Journal Home > Volume 17 , Issue 5

Catalytic transfer hydrogenation (CTH) is a green and efficient pathway for selective hydrogenation of unsaturated aldehydes and ketones. However, managing the abilities of solid catalysts to adsorb substrates and to convert them into desired products is a challenging task. Herein, we report the synthesis of carbon coated LaFe0.92Pd0.08O3 composites (LFPO-8@C) for CTH of benzaldehyde (BzH) into benzyl alcohol (BzOH), using isopropanol (IPA) as hydrogen source. The coating with carbon improves the ability to adsorb/transfer reactants from solution to active sites, and the doping of Pd2+ at Fe3+ site strengthens the ability of LaFeO3 to convert BzH into BzOH. A balanced point between them (i.e., abilities to adsorb BzH and to convert BzH into BzOH) is obtained at LFPO-8@C, which exhibits a BzOH formation rate of 3.88 mmol·gcat−1·h−1 at 180 °C for 3 h, which is 1.50 and 2.72 times faster than those of LFPO-8 and LaFeO3@C. A reaction mechanism is proposed, in which the acidic sites (e.g., Fe4+, oxygen vacancy) are used for the activation of C=O bond of BzH and O–H bond of IPA, and the basic sites (e.g., lattice oxygen) for the activation of α–H (O–H) bond of IPA.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Carbon coated LaFe0.92Pd0.08O3 composites for catalytic transfer hydrogenation: Balance in the ability of substrates adsorption and conversion

Show Author's information Bowen Wang1,§Nan Zhang1,§Ping Xiao1( )Jian Zhang2Sónia A.C. Carabineiro3Junjiang Zhu1( )
Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Largo da Torre, 2829-516 Caparica, Portugal

§ Bowen Wang and Nan Zhang contributed equally to this work.

Abstract

Catalytic transfer hydrogenation (CTH) is a green and efficient pathway for selective hydrogenation of unsaturated aldehydes and ketones. However, managing the abilities of solid catalysts to adsorb substrates and to convert them into desired products is a challenging task. Herein, we report the synthesis of carbon coated LaFe0.92Pd0.08O3 composites (LFPO-8@C) for CTH of benzaldehyde (BzH) into benzyl alcohol (BzOH), using isopropanol (IPA) as hydrogen source. The coating with carbon improves the ability to adsorb/transfer reactants from solution to active sites, and the doping of Pd2+ at Fe3+ site strengthens the ability of LaFeO3 to convert BzH into BzOH. A balanced point between them (i.e., abilities to adsorb BzH and to convert BzH into BzOH) is obtained at LFPO-8@C, which exhibits a BzOH formation rate of 3.88 mmol·gcat−1·h−1 at 180 °C for 3 h, which is 1.50 and 2.72 times faster than those of LFPO-8 and LaFeO3@C. A reaction mechanism is proposed, in which the acidic sites (e.g., Fe4+, oxygen vacancy) are used for the activation of C=O bond of BzH and O–H bond of IPA, and the basic sites (e.g., lattice oxygen) for the activation of α–H (O–H) bond of IPA.

Keywords: porous carbon, reaction mechanism, isopropanol, LaFe0.92Pd0.08O3, catalytic transfer hydrogenation

References(52)

[1]

Blaser, H. U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Selective hydrogenation for fine chemicals: Recent trends and new developments. Adv. Synth. Catal. 2003, 345, 103–151.

[2]

Gallezot, P.; Richard, D. Selective hydrogenation of α, β-unsaturated aldehydes. Catal. Rev. 1998, 40, 81–126.

[3]

Gilkey, M. J.; Xu, B. J. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal. 2016, 6, 1420–1436.

[4]

Wu, K. L.; Ling, M.; Zeng, P. Y.; Zhang, L.; Wu, T.; Guan, P. L.; Cheong, W. C.; Chen, Z.; Fang, Z.; Wei, X. W. Self-assembled multifunctional Fe3O4 hierarchical microspheres: High-efficiency lithium-ion battery materials and hydrogenation catalysts. Sci. China Mater. 2021, 64, 1058–1070.

[5]

Guo, J. H.; Feng, X. Q.; Wang, S. R.; Wu, Q. K.; Lv, S. S.; Zhou, Y.; Li, H.; Chen, Z.; Zhang, Y. Z. Facile synthesis of hexagonal α-Co(OH)2 nanosheets and their superior activity in the selective reduction of nitro compounds. Dalton Trans. 2021, 50, 18061–18068.

[6]

Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B 2018, 227, 386–408.

[7]

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

[8]

Valentini, F.; Kozell, V.; Petrucci, C.; Marrocchi, A.; Gu, Y. L.; Gelman, D.; Vaccaro, L. Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy Environ. Sci. 2019, 12, 2646–2664.

[9]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

[10]

Li, R. Z.; Zhang, Z. D.; Liang, X.; Shen, J.; Wang, J.; Sun, W. M.; Wang, D. S.; Jiang, J. C.; Li, Y. D. Polystyrene waste thermochemical hydrogenation to ethylbenzene by a N-bridged Co, Ni dual-atom catalyst. J. Am. Chem. Soc. 2023, 145, 16218–16227.

[11]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[12]
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, https://doi.org/10.1007/s12274-023-5700-4.
[13]

Wu, T.; Li, S.; Liu, S. J.; Cheong, W. C.; Peng, C.; Yao, K.; Li, Y. P.; Wang, J. Y.; Jiang, B. B.; Chen, Z. et al. Biomass-assisted approach for large-scale construction of multi-functional isolated single-atom site catalysts. Nano Res. 2022, 15, 3980–3990.

[14]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[15]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[16]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[17]

An, Z. D.; Li, J. Recent advances in the catalytic transfer hydrogenation of furfural to furfuryl alcohol over heterogeneous catalysts. Green Chem. 2022, 24, 1780–1808.

[18]

Nie, R. F.; Tao, Y. W.; Nie, Y. Q.; Lu, T. L.; Wang, J. S.; Zhang, Y. S.; Lu, X. Y.; Xu, C. C. Recent advances in catalytic transfer hydrogenation with formic acid over heterogeneous transition metal catalysts. ACS Catal. 2021, 11, 1071–1095.

[19]

Xiao, P.; Zhu, J. J.; Zhao, D.; Zhao, Z.; Zaera, F.; Zhu, Y. J. Porous LaFeO3 prepared by an in situ carbon templating method for catalytic transfer hydrogenation reactions. ACS Appl. Mater. Interfaces 2019, 11, 15517–15527.

[20]

Zheng, Y. N.; Zhang, R.; Zhang, L.; Gu, Q. F.; Qiao, Z. A. A Resol-assisted cationic coordinative Co-assembly approach to mesoporous ABO3 perovskite oxides with rich oxygen vacancy for enhanced hydrogenation of furfural to furfuryl alcohol. Angew. Chem., Int. Ed. 2021, 60, 4774–4781.

[21]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[22]

Zhuang, Z. H.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[23]

Chen, H. J.; Lim, C.; Zhou, M. Z.; He, Z. Y.; Sun, X.; Li, X. B.; Ye, Y. J.; Tan, T.; Zhang, H.; Yang, C. H. et al. Activating lattice oxygen in perovskite oxide by B-site cation doping for modulated stability and activity at elevated temperatures. Adv. Sci. 2021, 8, 2102713.

[24]

Zhu, J. J.; Li, H. L.; Zhong, L. Y.; Xiao, P.; Xu, X. L.; Yang, X. G.; Zhao, Z.; Li, J. L. Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal. 2014, 4, 2917–2940.

[25]

Tompkins, F. C. Superficial chemistry and solid imperfections. Nature 1960, 186, 3–6.

[26]

Campbell, C. T.; Peden, C. H. F. Oxygen vacancies and catalysis on ceria surfaces. Science 2005, 309, 713–714.

[27]

Mohammadi, A.; Farzi, A.; Thurner, C.; Klötzer, B.; Schwarz, S.; Bernardi, J.; Niaei, A.; Penner, S. Tailoring the metal-perovskite interface for promotional steering of the catalytic NO reduction by CO in the presence of H2O on Pd-lanthanum iron manganite composites. Appl. Catal., B 2022, 307, 121160.

[28]

Zeng, L. R.; Cui, L.; Wang, C. Y.; Guo, W.; Gong, C. R. In-situ modified the surface of Pt-doped perovskite catalyst for soot oxidation. J. Hazard. Mater. 2020, 383, 121210.

[29]

Mahyon, N. I.; Li, T.; Tantra, B. D.; Martinez-Botas, R.; Wu, Z. T.; Li, K. Integrating Pd-doped perovskite catalysts with ceramic hollow fibre substrate for efficient CO oxidation. J. Environ. Chem. Eng. 2020, 8, 103897.

[30]

Wang, S.; Zhu, J. J.; Carabineiro, S. A. C.; Xiao, P.; Zhu, Y. J. Selective etching of in-situ formed La2O3 particles to prepare porous LaCoO3 perovskite for catalytic combustion of ethyl acetate. Appl. Catal. A 2022, 635, 118554.

[31]

Wang, S.; Zhu, J. J.; Yang, J.; Li, M. Y.; Zhu, Y. J. Influence of LaCoO3 perovskite oxides prepared by different method on the catalytic combustion of ethyl acetate in the presence of NO. Appl. Surf. Sci. 2023, 623, 157045.

[32]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[33]

Wang, X. L.; Lyu, Q.; Tong, T. Z.; Sun, K.; Lin, L. C.; Tang, C. Y.; Yang, F. L.; Guiver, M. D.; Quan, X.; Dong, Y. C. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 2022, 13, 266.

[34]

Wen, Y. K.; Zhuang, Z. C.; Zhu, H.; Hao, J. C.; Chu, K. B.; Lai, F. L.; Zong, W.; Wang, C.; Ma, P. M.; Dong, W. F. et al. Isolation of metalloid boron atoms in intermetallic carbide boosts the catalytic selectivity for electrocatalytic N2 fixation. Adv. Energy Mater. 2021, 11, 2102138.

[35]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[36]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[37]

Xiao, P.; Xu, X. L.; Wang, S.; Zhu, J. J.; Zhu, Y. J. One-pot synthesis of LaFeO3@C composites for catalytic transfer hydrogenation reactions: Effects of carbon precursors. Appl. Catal. A 2020, 603, 117742.

[38]

Xiao, P.; Xu, X. L.; Zhu, J. J.; Zhu, Y. J. In situ generation of perovskite oxides and carbon composites: A facile, effective and generalized route to prepare catalysts with improved performance. J. Catal. 2020, 383, 88–96

[39]

Pugh, S.; McKenna, R.; Halloum, I.; Nielsen, D. R. Engineering Escherichia coli for renewable benzyl alcohol production. Metab. Eng. Commun. 2015, 2, 39–45.

[40]

Wu, J. C.; Liang, D.; Song, X. B.; Liu, T. S.; Xu, T. Y.; Wang, S. Y.; Zou, Y. Q. Sulfonic groups functionalized Zr-metal organic framework for highly catalytic transfer hydrogenation of furfural to furfuryl alcohol. J. Energy Chem. 2022, 71, 411–417.

[41]

Liu, Y.; Chen, F. Y.; Zhang, J. H.; He, L.; Peng, L. C. Organic acid-assisted design of zirconium-lignocellulose hybrid for highly efficient upgrading levulinic acid to γ-valerolactone. Fuel 2022, 315, 123150.

[42]

Onrubia-Calvo, J. A.; Pereda-Ayo, B.; Bermejo-López, A.; Caravaca, A.; Vernoux, P.; González-Velasco, J. R. Pd-doped or Pd impregnated 30% La0.7Sr0.3CoO3/Al2O3 catalysts for NO x storage and reduction. Appl. Catal. B 2019, 259, 118052.

[43]

Kim, K. J.; Lim, C.; Bae, K. T.; Lee, J. J.; Oh, M. Y.; Kim, H. J.; Kim, H.; Kim, G.; Shin, T. H.; Han, J. W. et al. Concurrent promotion of phase transition and bimetallic nanocatalyst exsolution in perovskite oxides driven by Pd doping to achieve highly active bifunctional fuel electrodes for reversible solid oxide electrochemical cells. Appl. Catal. B 2022, 314, 121517.

[44]

Passe-Coutrin, N.; Altenor, S.; Cossement, D.; Jean-Marius, C.; Gaspard, S. Comparison of parameters calculated from the BET and Freundlich isotherms obtained by nitrogen adsorption on activated carbons: A new method for calculating the specific surface area. Microporous Mesoporous Mater. 2008, 111, 517–522.

[45]

Li, W. C.; Lu, A. H.; Guo, S. C. Control of mesoporous structure of aerogels derived from cresol-formaldehyde. J. Colloid Interface Sci. 2002, 254, 153–157.

[46]

Ma, X. M.; Li, L. P.; Yang, L.; Su, C. Y.; Wang, K.; Yuan, S. B.; Zhou, J. G. Adsorption of heavy metal ions using hierarchical CaCO3-maltose meso/macroporous hybrid materials: Adsorption isotherms and kinetic studies. J. Hazard. Mater. 2012, 209–210, 467–477

[47]

Manorama, S. V.; Reddy, C. V. G.; Rao, V. J. X-ray photoelectron spectroscopic studies of noble metal-incorporated BaSnO3 based gas sensors. Appl. Surf. Sci. 2001, 174, 93–105.

[48]

Zhang, R. D.; Villanueva, A.; Alamdari, H.; Kaliaguine, S. Cu- and Pd-substituted nanoscale Fe-based perovskites for selective catalytic reduction of NO by propene. J. Catal. 2006, 237, 368–380.

[49]

Zhou, K. B.; Chen, H. D.; Tian, Q.; Hao, Z. P.; Shen, D. X.; Xu, X. B. Pd-containing perovskite-type oxides used for three-way catalysts. J. Mol. Catal. A 2002, 189, 225–232.

[50]

Ziaei-Azad, H.; Khodadadi, A.; Esmaeilnejad-Ahranjani, P.; Mortazavi, Y. Effects of Pd on enhancement of oxidation activity of LaBO3 (B = Mn, Fe, Co and Ni) pervoskite catalysts for pollution abatement from natural gas fueled vehicles. Appl. Catal. B 2011, 102, 62–70.

[51]

Polo-Garzon, F.; Wu, Z. L. Acid-base catalysis over perovskites: A review. J. Mater. Chem. A 2018, 6, 2877–2894.

[52]

Foo, G. S.; Polo-Garzon, F.; Fung, V.; Jiang, D. E.; Overbury, S. H.; Wu, Z. L. Acid-base reactivity of perovskite catalysts probed via conversion of 2-propanol over titanates and zirconates. ACS Catal. 2017, 7, 4423–4434.

File
12274_2023_6282_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 September 2023
Revised: 21 October 2023
Accepted: 22 October 2023
Published: 21 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

Financial support provided by the National Natural Science Foundation of China (Nos. 42277485, 21976141, and 22102123), the Department of Science and Technology of Hubei Province (No. 2021CFA034), the Department of Education of Hubei Province (Nos. T2020011 and Q20211712), and the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing (Nos. STRZ202202 and STRZ202101) is gratefully acknowledged. S. A.C. C. acknowledges Fundação para a Ciência e a Tecnologia (FCT), Portuqal for Scientific Employment Stimulus-Institutional Call (CEEC-INST/00102/2018), and Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/5006/2020).

Return