXene nanosheets were employed as anode materials in lithium-ion batteries and showed a stable storage capacity of 764.7 mAh·g−1 at 0.5 C, which was much higher than that of other reported MXene materials and even other Mn-based anode materials.

Abstract

3d-transition metal (Fe, Co, Ni, and Mn)-based MXene materials have been predicted to demonstrate exceptional electrochemical performance because of their good electrical conductivity and the presence of metallic atoms with multiple charge states. However, until now, there have been no reports on MXenes based on Fe, Co, Ni, and Mn, due to the lack of 3d-metal-layered precursors. Herein, we successfully synthesized the first 3d-transition metal-based MXenes, Mn2CTx by exfoliating a layered precursor derived from the anti-perovskite bulk Mn3GaC. The as-prepared Mn2CTx MXene nanosheets were employed as anode materials in lithium-ion batteries, which exhibited stable storage capacity of 764.7 mAh·g−1 at 0.5 C, placing its storage capacities at an upper-middle level compared with other reported MXene materials as well as other Mn-based anode materials. Overall, this study opens a new avenue for MXene research by synthesizing 3d-transition metal-based MXenes for electrochemical applications.

Electronic Supplementary Material

Download File(s)
12274_2023_6360_MOESM1_ESM.pdf (8 MB)

References

[1]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[2]

Naguib, M.; Barsoum, M. W.; Gogotsi, Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 2021, 33, 2103393.

[3]

Shpigel, N.; Chakraborty, A.; Malchik, F.; Bergman, G.; Nimkar, A.; Gavriel, B.; Turgeman, M.; Hong, C. N.; Lukatskaya, M. R.; Levi, M. D. et al. Can anions be inserted into MXene. J. Am. Chem. Soc. 2021, 143, 12552–12559.

[4]

Xuan, J. N.; Wang, Z. Q.; Chen, Y. Y.; Liang, D. J.; Cheng, L.; Yang, X. J.; Liu, Z.; Ma, R. Z.; Sasaki, T.; Geng, F. X. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem., Int. Ed. 2016, 55, 14569–14574.

[5]

Wei, Y.; Zhang, P.; Soomro, R. A.; Zhu, Q. Z.; Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 2021, 33, 2103148.

[6]

Wang, M. Q.; Liu, X. L.; Qin, B. Y.; Li, Z. Y.; Zhang, Y. F.; Yang, W.; Fan, H. S. In-situ etching and ion exchange induced 2D-2D MXene@Co9S8/CoMo2S4 heterostructure for superior Na+ storage. Chem. Eng. J. 2023, 451, 138508.

[7]

Tian, S. H.; Huang, J. J.; Yang, H. C.; Liu, G.; Zeng, Q.; Wang, D.; Sun, X.; Tao, K.; Liu, G. H.; Peng, S. L. Self-supporting multicomponent hierarchical network aerogel as sulfur anchoring-catalytic medium for highly stable lithium-sulfur battery. Small 2022, 18, 2205163.

[8]

Lin, Z. F.; Shao, H.; Xu, K.; Taberna, P. L.; Simon, P. MXenes as high-rate electrodes for energy storage. Trends Chem. 2020, 2, 654–664.

[9]

Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A. L.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409–412.

[10]

Ho, D. H.; Choi, Y. Y.; Jo, S. B.; Myoung, J. M.; Cho, J. H. Sensing with MXenes: Progress and prospects. Adv. Mater. 2021, 33, 2005846.

[11]

Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093.

[12]

Dai, Z. Q.; Cao, J.; Song, F.; Zhang, D. D.; Qin, J. Q.; Zhang, X. Y. Architecting Nb-TiO2- x /(Ti0.9Nb0.1)3C2T x MXene nanohybrid anode for high-performance lithium-ion batteries. Adv. Mater. Interfaces 2022, 9, 2101658.

[13]

Ma, R. Z.; Sasaki, T. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites. Adv. Mater. 2010, 22, 5082–5104.

[14]

Tian, Y.; Moreno, J. J. G.; Lu, Z. H.; Li, L. Y.; Hu, M. N.; Liu, D. Q.; Jian, Z. L.; Cai, X. K. A synergetic promotion of sodium-ion storage in titania nanosheets by superlattice assembly with reduced graphene oxide and Fe-doping strategy. Chem. Eng. J. 2021, 407, 127198.

[15]

Wang, L. Z.; Sasaki, T. Titanium oxide nanosheets: Graphene analogues with versatile functionalities. Chem. Rev. 2014, 114, 9455–9486.

[16]

Wei, C. L.; Wang, Y. S.; Zhang, Y. C.; Tan, L. W.; Qian, Y.; Tao, Y.; Xiong, S. L.; Feng, J. K. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 3576–3584.

[17]

Lucero, N.; Vilcarino, D.; Datta, D.; Zhao, M. Q. The roles of MXenes in developing advanced lithium metal anodes. J. Energy Chem. 2022, 69, 132–149.

[18]

Cheng, R. F.; Hu, T.; Zhang, H.; Wang, C. M.; Hu, M. M.; Yang, J. X.; Cui, C.; Guang, T. J.; Li, C. J.; Shi, C. et al. Understanding the lithium storage mechanism of Ti3C2T x MXene. J. Phys. Chem. C 2019, 123, 1099–1109.

[19]

Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969.

[20]

Syamsai, R.; Kollu, P.; Jeong, S. K.; Grace, A. N. Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications. Ceram. Int. 2017, 43, 13119–13126.

[21]

Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105.

[22]

Ma, G. L.; Shao, H.; Xu, J.; Liu, Y.; Huang, Q.; Taberna, P. L.; Simon, P.; Lin, Z. F. Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere. Nat. Commun. 2021, 12, 5085.

[23]

Hao, Q.; Wang, J. P.; Xu, C. X. Facile preparation of Mn3O4 octahedra and their long-term cycle life as an anode material for Li-ion batteries. J. Mater. Chem. A 2014, 2, 87–93.

[24]

Wang, Y.; Han, Z. J.; Yu, S. F.; Song, R. R.; Song, H. H.; Ostrikov, K.; Yang, H. Y. Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon 2013, 64, 230–236.

[25]

Xu, G. L.; Xu, Y. F.; Sun, H.; Fu, F.; Zheng, X. M.; Huang, L.; Li, J. T.; Yang, S. H.; Sun, S. G. Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries. Chem. Commun. 2012, 48, 8502–8504.

[26]

Kim, H.; Choi, W.; Yoon, J.; Um, J. H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W. S. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem. Rev. 2020, 120, 6934–6976.

[27]

Choi, Y. S.; Choi, W.; Yoon, W. S.; Kim, J. M. Unveiling the genesis and effectiveness of negative fading in nanostructured iron oxide anode materials for lithium-ion batteries. ACS Nano 2022, 16, 631–642.

[28]

Li, C. Y.; Zhang, D. D.; Cao, J.; Yu, P. F.; Qin, J. Q.; Zhang, X. Y. Ni3S2 nanoparticles anchored on d-Ti3C2 nanosheets with enhanced sodium storage. ACS Appl. Energy Mater. 2021, 4, 2593–2599.

[29]

Li, C. Y.; Dai, Z. Q.; Liu, W.; Kantichaimongkol, P.; Yu, P. F.; Pattananuwat, P.; Qin, J. Q.; Zhang, X. Y. A self-sacrifice template strategy to synthesize Co-LDH/MXene for lithium-ion batteries. Chem. Commun. 2021, 57, 11378–11381.

[30]

Gogotsi, Y.; Huang, Q. MXenes: Two-dimensional building blocks for future materials and devices. ACS Nano 2021, 15, 5775–5780.

[31]

Zhou, Y. G.; Zu, X. T. Mn2C sheet as an electrode material for lithium-ion battery: A first-principles prediction. Electrochim. Acta 2017, 235, 167–174.

[32]

Zhang, X. M.; Meng, W. Z.; He, T. L.; Jin, L.; Dai, X. F.; Liu, G. D. Mn2C monolayer: A superior anode material offering good conductivity, high storage capacity and ultrafast ion diffusion for Li-ion and Na-ion batteries. Appl. Surf. Sci. 2020, 503, 144091.

[33]

Eames, C.; Islam, M. S. Ion intercalation into two-dimensional transition-metal carbides: Global screening for new high-capacity battery materials. J. Am. Chem. Soc. 2014, 136, 16270–16276.

[34]

Xiao, X.; Urbankowski, P.; Hantanasirisakul, K.; Yang, Y.; Sasaki, S.; Yang, L.; Chen, C.; Wang, H.; Miao, L.; Tolbert, S. H. et al. Scalable synthesis of ultrathin Mn3N2 exhibiting room-temperature antiferromagnetism. Adv. Funct. Mater. 2019, 29, 1809001.

[35]

Yang, S.; Zhang, P. P.; Wang, F. X.; Ricciardulli, A. G.; Lohe, M. R.; Blom, P. W. M.; Feng, X. L. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem., Int. Ed. 2018, 57, 15491–15495.

[36]

Kresse, G.; Hafner, J. Ab Initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

[37]

Kresse, G.; Hafner, J. Ab Initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[38]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[39]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[40]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[41]

Çakιr, Ö.; Acet, M.; Farle, M.; Senyshyn, A. Neutron diffraction study of the magnetic-field-induced transition in Mn3GaC. J. Appl. Phys. 2014, 115, 043913.

[42]

Yu, M. H.; Lewis, L. H.; Moodenbaugh, A. R. Large magnetic entropy change in the metallic antiperovskite Mn3GaC. J. Appl. Phys. 2003, 93, 10128–10130.

[43]

Battaglia, C.; Gaál-Nagy, K.; Monney, C.; Didiot, C.; Schwier, E. F.; Garnier, M. G.; Onida, G.; Aebi, P. Elementary structural building blocks encountered in silicon surface reconstructions. J. Phys. Condens. Matter 2009, 21, 013001.

[44]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[45]

Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M. Q.; Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y. et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118–3127.

[46]

Jensen, J. O. Vibrational frequencies and structural determination of trimethylgallium. J. Mol. Struc. THEOCHEM 2004, 673, 173–179.

[47]

Qin, L.; Yu, X.; Wang, K.; Wang, X. T. Spherical ZVI/Mn-C bimetallic catalysts for efficient fenton-like reaction under mild conditions. Catalysts 2022, 12, 444.

[48]

Majid, A.; Ahmad, N.; Rizwan, M.; Khan, S. U. D.; Ali, F. A. A.; Zhu, J. J. Effects of Mn ion implantation on XPS spectroscopy of GaN thin films. J. Electron. Mater. 2018, 47, 1555–1559.

[49]

Wang, Z. Y.; Huang, B. B.; Yu, L.; Dai, Y.; Wang, P.; Qin, X. Y.; Zhang, X. Y.; Wei, J. Y.; Zhan, J.; Jing, X. Y. et al. Enhanced ferromagnetism and tunable saturation magnetization of Mn/C-Codoped GaN nanostructures synthesized by carbothermal nitridation. J. Am. Chem. Soc. 2008, 130, 16366–16373.

[50]

Wang, X.; Dong, A. R.; Zhu, Z. Y.; Chai, L. L.; Ding, J. Y.; Zhong, L.; Li, T. T.; Hu, Y.; Qian, J. J.; Huang, S. Surfactant-mediated morphological evolution of MnCo prussian blue structures. Small 2020, 16, 2004614.

[51]

Huang, C. J.; Mu, W. X.; Zhou, H.; Zhu, Y. W.; Xu, X. M.; Jia, Z. T.; Zheng, L.; Tao, X. T. Effect of OH- on chemical mechanical polishing of β-Ga2O3(100) substrate using an alkaline slurry. RSC Adv. 2018, 8, 6544–6550.

[52]

Yang, J.; Zhao, Y. Y.; Frost, R. L. Infrared and infrared emission spectroscopy of gallium oxide α-GaO(OH) nanostructures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 74, 398–403.

[53]

Wei, Y. D.; Luo, W. L.; Zhuang, Z.; Dai, B.; Ding, J. X.; Li, T. X.; Ma, M. L.; Yin, X. Q.; Ma, Y. Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv. Compos. Hybrid Mater. 2021, 4, 1082–1091.

[54]

Chen, R. H.; Cheng, Y. Y.; Wang, P.; Wang, Y. Y.; Wang, Q. W.; Yang, Z. H.; Tang, C. J.; Xiang, S. Y.; Luo, S. Y.; Huang, S. H. et al. Facile synthesis of a sandwiched Ti3C2T x MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH2)2 complexing solutions. Chem. Eng. J. 2021, 421, 129682.

[55]

Shao, B. B.; Liu, Z. F.; Zeng, G. M.; Liu, Y.; Liang, Q. H.; He, Q. Y.; Wu, T.; Pan, Y.; Huang, J.; Peng, Z. et al. Synthesis of 2D/2D CoAl-LDHs/Ti3C2T x schottky-junction with enhanced interfacial charge transfer and visible-light photocatalytic performance. Appl. Catal. B Environ. 2021, 286, 119867.

[56]

Tian, S. H.; Zeng, Q.; Liu, G.; Huang, J. J.; Sun, X.; Wang, D.; Yang, H. C.; Liu, Z.; Mo, X. C.; Wang, Z. X. et al. Multi-dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium-sulfur battery. Nano-Micro Lett. 2022, 14, 196.

[57]

Cao, L. Y.; Wang, R. Y.; Xu, Z. W.; Li, J. Y.; Huang, J. F.; Li, R. Z.; Li, K. Constructing Mn-O-C bonds in Mn3O4/super P composite for superior performance in Li-ion battery. J. Electroanal. Chem. 2017, 798, 1–8.

[58]

Khazaei, M.; Arai, M.; Sasaki, T.; Estili, M.; Sakka, Y. The effect of the interlayer element on the exfoliation of layered Mo2AC (A = Al, Si, P, Ga, Ge, As or In) MAX phases into two-dimensional Mo2C nanosheets. Sci. Technol. Adv. Mater. 2014, 15, 014208.

[59]

Meng, T.; Cao, M. H. Interfacial electronic and structural reorganization in Mn2Co2C/MnO for enhancing oxygen evolution kinetics and active sites. ACS Sustainable Chem. Eng. 2020, 8, 13271–13281.

[60]

Chen, M. H.; Meng, H. Y.; Wang, F.; Liu, Q.; Liu, Y. B.; Liu, X.; Chen, Q. G.; Chen, Z. Dispersed Mn2Co2C nanoparticles in interconnected nitrogen-doped carbon framework as cathode catalysts for efficient and long-life Li-CO2 batteries. Chem. Eng. J. 2023, 455, 140564.

[61]

Zhao, S. S.; Meng, X.; Zhu, K.; Du, F.; Chen, G.; Wei, Y. J.; Gogotsi, Y.; Gao, Y. Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Mater. 2017, 8, 42–48.

[62]

Wang, L.; Zhang, X.; Xu, Y. N.; Li, C.; Liu, W. J.; Yi, S.; Wang, K.; Sun, X. Z.; Wu, Z. S.; Ma, Y. W. Tetrabutylammonium-intercalated 1T-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-Ion capacitors. Adv. Funct. Mater. 2021, 31, 2104286.

[63]

Wang, M. J.; Cheng, Y. F.; Zhang, H. Y.; Cheng, F.; Wang, Y. X.; Huang, T.; Wei, Z. C.; Zhang, Y. H.; Ge, B. H.; Ma, Y. N. et al. Nature-inspired interconnected macro/meso/micro-porous MXene electrode. Adv. Funct. Mater. 2023, 33, 2211199.

[64]

Chen, H. D.; Huang, J. J.; Tian, S. H.; Liu, L.; Qin, T. F.; Song, L.; Liu, Y. P.; Zhang, Y. N.; Wu, X. G.; Lei, S. L. et al. Interlayer modification of pseudocapacitive vanadium oxide and Zn(H2O) n2+ migration regulation for ultrahigh rate and durable aqueous zinc-ion batteries. Adv. Sci. (Weinh.) 2021, 8, 2004924.

[65]

Li, X. T.; Liang, H. J.; Qin, B. Y.; Wang, M. Q.; Zhang, Y. F.; Fan, H. S. Rational design of heterostructured bimetallic sulfides (CoS2/NC@VS4) with VS4 nanodots decorated on CoS2 dodecahedron for high-performance sodium and potassium ion batteries. J. Colloid Interface Sci. 2022, 625, 41–49.

[66]

Mai, Y. J.; Zhang, D.; Qiao, Y. Q.; Gu, C. D.; Wang, X. L.; Tu, J. P. MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance. J. Power Sources 2012, 216, 201–207.

[67]

Liu, S. Q.; Wang, B. Y.; Zhang, X.; Zhao, S.; Zhang, Z. H.; Yu, H. J. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter 2021, 4, 1511–1527.

[68]

Li, Q.; Li, H. S.; Xia, Q. T.; Hu, Z. Q.; Zhu, Y.; Yan, S. S.; Ge, C.; Zhang, Q. H.; Wang, X. X.; Shang, X. T. et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 2021, 20, 76–83.

[69]

Lin, J. Y.; Lu, S. J.; Zhang, Y. F.; Zeng, L. X.; Zhang, Y.; Fan, H. S. Selenide-doped bismuth sulfides (Bi2S3- x Se x ) and their hierarchical heterostructure with ReS2 for sodium/potassium-ion batteries. J. Colloid Interface Sci. 2023, 645, 654–662.

Nano Research
Pages 4181-4191
Cite this article:
Wu Y, Liu D, Wang X, et al. Mn-based MXene with high lithium-ion storage capacity. Nano Research, 2024, 17(5): 4181-4191. https://doi.org/10.1007/s12274-023-6360-0
Topics:

749

Views

3

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 06 August 2023
Revised: 15 November 2023
Accepted: 22 November 2023
Published: 29 December 2023
© Tsinghua University Press 2023
Return