Journal Home > Volume 16 , Issue 12

The pressing need to enhance nutrient use efficiency (NUE) in fertilizers has become increasingly urgent in light of food insecurity and climate-related issues. Nanotechnology offers promising prospects for the development of effective and environmentally friendly alternatives in the field of fertilization. This review focuses on the impact of nanotechnology on conventional fertilizers, encompassing inorganic, organic, and microbial approaches. We emphasize the superior attributes of nano-fertilizers compared with their conventional counterparts and explore their potential and versatility in boosting crop productivity, reducing fertilizer expenses, and mitigating detrimental environmental impacts. In conclusion, given the significant challenges posed by food insecurity and climate change, the application of nano-fertilizers demonstrates immense potential for advancing sustainable and intelligent agricultural practices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Advancing sustainable agriculture: Enhancing crop nutrition with next-generation nanotech-based fertilizers

Show Author's information Yiwen Liao1,2,§Dawei Xu2,3,§Yuhong Cao2,3( )Yong-Guan Zhu1,2
State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
University of Chinese Academy of Sciences, Beijing 100049, China
CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China

§ Yiwen Liao and Dawei Xu contributed equally to this work.

Abstract

The pressing need to enhance nutrient use efficiency (NUE) in fertilizers has become increasingly urgent in light of food insecurity and climate-related issues. Nanotechnology offers promising prospects for the development of effective and environmentally friendly alternatives in the field of fertilization. This review focuses on the impact of nanotechnology on conventional fertilizers, encompassing inorganic, organic, and microbial approaches. We emphasize the superior attributes of nano-fertilizers compared with their conventional counterparts and explore their potential and versatility in boosting crop productivity, reducing fertilizer expenses, and mitigating detrimental environmental impacts. In conclusion, given the significant challenges posed by food insecurity and climate change, the application of nano-fertilizers demonstrates immense potential for advancing sustainable and intelligent agricultural practices.

Keywords: nanobiotechnology, nano-fertilizers (NFs), nutrient use efficiency (NUE), slow release, sustainable agriculture

References(205)

[1]

Mueller, N. D.; Gerber, J. S.; Johnston, M.; Ray, D. K.; Ramankutty, N.; Foley, J. A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257.

[2]
FAO. FAO statistical databases [Online]. http://faostat.fao.org/ (accessed Jul 7, 2023).
[3]

Kopittke, P. M.; Lombi, E.; Wang, P.; Schjoerring, J. K.; Husted, S. Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environ. Sci.: Nano 2019, 6, 3513–3524.

[4]

Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N. A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270.

[5]

Lam, S. K.; Wille, U.; Hu, H. W.; Caruso, F.; Mumford, K.; Liang, X.; Pan, B. B.; Malcolm, B.; Roessner, U.; Suter, H. et al. Next-generation enhanced-efficiency fertilizers for sustained food security. Nat. Food 2022, 3, 575–580.

[6]
Sarkar, D.; Baishya, L. K. Nutrient use efficiency. In Essential Plant Nutrients: Uptake, Use Efficiency, and Management. Naeem, M.; Ansari, A. A.; Gill, S. S., Eds.; Springer International Publishing: Cham, 2017; pp 119–146.
[7]

Zhang, Q.; Ying, Y. B.; Ping, J. F. Recent advances in plant nanoscience. Adv. Sci. (Weinh.) 2022, 9, 2103414.

[8]

DeRosa, M. C.; Monreal, C.; Schnitzer, M.; Walsh, R.; Sultan, Y. Nanotechnology in fertilizers. Nat. Nanotechnol. 2010, 5, 91.

[9]

Hu, J.; Xianyu, Y. L. When Nano meets plants: A review on the interplay between nanoparticles and plants. Nano Today 2021, 38, 101143.

[10]

Lu, K.; Shen, D. L.; Dong, S. P.; Chen, C. Y.; Lin, S. J.; Lu, S.; Xing, B. S.; Mao, L. Uptake of graphene enhanced the photophosphorylation performed by chloroplasts in rice plants. Nano Res. 2020, 13, 3198–3205.

[11]

Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F. N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209.

[12]

Halpern, B. S.; Frazier, M.; Verstaen, J.; Rayner, P. E.; Clawson, G.; Blanchard, J. L.; Cottrell, R. S.; Froehlich, H. E.; Gephart, J. A.; Jacobsen, N. S. et al. The environmental footprint of global food production. Nat. Sustain. 2022, 5, 1027–1039.

[13]
Net-zero carbon pledges must be meaningful to avert climate disaster. Nature 2021 , 592, 8.
[14]

Sharma, B.; Shrivastava, M.; Afonso, L. O. B.; Soni, U.; Cahill, D. M. Metal doped nitrogenous hydroxyapatite nanohybrids slowly release nitrogen to crops and mitigate ammonia volatilization: An impact assessment. NanoImpact 2022, 28, 100424.

[15]

Avila-Quezada, G. D.; Ingle, A. P.; Golińska, P.; Rai, M. Strategic applications of nano-fertilizers for sustainable agriculture: Benefits and bottlenecks. Nanotechnol. Rev. 2022, 11, 2123–2140.

[16]

Jakhar, A. M.; Aziz, I.; Kaleri, A. R.; Hasnain, M.; Haider, G.; Ma, J. H.; Abideen, Z. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NanoImpact 2022, 27, 100411.

[17]

Zhao, L. J.; Lu, L.; Wang, A. D.; Zhang, H. L.; Huang, M.; Wu, H. H.; Xing, B. S.; Wang, Z. Y.; Ji, R. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem. 2020, 68, 1935–1947.

[18]

Jha, A.; Pathania, D.; Sonu; Damathia, B.; Raizada, P.; Rustagi, S.; Singh, P.; Rani, G. M.; Chaudhary, V. Panorama of biogenic nano-fertilizers: A road to sustainable agriculture. Environ. Res. 2023, 235, 116456.

[19]
Behera, K. K.; Alam, A.; Vats, S.; Sharma, H. P.; Sharma, V. Organic farming history and techniques. In Agroecology and Strategies for Climate Change. Lichtfouse, E., Ed.; Springer: Dordrecht, 2012.
[20]

Ludemann, C. I.; Gruere, A.; Heffer, P.; Dobermann, A. Global data on fertilizer use by crop and by country. Sci. Data 2022, 9, 501.

[21]
United States Department of Agriculture (USDA). Report and recommendations on organic farming. Department of Agriculture, US, Government Priting Office, Washington DC, 1980.
[22]

Tilman, D.; Cassman, K. G.; Matson, P. A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677.

[23]
Joshi, S. K.; Gauraha, A. K. Global biofertilizer market: Emerging trends and opportunities. In Trends of Applied Microbiology for Sustainable Economy: A volume in Developments in Applied Microbiology and Biotechnology. Soni, R.; Suyal, D. C.; Yadav, A. N.; Goel, R., Eds.; Elsevier: Amsterdam, 2022; pp 689–697.
[24]

Xiang, T.; Malik, T. H.; Nielsen, K. The impact of population pressure on global fertiliser use intensity, 1970-2011: An analysis of policy-induced mediation. Technol. Forecast. Soc. Change 2020, 152, 119895.

[25]
FAO. Inorganic fertilizers 1961–2019. FAOSTAT Analytical Brief 27. Rome: FAO US, 2021.
[26]

Kahiluoto, H.; Pickett, K. E.; Steffen, W. Global nutrient equity for people and the planet. Nat. Food 2021, 2, 857–861.

[27]

Reid, T. E.; Kavamura, V. N.; Abadie, M.; Torres-Ballesteros, A.; Pawlett, M.; Clark, I. M.; Harris, J.; Mauchline, T. H. Inorganic chemical fertilizer application to wheat reduces the abundance of putative plant growth-promoting rhizobacteria. Front. Microbiol. 2021, 12, 642587.

[28]

Liu, Y. H.; Chu, G.; Stirling, E.; Zhang, H. Q.; Chen, S.; Xu, C. M.; Zhang, X. F.; Ge, T. D.; Wang, D. Y. Nitrogen fertilization modulates rice seed endophytic microbiomes and grain quality. Sci. Total Environ. 2023, 857, 159181.

[29]

Husted, S.; Minutello, F.; Pinna, A.; Tougaard, S. L.; Møs, P.; Kopittke, P. M. What is missing to advance foliar fertilization using nanotechnology. Trends Plant Sci. 2023, 28, 90–105.

[30]
Fernandez, V.; Sotiropoulos, T.; Brown, P. Foliar Fertilization: Scientific Principles and Field Practices; IFA: Paris, France, 2013.
[31]

Vejan, P.; Khadiran, T.; Abdullah, R.; Ahmad, N. Controlled release fertilizer: A review on developments, applications and potential in agriculture. J. Control. Release 2021, 339, 321–334.

[32]

Naz, M. Y.; Sulaiman, S. A. Slow release coating remedy for nitrogen loss from conventional urea: A review. J. Control. Release 2016, 225, 109–120.

[33]

Xie, J. Z.; Yang, Y. C.; Gao, B.; Wan, Y. S.; Li, Y. C.; Cheng, D. D.; Xiao, T. Q.; Li, K.; Fu, Y. N.; Xu, J. et al. Magnetic-sensitive nanoparticle self-assembled superhydrophobic biopolymer-coated slow-release fertilizer: Fabrication, enhanced performance, and mechanism. ACS Nano 2019, 13, 3320–3333.

[34]

Tilman, D.; Socolow, R.; Foley, J. A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C. et al. Beneficial biofuels-the food, energy, and environment trilemma. Science 2009, 325, 270–271.

[35]

Jing, J. Y.; Cong, W. F.; Bezemer, T. M. Legacies at work: Plant-soil-microbiome interactions underpinning agricultural sustainability. Trends Plant Sci. 2022, 27, 781–792.

[36]
Shaji, H.; Chandran, V.; Mathew, L. Organic fertilizers as a route to controlled release of nutrients. In Controlled Release Fertilizers for Sustainable Agriculture. Lewu, F. B.; Volova, T.; Thomas, S.; Rakhimol, K. R., Eds.; Elsevier: Amsterdam, 2021; pp 231–245.
[37]

Xie, S. W.; Yang, F.; Feng, H. X.; Yu, Z. Z.; Liu, C. S.; Wei, C. Y.; Liang, T. Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations: Evidence in nutrient contents and isotope fractionations. Sci. Total Environ. 2021, 762, 143059.

[38]

Chen, Q. L.; Cui, H. L.; Su, J. Q.; Penuelas, J.; Zhu, Y. G. Antibiotic resistomes in plant microbiomes. Trends Plant Sci. 2019, 24, 530–541.

[39]

Xia, L. L.; Cao, L.; Yang, Y.; Ti, C.; Liu, Y. Z.; Smith, P.; van Groenigen, K. J.; Lehmann, J.; Lal, R.; Butterbach-Bahl, K. et al. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nat. Food 2023, 4, 236–246.

[40]

Jack, C. N.; Petipas, R. H.; Cheeke, T. E.; Rowland, J. L.; Friesen, M. L. Microbial Inoculants: Silver Bullet or Microbial Jurassic Park. Trends Microbiol. 2021, 29, 299–308.

[41]

Hartmann, M.; Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18.

[42]

Waqas, M.; Hawkesford, M. J.; Geilfus, C. M. Feeding the world sustainably: Efficient nitrogen use. Trends Plant Sci. 2023, 28, 505–508.

[43]

Batista, B. D.; Singh, B. K. Realities and hopes in the application of microbial tools in agriculture. Microb. Biotechnol. 2021, 14, 1258–1268.

[44]
Chen, J.; Lü, S. Y.; Zhang, Z.; Zhao, X. X.; Li, X. M.; Ning, P.; Liu, M. Z. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 2018 , 613614, 829–839.
[45]

Zhao, L. J.; Bai, T. H.; Wei, H.; Gardea-Torresdey, J. L.; Keller, A.; White, J. C. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nat. Food 2022, 3, 829–836.

[46]

Kah, M.; Kookana, R. S.; Gogos, A.; Bucheli, T. D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 2018, 13, 677–684.

[47]

Wang, P.; Lombi, E.; Zhao, F. J.; Kopittke, P. M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 2016, 21, 699–712.

[48]

Li, W. C.; Fan, R. Y.; Zhou, H. J.; Zhu, Y. F.; Zheng, X.; Tang, M. Y.; Wu, X. S.; Yu, C. Z.; Wang, G. Z. Improving the utilization rate of foliar nitrogen fertilizers by surface roughness engineering of silica spheres. Environ. Sci.: Nano 2020, 7, 3526–3535.

[49]

Vishekaii, Z. R.; Soleimani, A.; Fallahi, E.; Ghasemnezhad, M.; Hasani, A. The impact of foliar application of boron nano-chelated fertilizer and boric acid on fruit yield, oil content, and quality attributes in olive ( Olea europaea L.). Sci. Horti. 2019, 257, 108689.

[50]

Wu, H. H.; Tito, N.; Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 2017, 11, 11283–11297.

[51]

Dong, S. P.; Jing, X.; Lin, S. J.; Lu, K.; Li, W. F.; Lu, J. J.; Li, M. Z.; Gao, S. X.; Lu, S.; Zhou, D. M. et al. Root hair apex is the key site for symplastic delivery of graphene into plants. Environ. Sci. Technol. 2022, 56, 12179–12189.

[52]
Rane, A. V.; Kanny, K.; Abitha, V. K.; Thomas, S. Methods for synthesis of nanoparticles and fabrication of nanocomposites. In Synthesis of Inorganic Nanomaterials: Advances and Key Technologies: A volume in Micro and Nano Technologies. Bhagyaraj, S. M.; Oluwafemi, O, S.; Kalarikkal, N.; Thomas, S., Eds.; 2018; Elsevier: Amsterdam, pp 121–139.
[53]

Selmani, A.; Kovačević, D.; Bohinc, K. Nanoparticles: From synthesis to applications and beyond. Adv. Colloid Interface Sci. 2022, 303, 102640.

[54]

Gilbertson, L. M.; Pourzahedi, L.; Laughton, S.; Gao, X. Y.; Zimmerman, J. B.; Theis, T. L.; Westerhoff, P.; Lowry, G. V. Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 2020, 15, 801–810.

[55]

Elmer, W. H.; White, J. C. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci.: Nano 2016, 3, 1072–1079.

[56]

Li, M. S.; Zhang, P.; Guo, Z. L.; Cao, W. D.; Gao, L.; Li, Y. B.; Tian, C. F.; Chen, Q.; Shen, Y. Z.; Ren, F. Z. et al. Molybdenum nanofertilizer boosts biological nitrogen fixation and yield of soybean through delaying nodule senescence and nutrition enhancement. ACS Nano 2023, 17, 14761–14774.

[57]

Wang, C. X.; Yue, L.; Cheng, B. X.; Chen, F. R.; Zhao, X. L.; Wang, Z. Y.; Xing, B. S. Mechanisms of growth-promotion and Se-enrichment in Brassica chinensis L. by selenium nanomaterials: Beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ. Sci.: Nano 2022, 9, 302–312.

[58]

Majumdar, S.; Long, R. W.; Kirkwood, J. S.; Minakova, A. S.; Keller, A. A. Unraveling metabolic and proteomic features in soybean plants in response to copper hydroxide nanowires compared to a commercial fertilizer. Environ. Sci. Technol. 2021, 55, 13477–13489.

[59]

Lv, Z. Y.; Zhong, M. Z.; Zhou, Q. Q.; Li, Z. F.; Sun, H. D.; Bai, J. R.; Liu, J. S.; Mao, H. Nutrient strengthening of winter wheat by foliar ZnO and Fe3O4 NPs: Food safety, quality, elemental distribution and effects on soil bacteria. Sci. Total Environ. 2023, 893, 164866.

[60]

Sun, X. D.; Ma, J. Y.; Feng, L. J.; Duan, J. L.; Xie, X. M.; Zhang, X. H.; Kong, X. P.; Ding, Z. J.; Yuan, X. Z. Magnetite nanoparticle coating chemistry regulates root uptake pathways and iron chlorosis in plants. Proc. Natl. Acad. Sci. USA 2023, 120, e2304306120.

[61]

Wang, J.; Cao, X.; Wang, C.; Chen, F.; Feng, Y.; Yue, L.; Wang, Z.; Xing, B. Fe-based nanomaterial-induced root nodulation is modulated by flavonoids to improve soybean ( Glycine max) growth and quality. ACS Nano 2022, 16, 21047–21062.

[62]

Cao, X. S.; Yue, L.; Wang, C. X.; Luo, X.; Zhang, C. C.; Zhao, X. L.; Wu, F. C.; White, J. C.; Wang, Z. Y.; Xing, B. S. Foliar application with iron oxide nanomaterials stimulate nitrogen fixation, yield, and nutritional quality of soybean. ACS Nano 2022, 16, 1170–1181.

[63]

Rui, M. M.; Ma, C. X.; Hao, Y.; Guo, J.; Rui, Y. K.; Tang, X. L.; Zhao, Q.; Fan, X.; Zhang, Z. T.; Hou, T. Q. et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut ( Arachis hypogaea). Front. Plant Sci. 2016, 7, 815.

[64]

Azarin, K.; Usatov, A.; Minkina, T.; Plotnikov, A.; Kasyanova, A.; Fedorenko, A.; Duplii, N.; Vechkanov, E.; Rajput, V. D.; Mandzhieva, S. et al. Effects of ZnO nanoparticles and its bulk form on growth, antioxidant defense system and expression of oxidative stress related genes in Hordeum vulgare L. Chemosphere 2022, 287, 132167.

[65]

Elhaj Baddar, Z.; Unrine, J. M. Effects of soil pH and coatings on the efficacy of polymer coated ZnO nanoparticulate fertilizers in wheat ( Triticum aestivum). Environ. Sci. Technol. 2021, 55, 13532–13540.

[66]

Rossi, L.; Fedenia, L. N.; Sharifan, H.; Ma, X. M.; Lombardini, L. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee ( Coffea arabica L. ) plants. Plant Physiol. Biochem. 2019, 135, 160–166.

[67]

Liu, R. Q.; Zhang, H. Y.; Lal, R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce ( Lactuca sativa) seed germination: Nanotoxicants or nanonutrients. Water, Air, Soil Pollut. 2016, 227, 42.

[68]

Doolette, C. L.; Read, T. L.; Howell, N. R.; Cresswell, T.; Lombi, E. Zinc from foliar-applied nanoparticle fertiliser is translocated to wheat grain: A 65Zn radiolabelled translocation study comparing conventional and novel foliar fertilisers. Sci. Total Environ. 2020, 749, 142369.

[69]

Sun, M.; Zhao, C. C.; Shang, H. P.; Hao, Y.; Han, L. F.; Qian, K.; White, J. C.; Ma, C. X.; Xing, B. S. ZnO quantum dots outperform nanoscale and bulk particles for enhancing tomato ( Solanum lycopersicum) growth and nutritional values. Sci. Total Environ. 2023, 857, 159330.

[70]

Madanayake, N. H.; Adassooriya, N. M.; Salim, N. The effect of hydroxyapatite nanoparticles on Raphanus sativus with respect to seedling growth and two plant metabolites. Environ. Nanotechnol., Monit. Manage. 2021, 15, 100404.

[71]

Kang, H.; Elmer, W.; Shen, Y.; Zuverza-Mena, N.; Ma, C. X.; Botella, P.; White, J. C.; Haynes, C. L. Silica nanoparticle dissolution rate controls the suppression of Fusarium wilt of watermelon ( Citrullus lanatus). Environ. Sci. Technol. 2021, 55, 13513–13522.

[72]

Gao, X. Y.; Kundu, A.; Bueno, V.; Rahim, A. A.; Ghoshal, S. Uptake and translocation of mesoporous SiO2-Coated ZnO nanoparticles to Solanum lycopersicum following foliar application. Environ. Sci. Technol. 2021, 55, 13551–13560.

[73]

Hu, P. G.; An, J.; Faulkner, M. M.; Wu, H. H.; Li, Z. H.; Tian, X. L.; Giraldo, J. P. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 2020, 14, 7970–7986.

[74]

Parra-Torrejón, B.; Cáceres, A.; Sánchez, M.; Sainz, L.; Guzmán, M.; Bermúdez-Perez, F. J.; Ramírez-Rodríguez, G. B.; Delgado-López, J. M. Multifunctional nanomaterials for biofortification and protection of tomato plants. Environ. Sci. Technol. 2023, 57, 14950–14960.

[75]

Xu, T.; Wang, Y.; Aytac, Z.; Zuverza-Mena, N.; Zhao, Z. T.; Hu, X.; Ng, K. W.; White, J. C.; Demokritou, P. Enhancing agrichemical delivery and plant development with biopolymer-based stimuli responsive core-shell nanostructures. ACS Nano 2022, 16, 6034–6048.

[76]

Read, T. L.; Doolette, C. L.; Li, C.; Schjoerring, J. K.; Kopittke, P. M.; Donner, E.; Lombi, E. Optimising the foliar uptake of zinc oxide nanoparticles: Do leaf surface properties and particle coating affect absorption. Physiol. Plant. 2020, 170, 384–397.

[77]

Wu, H. H.; Li, Z. H. Nano-enabled agriculture: How do nanoparticles cross barriers in plants. Plant Commun. 2022, 3, 100346.

[78]

Dutta, S.; Pal, S.; Panwar, P.; Sharma, R. K.; Bhutia, P. L. Biopolymeric nanocarriers for nutrient delivery and crop biofortification. ACS Omega 2022, 7, 25909–25920.

[79]

Yang, J. X.; Yan, Z. J.; Xu, D. H.; Wang, X. L. Enhanced growth of broad beans ( Vicia faba L.) through separating antagonistic nutrients using nitrogen-doped carbon nanotubes. ACS Sustain. Chem. Eng. 2021, 9, 16437–16449.

[80]

Kottegoda, N.; Sandaruwan, C.; Priyadarshana, G.; Siriwardhana, A.; Rathnayake, U. A.; Berugoda Arachchige, D. M.; Kumarasinghe, A. R.; Dahanayake, D.; Karunaratne, V.; Amaratunga, G. A. J. Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 2017, 11, 1214–1221.

[81]

Li, W. C.; Zhang, X. Y.; Zhou, H. J.; Zou, Z. D.; Shen, Y.; Wang, G. H. In situ construction of a magnesium foliar fertilizer with pH-controlled release and high adhesion capacity. Environ. Sci: Nano 2023, 10, 115–128.

[82]

Benício, L. P. F.; Constantino, V. R. L.; Pinto, F. G.; Vergütz, L.; Tronto, J.; da Costa, L. M. Layered double hydroxides: New technology in phosphate fertilizers based on nanostructured materials. ACS Sustain. Chem. Eng. 2017, 5, 399–409.

[83]

Lateef, A.; Nazir, R.; Jamil, N.; Alam, S.; Shah, R.; Khan, M. N.; Saleem, M. Synthesis and characterization of zeolite based nano-composite: An environment friendly slow release fertilizer. Microporous Mesoporous Mater. 2016, 232, 174–183.

[84]

Grillo, R.; Mattos, B. D.; Antunes, D. R.; Forini, M. M. L.; Monikh, F. A.; Rojas, O. J. Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today 2021, 37, 101078.

[85]

Ji, Y. Z.; Ma, S.; Lv, S. Q.; Wang, Y. J.; Lü, S. Y.; Liu, M. Z. Nanomaterials for targeted delivery of agrochemicals by an all-in-one combination strategy and deep learning. ACS Appl. Mater. Interfaces 2021, 13, 43374–43386.

[86]

Feng, C.; Lü, S. Y.; Gao, C. M.; Wang, X. G.; Xu, X. B.; Bai, X.; Gao, N. N.; Liu, M. Z.; Wu, L. “Smart” fertilizer with temperature- and pH-responsive behavior via surface-initiated polymerization for controlled release of nutrients. ACS Sustain. Chem. Eng. 2015, 3, 3157–3166.

[87]

Li, T.; Lü, S. Y.; Yan, J.; Bai, X.; Gao, C. M.; Liu, M. Z. An environment-friendly fertilizer prepared by layer-by-layer self-assembly for pH-responsive nutrient release. ACS Appl. Mater. Interfaces 2019, 11, 10941–10950.

[88]

Zhang, G. L.; Zhou, L. L.; Cai, D. Q.; Wu, Z. Y. Anion-responsive carbon nanosystem for controlling selenium fertilizer release and improving selenium utilization efficiency in vegetables. Carbon 2018, 129, 711–719.

[89]

Kan, Q. H.; Lu, K.; Deng, R. Q.; Lv, Z. Y.; Wu, W.; Gao, S. X.; Dong, S. P.; Mao, L. An alkali-triggered polydopamine modified mesoporous silica nanopesticide for smart delivery of chlorpyrifos with low loss. ACS Agric. Sci. Technol. 2022, 2, 501–511.

[90]

Avellan, A.; Yun, J.; Zhang, Y. L.; Spielman-Sun, E.; Unrine, J. M.; Thieme, J.; Li, J. R.; Lombi, E.; Bland, G.; Lowry, G. V. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 2019, 13, 5291–5305.

[91]

Li, W. C.; Zhou, H. J.; Zhang, X. Y.; Li, Z. Y.; Zou, Z. D.; Shen, Y.; Wang, G. Z. Oxidation-resistant silicon nanosystem for intelligent controlled ferrous foliar delivery to crops. ACS Nano 2023, 17, 15199–15215.

[92]

Avellan, A.; Yun, J.; Morais, B. P.; Clement, E. T.; Rodrigues, S. M.; Lowry, G. V. Critical review: Role of inorganic nanoparticle properties on their foliar uptake and in Planta translocation. Environ. Sci. Technol. 2021, 55, 13417–13431.

[93]

Zhu, J. H.; Li, J. F.; Shen, Y.; Liu, S. Q.; Zeng, N. D.; Zhan, X. H.; White, J. C.; Gardea-Torresdey, J.; Xing, B. S. Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environ. Sci.: Nano 2020, 7, 3901–3913.

[94]

Eichert, T.; Kurtz, A.; Steiner, U.; Goldbach, H. E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 2008, 134, 151–160.

[95]

Xia, X.; Shi, B. Y.; Wang, L.; Liu, Y.; Zou, Y.; Zhou, Y.; Chen, Y.; Zheng, M.; Zhu, Y. F.; Duan, J. J. et al. From mouse to mouse‐ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration 2021, 1, 9–20.

[96]

Wang, Y.; Feng, L. J.; Sun, X. D.; Zhang, M. Y.; Duan, J. L.; Xiao, F.; Lin, Y.; Zhu, F. P.; Kong, X. P.; Ding, Z. J. et al. Incorporation of selenium derived from nanoparticles into plant proteins in vivo. ACS Nano 2023, 17, 15847–15856.

[97]

Spielman-Sun, E.; Lombi, E.; Donner, E.; Howard, D.; Unrine, J. M.; Lowry, G. V. Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat ( Triticum aestivum). Environ. Sci. Technol. 2017, 51, 7361–7368.

[98]

Wong, M. H.; Misra, R. P.; Giraldo, J. P.; Kwak, S. Y.; Son, Y.; Landry, M. P.; Swan, J. W.; Blankschtein, D.; Strano, M. S. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: A universal localization mechanism. Nano Letters 2016, 16, 1161–1172.

[99]

Ma, C. X.; White, J. C.; Zhao, J.; Zhao, Q.; Xing, B. S. Uptake of engineered nanoparticles by food crops: Characterization, mechanisms, and implications. Annu. Rev. Food Sci. Technol. 2018, 9, 129–153.

[100]

Du, Y. M.; Li, P.; Nguyen, A. V.; Xu, Z. P.; Mulligan, D.; Huang, L. B. Zinc uptake and distribution in tomato plants in response to foliar supply of Zn hydroxide‐nitrate nanocrystal suspension with controlled Zn solubility. J. Plant Nutr. Soil Sci. 2015, 178, 722–731.

[101]

Lv, J. T.; Christie, P.; Zhang, S. Z. Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environ. Sci.: Nano 2019, 6, 41–59.

[102]

Neves, V. M.; Heidrich, G. M.; Rodrigues, E. S.; Enders, M. S. P.; Muller, E. I.; Nicoloso, F. T.; de Carvalho, H. W. P.; Dressler, V. L. La2O3 nanoparticles: Study of uptake and distribution in Pfaffia glomerata (Spreng.) Pedersen by LA-ICP-MS and μ-XRF. Environ. Sci. Technol. 2019, 53, 10827–10834.

[103]

Wojcieszek, J.; Jiménez-Lamana, J.; Bierla, K.; Ruzik, L.; Asztemborska, M.; Jarosz, M.; Szpunar, J. Uptake, translocation, size characterization and localization of cerium oxide nanoparticles in radish ( Raphanus sativus L.). Sci. Total Environ. 2019, 683, 284–292.

[104]

Read, T. L.; Doolette, C. L.; Howell, N. R.; Kopittke, P. M.; Cresswell, T.; Lombi, E. Zinc accumulates in the nodes of wheat following the foliar application of 65Zn Oxide Nano- and Microparticles. Environ. Sci. Technol. 2021, 55, 13523–13531.

[105]

Huang, C.; Xia, T.; Niu, J. F.; Yang, Y.; Lin, S. J.; Wang, X. K.; Yang, G. Q.; Mao, L.; Xing, B. S. Transformation of 14C-labeled graphene to 14CO2 in the shoots of a rice plant. Angew. Chem., Int. Ed. 2018, 57, 9759–9763.

[106]

Zhang, T.; Sun, H. D.; Lv, Z. Y.; Cui, L. L.; Mao, H.; Kopittke, P. M. Using synchrotron-based approaches to examine the foliar application of ZnSO4 and ZnO nanoparticles for field-grown winter wheat. J. Agric. Food Chem. 2018, 66, 2572–2579.

[107]

Fu, X.; Zheng, Z.; Sha, Z. M.; Cao, H. L.; Yuan, Q. X.; Yu, H. B.; Li, Q. Biorefining waste into nanobiotechnologies can revolutionize sustainable agriculture. Trends Biotechnol. 2022, 40, 1503–1518.

[108]

Zhang, S. G.; Yang, Y. C.; Gao, B.; Li, Y. C.; Liu, Z. G. Superhydrophobic controlled-release fertilizers coated with bio-based polymers with organosilicon and nano-silica modifications. J. Mater. Chem. A 2017, 5, 19943–19953.

[109]

Otoni, C. G.; Azeredo, H. M. C.; Mattos, B. D.; Beaumont, M.; Correa, D. S.; Rojas, O. J. The food-materials nexus: Next generation bioplastics and advanced materials from Agri-food residues. Adv. Mater. 2021, 33, 2102520.

[110]

Barhoum, A.; Jeevanandam, J.; Rastogi, A.; Samyn, P.; Boluk, Y.; Dufresne, A.; Danquah, M. K.; Bechelany, M. Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale 2020, 12, 22845–22890.

[111]

De, R.; Mahata, M. K.; Kim, K. T. Structure-based varieties of polymeric nanocarriers and influences of their physicochemical properties on drug delivery profiles. Adv. Sci. (Weinh.) 2022, 9, 2105373.

[112]

Shaghaleh, H.; Alhaj Hamoud, Y.; Xu, X.; Wang, S. F.; Liu, H. A pH-responsive/sustained release nitrogen fertilizer hydrogel based on aminated cellulose nanofiber/cationic copolymer for application in irrigated neutral soils. J. Cleaner Prod. 2022, 368, 133098.

[113]

Shang, H. P.; Ma, C. X.; Li, C. Y.; Zhao, J.; Elmer, W.; White, J. C.; Xing, B. S. Copper oxide nanoparticle-embedded hydrogels enhance nutrient supply and growth of lettuce ( Lactuca sativa) infected with Fusarium oxysporum f. sp. lactucae. Environ. Sci. Technol. 2021, 55, 13432–13442.

[114]

Bindra, P.; Kaur, K.; Rawat, A.; De Sarkar, A.; Singh, M.; Shanmugam, V. Nano-hives for plant stimuli controlled targeted iron fertilizer application. Chem. Eng. J. 2019, 375, 121995.

[115]

Zhang, S. G.; Fu, X. J.; Tong, Z. H.; Liu, G. D.; Meng, S. Y.; Yang, Y. C.; Helal, M. I. D.; Li, Y. C. Lignin-clay nanohybrid biocomposite-based double-layer coating materials for controllable-release fertilizer. ACS Sustain. Chem. Eng. 2020, 8, 18957–18965.

[116]

Saberi Riseh, R.; Vatankhah, M.; Hassanisaadi, M.; Kennedy, J. F. Increasing the efficiency of agricultural fertilizers using cellulose nanofibrils: A review. Carbohydr. Polym. 2023, 321, 121313.

[117]

do Nascimento, D. M.; Nunes, Y. L.; Feitosa, J. P. A.; Dufresne, A.; Rosa, M. d. F. Cellulose nanocrystals-reinforced core-shell hydrogels for sustained release of fertilizer and water retention. Int. J. Biol. Macromol. 2022, 216, 24–31.

[118]

Shen, Y. M.; Wang, H.; Liu, Z. J.; Li, W. K.; Liu, Y. H.; Li, J. J.; Wei, H. L.; Han, H. Y. Fabrication of a water-retaining, slow-release fertilizer based on nanocomposite double-network hydrogels via ion-crosslinking and free radical polymerization. J. Ind. Eng. Chem. 2021, 93, 375–382.

[119]

Kassem, I.; Ablouh, E. H.; El Bouchtaoui, F. Z.; Kassab, Z.; Khouloud, M.; Sehaqui, H.; Ghalfi, H.; Alami, J.; El Achaby, M. Cellulose nanocrystals-filled poly (vinyl alcohol) nanocomposites as waterborne coating materials of NPK fertilizer with slow release and water retention properties. Int. J. Biol. Macromol. 2021, 189, 1029–1042.

[120]

Savy, D.; Cozzolino, V. Novel fertilising products from lignin and its derivatives to enhance plant development and increase the sustainability of crop production. J. Cleaner Prod. 2022, 366, 132832.

[121]

Zhang, S. G.; Yang, M. C.; Meng, S. Y.; Yang, Y. C.; Li, Y. C.; Tong, Z. H. Biowaste-derived, nanohybrid-reinforced double-function slow-release fertilizer with metal-adsorptive function. Chem. Eng. J. 2022, 450, 138084.

[122]

Chen, J.; Fan, X. L.; Zhang, L. D.; Chen, X. J.; Sun, S. L.; Sun, R. C. Research progress in lignin-based slow/controlled release fertilizer. ChemSusChem 2020, 13, 4356–4366.

[123]

Cohen, Y.; Yasuor, H.; Tworowski, D.; Fallik, E.; Poverenov, E. Stimuli-free transcuticular delivery of Zn microelement using biopolymeric nanovehicles: Experimental, theoretical, and in planta studies. ACS Nano 2021, 15, 19446–19456.

[124]

Santana, I.; Wu, H.; Hu, P. G.; Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 2020, 11, 2045.

[125]

Lin, Z. K.; Goswami, N.; Xue, T. T.; Chai, O. J. H.; Xu, H. J.; Liu, Y. X.; Su, Y.; Xie, J. P. Engineering metal nanoclusters for targeted therapeutics: From targeting strategies to therapeutic applications. Adv. Funct. Mater. 2021, 31, 2105662.

[126]

Spielman-Sun, E.; Avellan, A.; Bland, G. D.; Clement, E. T.; Tappero, R. V.; Acerbo, A. S.; Lowry, G. V. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 2020, 12, 3630–3636.

[127]

Zhang, Y. L.; Fu, L. Y.; Li, S. P.; Yan, J. J.; Sun, M. K.; Giraldo, J. P.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G. V. Star polymer size, charge content, and hydrophobicity affect their leaf uptake and translocation in plants. Environ. Sci. Technol. 2021, 55, 10758–10768.

[128]

Tomoyoshi Fukumorita, M. C. Sugar, amino acid and inorganic contents in rice phloem sap. Plant Cell Physiol. 1982, 23, 273–283.

[129]

Hill, M. R.; MacKrell, E. J.; Forsthoefel, C. P.; Jensen, S. P.; Chen, M. S.; Moore, G. A.; He, Z. L.; Sumerlin, B. S. Biodegradable and pH-responsive nanoparticles designed for site-specific delivery in agriculture. Biomacromolecules 2015, 16, 1276–1282.

[130]

Thagun, C.; Horii, Y.; Mori, M.; Fujita, S.; Ohtani, M.; Tsuchiya, K.; Kodama, Y.; Odahara, M.; Numata, K. Non-transgenic gene modulation via spray delivery of nucleic acid/peptide complexes into plant nuclei and chloroplasts. ACS Nano 2022, 16, 3506–3521.

[131]

Santana, I.; Jeon, S. J.; Kim, H. I.; Islam, M. R.; Castillo, C.; Garcia, G. F. H.; Newkirk, G. M.; Giraldo, J. P. Targeted carbon nanostructures for chemical and gene delivery to plant chloroplasts. ACS Nano 2022, 16, 12156–12173.

[132]

Yu, Y. N.; Dai, W.; Luan, Y. N. Bio- and eco-corona related to plants: Understanding the formation and biological effects of plant protein coatings on nanoparticles. Environ. Pollut. 2023, 317, 120784.

[133]

Ahanger, M. A.; Qi, M. D.; Huang, Z. G.; Xu, X. D.; Begum, N.; Qin, C.; Zhang, C. X.; Ahmad, N.; Mustafa, N. S.; Ashraf, M. et al. Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicol. Environ. Saf. 2021, 216, 112195.

[134]

Yue, L.; Lian, F.; Han, Y.; Bao, Q. L.; Wang, Z. Y.; Xing, B. S. The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: Implications for agronomic benefits and potential risk. Sci. Total Environ. 2019, 656, 9–18.

[135]

Sani, M. N. H.; Amin, M.; Siddique, A. B.; Nasif, S. O.; Ghaley, B. B.; Ge, L. Y.; Wang, F.; Yong, J. W. H. Waste-derived nanobiochar: A new avenue towards sustainable agriculture, environment, and circular bioeconomy. Sci. Total Environ. 2023, 905, 166881.

[136]

Raza, M. A. S.; Ibrahim, M. A.; Ditta, A.; Iqbal, R.; Aslam, M. U.; Muhammad, F.; Ali, S.; Çiğ, F.; Ali, B.; Muhammad Ikram, R. et al. Exploring the recuperative potential of brassinosteroids and nano-biochar on growth, physiology, and yield of wheat under drought stress. Sci. Rep. 2023, 13, 15015.

[137]

Yoon, H. Y.; Lee, J. G.; Esposti, L. D.; Iafisco, M.; Kim, P. J.; Shin, S. G.; Jeon, J. R.; Adamiano, A. Synergistic release of crop nutrients and stimulants from hydroxyapatite nanoparticles functionalized with humic substances: Toward a multifunctional nanofertilizer. ACS Omega 2020, 5, 6598–6610.

[138]

Singh, P.; Ghosh, D.; Manyapu, V.; Yadav, M.; Majumder, S. Synergistic impact of iron (III) oxide nanoparticles and organic waste on growth and development of Solanum lycopersicum plants: New paradigm in nanobiofertilizer. Plant Arch. 2019, 19, 339–344.

[139]

Yang, X.; Li, R. H.; Li, Y.; Mazarji, M.; Wang, J. W.; Zhang, X.; Song, D.; Wang, Y. J.; Zhang, Z. Q.; Yang, Y. D. et al. Composting pig manure with nano-zero-valent iron amendment: Insights into the carbon cycle and balance. Bioresour. Technol. 2023, 371, 128615.

[140]

Stauber, R. H.; Siemer, S.; Becker, S.; Ding, G. B.; Strieth, S.; Knauer, S. K. Small meets smaller: Effects of nanomaterials on microbial biology, pathology, and ecology. ACS Nano 2018, 12, 6351–6359.

[141]

Sharma, B.; Tiwari, S.; Kumawat, K. C.; Cardinale, M. Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations. Sci. Total Environ. 2023, 860, 160476.

[142]

Kumari, R.; Singh, D. P. Nano-biofertilizer: An emerging eco-friendly approach for sustainable agriculture. Proc. Natl. Acad. Sci., India Sect. B: Biol. Sci. 2020, 90, 733–741.

[143]

Akhtar, N.; Ilyas, N.; Meraj, T. A.; Pour-Aboughadareh, A.; Sayyed, R. Z.; Mashwani, Z. U. R.; Poczai, P. Improvement of plant responses by nanobiofertilizer: A step towards sustainable agriculture. Nanomaterials (Basel) 2022, 12, 965.

[144]

Singh, P.; Kim, Y. J.; Zhang, D. B.; Yang, D. C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016, 34, 588–599.

[145]

Bahrulolum, H.; Nooraei, S.; Javanshir, N.; Tarrahimofrad, H.; Mirbagheri, V. S.; Easton, A. J.; Ahmadian, G. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J. Nanobiotechnol. 2021, 19, 86.

[146]

de França Bettencourt, G. M.; Degenhardt, J.; Torres, L. A. Z.; de Andrade Tanobe, V. O.; Soccol, C. R. Green biosynthesis of single and bimetallic nanoparticles of iron and manganese using bacterial auxin complex to act as plant bio-fertilizer. Biocatal. Agric. Biotechnol. 2020, 30, 101822.

[147]

Pouri, S.; Motamedi, H.; Honary, S.; Kazeminezhad, I. Biological synthesis of selenium nanoparticles and evaluation of their bioavailability. Braz. Arch. Biol. Technol. 2017, 60, e17160452.

[148]

Raliya, R.; Tarafdar, J. C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean ( Cyamopsis tetragonoloba L. ). Agric. Res. 2013, 2, 48–57.

[149]

Raliya, R.; Tarafdar, J. C.; Biswas, P. Enhancing the mobilization of native phosphorus in the Mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J. Agric. Food Chem. 2016, 64, 3111–3118.

[150]
Sabir, S.; Zahoor, M. A.; Waseem, M.; Siddique, M. H.; Shafique, M.; Imran, M.; Hayat, S.; Malik, I. R.; Muzammil, S. Biosynthesis of ZnO nanoparticles using Bacillus subtilis: Characterization and nutritive significance for promoting plant growth in Zea mays L. Dose Response 2020 , 18, 1559325820958911.
[151]

Xu, L.; Zhu, Z. W.; Sun, D. W. Bioinspired nanomodification strategies: Moving from chemical-based agrosystems to sustainable agriculture. ACS Nano 2021, 15, 12655–12686.

[152]

Huang, J. L.; Lin, L. Q.; Sun, D. H.; Chen, H. M.; Yang, D. P.; Li, Q. B. Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev. 2015, 44, 6330–6374.

[153]
Prasad, R.; Kumar, V.; Kumar, M.; Choudhary, D. Nanobiotechnology in Bioformulations; Springer: Cham, 2019.
[154]

Boroumand, N.; Behbahani, M.; Dini, G. Combined effects of phosphate solubilizing bacteria and nanosilica on the growth of Land cress plant. J. Soil Sci. Plant Nutr. 2020, 20, 232–243.

[155]

Kumar, A.; Singh, K.; Verma, P.; Singh, O.; Panwar, A.; Singh, T.; Kumar, Y.; Raliya, R. Effect of nitrogen and zinc nanofertilizer with the organic farming practices on cereal and oil seed crops. Sci. Rep. 2022, 12, 6938.

[156]

de Moraes, A. C. P.; da Silva Ribeiro, L.; de Camargo, E. R.; Lacava, P. T. The potential of nanomaterials associated with plant growth-promoting bacteria in agriculture. 3 Biotech 2021, 11, 318.

[157]

Palmqvist, N. G. M.; Bejai, S.; Meijer, J.; Seisenbaeva, G. A.; Kessler, V. G. Nano Titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci. Rep. 2015, 5, 10146.

[158]

Timmusk, S.; Seisenbaeva, G.; Behers, L. Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci. Rep. 2018, 8, 617.

[159]

Mary Isabella Sonali, J.; Kavitha, R.; Kumar, P. S.; Rajagopal, R.; Gayathri, K. V.; Ghfar, A. A.; Govindaraju, S. Application of a novel nanocomposite containing micro-nutrient solubilizing bacterial strains and CeO2 nanocomposite as bio-fertilizer. Chemosphere 2022, 286, 131800.

[160]

Huang, X. N.; Cervantes-Avilés, P.; Li, W. W.; Keller, A. A. Drilling into the metabolomics to enhance insight on corn and wheat responses to molybdenum trioxide nanoparticles. Environ. Sci. Technol. 2021, 55, 13452–13464.

[161]

Hussain, M.; Shakoor, N.; Adeel, M.; Ahmad, M. A.; Zhou, H. C.; Zhang, Z. Y.; Xu, M.; Rui, Y. K.; White, J. C. Nano-enabled plant microbiome engineering for disease resistance. Nano Today 2023, 48, 101752.

[162]

Shcherbakova, E. N.; Shcherbakov, A. V.; Andronov, E. E.; Gonchar, L. N.; Kalenskaya, S. M.; Chebotar, V. K. Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea ( Cicer arietinum L. ) plants. Symbiosis 2017, 73, 57–69.

[163]

Jiao, L. Y.; Cao, X. S.; Wang, C. X.; Chen, F. R.; Zou, H.; Yue, L.; Wang, Z. Y. Crosstalk between in situ root exudates and rhizobacteria to promote rice growth by selenium nanomaterials. Sci. Total Environ. 2023, 878, 163175.

[164]

Mathes, F.; Murugaraj, P.; Bougoure, J.; Pham, V. T. H.; Truong, V. K.; Seufert, M.; Wissemeier, A. H.; Mainwaring, D. E.; Murphy, D. V. Engineering rhizobacterial community resilience with mannose nanofibril hydrogels towards maintaining grain production under drying climate stress. Soil Biol. Biochem. 2020, 142, 107715.

[165]

Panichikkal, J.; Prathap, G.; Nair, R. A.; Krishnankutty, R. E. Evaluation of plant probiotic performance of Pseudomonas sp. encapsulated in alginate supplemented with salicylic acid and zinc oxide nanoparticles. Int. J. Biol. Macromol. 2021, 166, 138–143.

[166]

Saberi-Rise, R.; Moradi-Pour, M. The effect of Bacillus subtilis Vru1 encapsulated in alginate - bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int. J. Biol. Macromol. 2020, 152, 1089–1097.

[167]

Maine, E.; Thomas, V. J.; Bliemel, M.; Murira, A.; Utterback, J. The emergence of the nanobiotechnology industry. Nat. Nanotechnol. 2014, 9, 2–5.

[168]

Su, Y. M.; Zhou, X. F.; Meng, H.; Xia, T.; Liu, H. Z.; Rolshausen, P.; Roper, C.; McLean, J. E.; Zhang, Y. L.; Keller, A. A. et al. Cost-benefit analysis of nanofertilizers and nanopesticides emphasizes the need to improve the efficiency of nanoformulations for widescale adoption. Nat. Food 2022, 3, 1020–1030.

[169]

Raza, S.; Miao, N.; Wang, P. Z.; Ju, X. T.; Chen, Z. J.; Zhou, J. B.; Kuzyakov, Y. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Glob. Change Biol. 2020, 26, 3738–3751.

[170]
Khazra. Khazra Nano Chelated Complete Micro Fertilizer [Online]. https://sash-co.com/en/khazra/complete-micro-fertilizer/ (accessed Sep 26, 2023).
[171]
Land Green & Technology Co., Ltd. Zinc Oxide [ZnO] - universal additive agent [Online]. https://lgt.tw/nano.html (accessed Sep 26, 2023).
[172]
Aqua-Yield®. Innovative nanoliquids make your crop input program more effective [Online]. https://www.aquayield.com/products (accessed Sep 26, 2023).
[173]
Shan Maw Myae Co., Ltd. Nano fertilizer [Online]. https://shanmawmyae.com/agriculture/ (accessed Sep 26, 2023).
[174]

Dimkpa, C. O. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life. J. Basic Microbiol. 2014, 54, 889–904.

[175]

Prasad, R.; Bhattacharyya, A.; Nguyen, Q. D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol. 2017, 8, 1014.

[176]
Urth Agriculture. Nano-Ag Answer® [Online]. https://www.urthagriculture.com/nano-ag-fertilizer (accessed Sep 26, 2023).
[177]

Chojnacka, K.; Gorazda, K.; Witek-Krowiak, A.; Moustakas, K. Recovery of fertilizer nutrients from materials - Contradictions, mistakes and future trends. Renew. Sustain. Energy Rev. 2019, 110, 485–498.

[178]

Hirt, H.; Al-Babili, S.; Almeida-Trapp, M.; Martin, A.; Aranda, M.; Bartels, D.; Bennett, M.; Blilou, I.; Boer, D.; Boulouis, A. et al. PlantACT! - How to tackle the climate crisis. Trends Plant Sci. 2023, 28, 537–543.

[179]

Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490.

[180]

Pereira, E. I.; da Cruz, C. C. T.; Solomon, A.; Le, A.; Cavigelli, M. A.; Ribeiro, C. Novel slow-release nanocomposite nitrogen fertilizers: The impact of polymers on nanocomposite properties and function. Ind. Eng. Chem. Res. 2015, 54, 3717–3725.

[181]

Lombi, E.; Donner, E.; Dusinska, M.; Wickson, F. A one health approach to managing the applications and implications of nanotechnologies in agriculture. Nat. Nanotechnol. 2019, 14, 523–531.

[182]

Priyam, A.; Singh, P. P.; Afonso, L. O. B.; Schultz, A. G. Exposure to biogenic phosphorus nano-agromaterials promotes early hatching and causes no acute toxicity in zebrafish embryos. Environ. Sci.: Nano 2022, 9, 1364–1380.

[183]

Chen, R.; Ratnikova, T. A.; Stone, M. B.; Lin, S. J.; Lard, M.; Huang, G.; Hudson, J. S.; Ke, P. C. Differential uptake of carbon nanoparticles by plant and Mammalian cells. Small 2010, 6, 612–617.

[184]

Khodakovskaya, M. V.; de Silva, K.; Biris, A. S.; Dervishi, E.; Villagarcia, H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 2012, 6, 2128–2135.

[185]

Lu, K.; Shen, D. L.; Liu, X. K.; Dong, S. P.; Jing, X. P.; Wu, W.; Tong, Y.; Gao, S. X.; Mao, L. Uptake of iron oxide nanoparticles inhibits the photosynthesis of the wheat after foliar exposure. Chemosphere 2020, 259, 127445.

[186]

Sun, D. Q.; Hussain, H. I.; Yi, Z. F.; Rookes, J. E.; Kong, L. X.; Cahill, D. M. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 2016, 152, 81–91.

[187]

Murali, M.; Gowtham, H. G.; Singh, S. B.; Shilpa, N.; Aiyaz, M.; Alomary, M. N.; Alshamrani, M.; Salawi, A.; Almoshari, Y.; Ansari, M. A. et al. Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: Current challenges and future prospects. Sci. Total Environ. 2022, 811, 152249.

[188]

Pradhan, S.; Patra, P.; Mitra, S.; Dey, K. K.; Jain, S.; Sarkar, S.; Roy, S.; Palit, P.; Goswami, A. Manganese nanoparticles: Impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J. Agric. Food Chem. 2014, 62, 8777–8785.

[189]

Maity, D.; Gupta, U.; Saha, S. Biosynthesized metal oxide nanoparticles for sustainable agriculture: Next-generation nanotechnology for crop production, protection and management. Nanoscale 2022, 14, 13950–13989.

[190]

Dimkpa, C. O.; Bindraban, P. S. Nanofertilizers: New products for the industry. J. Agric. Food Chem. 2018, 66, 6462–6473.

[191]

Kalwani, M.; Chakdar, H.; Srivastava, A.; Pabbi, S.; Shukla, P. Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. Chemosphere 2022, 287, 132107.

[192]

Parada, J.; Rubilar, O.; Fernández-Baldo, M. A.; Bertolino, F. A.; Durán, N.; Seabra, A. B.; Tortella, G. R. The nanotechnology among US: Are metal and metal oxides nanoparticles a Nano or mega risk for soil microbial communities. Crit. Rev. Biotechnol. 2019, 39, 157–172.

[193]

Asadishad, B.; Chahal, S.; Akbari, A.; Cianciarelli, V.; Azodi, M.; Ghoshal, S.; Tufenkji, N. Amendment of agricultural soil with metal nanoparticles: Effects on soil enzyme activity and microbial community composition. Environ. Sci. Technol. 2018, 52, 1908–1918.

[194]

Yausheva, E. V.; Sizova, Е. А.; Gavrish, I. A.; Lebedev, S. V.; Kayumov, F. G. Effect of Al2O3 nanoparticles on soil microbiocenosis, antioxidant status and intestinal microflora of red Californian worm ( Eisenia foetida). Agric. Biol. 2017, 52, 191–199.

[195]

Zwingmann, N.; Mackinnon, I. D. R.; Gilkes, R. J. Use of a zeolite synthesised from alkali treated kaolin as a K fertiliser: Glasshouse experiments on leaching and uptake of K by wheat plants in sandy soil. Appl. Clay Sci. 2011, 53, 684–690.

[196]

Hawthorne, J.; De la Torre Roche, R.; Xing, B. S.; Newman, L. A.; Ma, X. M.; Majumdar, S.; Gardea-Torresdey, J.; White, J. C. Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain. Environ. Sci. Technol. 2014, 48, 13102–13109.

[197]

Ebbs, S. D.; Bradfield, S. J.; Kumar, P.; White, J. C.; Ma, X. M. Projected dietary intake of zinc, copper, and cerium from consumption of carrot ( Daucus carota) exposed to metal oxide nanoparticles or metal ions. Front. Plant Sci. 2016, 7, 188.

[198]

Hofmann, T.; Lowry, G. V.; Ghoshal, S.; Tufenkji, N.; Brambilla, D.; Dutcher, J. R.; Gilbertson, L. M.; Giraldo, J. P.; Kinsella, J. M.; Landry, M. P. et al. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 2020, 1, 416–425.

[199]

van de Poel, I.; Robaey, Z. Safe-by-design: From safety to responsibility. Nanoethics 2017, 11, 297–306.

[200]

Wang, W. N.; Tarafdar, J. C.; Biswas, P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J. Nanopart. Res. 2013, 15, 1417.

[201]

Frewer, L. J.; Gupta, N.; George, S.; Fischer, A. R. H.; Giles, E. L.; Coles, D. Consumer attitudes towards nanotechnologies applied to food production. Trends Food Sci. Technol. 2014, 40, 211–225.

[202]
Brands of Humic acid Nano organic fertilizer, Humic acid organic fertilizer buyers [Online]. https://hanhefertilizer.en.made-in-china.com/product/PwqGldmUZbrK/China-Brands-of-Humic-Acid-Nano-Organic-Fertilizer-Humic-Acid-Organic-Fertilizer-Buyers.html (accessed Sep 26, 2023).
[203]
Nano Max NPK fertilizer [Online]. https://www.indiamart.com/proddetail/nano-max-npk-fertilizer-12188041548.html (accessed Sep 26, 2023).
[204]

Ali, F.; Neha, K.; Parveen, S. Current regulatory landscape of nanomaterials and nanomedicines: A global perspective. J. Drug Deliv. Sci. Technol. 2023, 80, 104118.

[205]

Labuda, J.; Barek, J.; Gajdosechova, Z.; Goenaga-Infante, H.; Johnston, L. J.; Mester, Z.; Shtykov, S. Analytical chemistry of engineered nanomaterials: Part 1. Scope, regulation, legislation, and metrology (IUPAC Technical Report). Pure Appl. Chem. 2023, 95, 133–163.

File
12274_2023_6284_MOESM1_ESM.pdf (475.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 July 2023
Revised: 18 October 2023
Accepted: 23 October 2023
Published: 02 December 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgement

This work was supported by the National Key Research and Development Program of China (No. 2022YFA1207300).

Return