Journal Home > Volume 17 , Issue 2

Pancreatic cancer stands out as a recognized intractable tumor due to its high malignancy and mortality rates, which are largely attributed to the insensitivity of current clinical chemotherapies or multidrug-resistance. Combinatorial chemo and gene therapy that integrates different therapeutic targets, may increase the chemosensitivity of pancreatic cancer and synergistically enhance the antitumor efficacy. However, conventional co-delivery of gene and chemo drugs is intensively dependent on complex nanoparticle delivery systems, thus would be limited by unstable drug packaging, nonspecific biodistribution, and biosafety problem. Herein, we rationally designed an epidermal growth factor-receptor (EGFR)-targeted and gemcitabine-incorporated oligonucleotide (termed as chemogene) with anti-Bcl-2 sequence, which achieves simple and precise integration of gemcitabine into a gene regulative agent, as well as the EGFR-targeted delivery for pancreatic cancer therapy. Through solid-phase synthesis, gemcitabine, as the first-line chemodrug for pancreatic cancer, is introduced to the antisense oligonucleotide to replace all cytosine nucleosides to obtain the gemcitabine-integrated chemogene (Ge-ASOBcl-2). Thereafter, Ge-ASOBcl-2 is covalently coupled with EGFR nanobody to construct the final targeted chemogene without any exogenous carriers. Notably, this nanobody-conjugated chemogene exhibits remarkable tumor targeting capability and antitumor effects both in vitro and in vivo, which initiates a first step toward the application of combinatorial chemo and gene therapy for future pancreatic cancer treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

EGFR-targeted and gemcitabine-incorporated chemogene for combinatorial pancreatic cancer treatment

Show Author's information Miao Xie1,§Qiushuang Zhang1,§Yuanyuan Guo2Lijuan Zhu3Xinyuan Zhu1Chuan Zhang1( )
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Molecular Medicine, Sixth people’s Hospital, School of Medicine, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, China
Institute of Molecular Medicine, Shanghai Jiao Tong University Affiliated Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China

§ Miao Xie and Qiushuang Zhang contributed equally to this work.

Abstract

Pancreatic cancer stands out as a recognized intractable tumor due to its high malignancy and mortality rates, which are largely attributed to the insensitivity of current clinical chemotherapies or multidrug-resistance. Combinatorial chemo and gene therapy that integrates different therapeutic targets, may increase the chemosensitivity of pancreatic cancer and synergistically enhance the antitumor efficacy. However, conventional co-delivery of gene and chemo drugs is intensively dependent on complex nanoparticle delivery systems, thus would be limited by unstable drug packaging, nonspecific biodistribution, and biosafety problem. Herein, we rationally designed an epidermal growth factor-receptor (EGFR)-targeted and gemcitabine-incorporated oligonucleotide (termed as chemogene) with anti-Bcl-2 sequence, which achieves simple and precise integration of gemcitabine into a gene regulative agent, as well as the EGFR-targeted delivery for pancreatic cancer therapy. Through solid-phase synthesis, gemcitabine, as the first-line chemodrug for pancreatic cancer, is introduced to the antisense oligonucleotide to replace all cytosine nucleosides to obtain the gemcitabine-integrated chemogene (Ge-ASOBcl-2). Thereafter, Ge-ASOBcl-2 is covalently coupled with EGFR nanobody to construct the final targeted chemogene without any exogenous carriers. Notably, this nanobody-conjugated chemogene exhibits remarkable tumor targeting capability and antitumor effects both in vitro and in vivo, which initiates a first step toward the application of combinatorial chemo and gene therapy for future pancreatic cancer treatment.

Keywords: pancreatic cancer, drug delivery system, nanobody, antisense oligonucleotide, chemogene

References(49)

[1]

Kamisawa, T.; Wood, L. D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet 2016, 388, 73–85.

[2]

Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C. D.; Biankin, A. V.; Neale, R. E.; Tempero, M.; Tuveson, D. A.; Hruban, R. H. et al. Pancreatic cancer. Nat. Rev. Dis. Primers 2016, 2, 16022.

[3]

Gupta, R.; Amanam, I.; Chung, V. Current and future therapies for advanced pancreatic cancer. J. Surg. Oncol. 2017, 116, 25–34.

[4]

Heinrich, S.; Lang, H. Neoadjuvant therapy of pancreatic cancer: Definitions and benefits. Int. J. Mol. Sci. 2017, 18, 1622.

[5]

Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C. D.; Biankin, A. V.; Neale, R. E.; Tempero, M.; Tuveson, D. A.; Hruban, R. H. et al. Pancreatic cancer. Nat. Rev. Dis. Primers 2016, 2, 16022.

[6]

Okamoto, K.; Ocker, M.; Neureiter, D.; Dietze, O.; Zopf, S.; Hahn, E. G.; Herold, C. bcl-2-specific siRNAs restore gemcitabine sensitivity in human pancreatic cancer cells. J. Cell. Mol. Med. 2007, 11, 349–361.

[7]

Yang, C. B.; Chan, K. K.; Lin, W. J.; Soehartono, A. M.; Lin, G. M.; Toh, H.; Yoon, H. S.; Chen, C. K.; Yong, K. T. Biodegradable nanocarriers for small interfering ribonucleic acid (siRNA) co-delivery strategy increase the chemosensitivity of pancreatic cancer cells to gemcitabine. Nano Res. 2017, 10, 3049–3067.

[8]

Yang, S.; Mao, Y. J.; Zhang, H. J.; Xu, Y.; An, J.; Huang, Z. W. The chemical biology of apoptosis: Revisited after 17 years. Eur. J. Med. Chem. 2019, 177, 63–75.

[9]

Xu, M.; Chen, X. M.; Han, Y. L.; Ma, C. Q.; Ma, L.; Li, S. R. Clusterin silencing sensitizes pancreatic cancer MIA-PaCa-2 cells to gmcitabine via regulation of NF-kB/Bcl-2 signaling. Int. J. Clin. Exp. Med. 2015, 8, 12476–12486.

[10]

Meng, H.; Liong, M.; Xia, T.; Li, Z. X.; Ji, Z. X.; Zink, J. I.; Nel, A. E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-Glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 2010, 4, 4539–4550.

[11]

Bold, R. J.; Chandra, J.; McConkey, D. J. Gemcitabine-induced programmed cell death (apoptosis) of human pancreatic carcinoma is determined by Bcl-2 content. Ann. Surg. Oncol. 1999, 6, 279–285.

[12]

Zhao, X.; Wang, X. C.; Sun, W.; Cheng, K. M.; Qin, H.; Han, X. X.; Lin, Y.; Wang, Y. W.; Lang, J. Y.; Zha, R. F. et al. Precision design of nanomedicines to restore gemcitabine chemosensitivity for personalized pancreatic ductal adenocarcinoma treatment. Biomaterials 2018, 158, 44–55.

[13]

Xin, X. F.; Lin, F.; Wang, Q. Y.; Yin, L. F.; Mahato, R. I. ROS-responsive polymeric micelles for triggered simultaneous delivery of PLK1 inhibitor/miR-34a and effective synergistic therapy in pancreatic cancer. ACS Appl. Mater. Interfaces 2019, 11, 14647–14659.

[14]

Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 2019, 70, 307–321.

[15]

Schizas, D.; Charalampakis, N.; Kole, C.; Economopoulou, P.; Koustas, E.; Gkotsis, E.; Ziogas, D.; Psyrri, A.; Karamouzi, M. V. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat. Rev. 2020, 86, 102016.

[16]

Xue, T. Y.; Zhang, Z. R., Fang, T. L.; Li, B. Q.; Li, Y.; Li, L. Y.; Jiang, Y. H.; Duan, F. F.; Meng, F. Q.; Liang, X. et al. Cellular vesicles expressing PD-1-blocking scFv reinvigorate T cell immunity against cancer. Nano Res. 2022, 15, 5295–5304.

[17]

Li, B. Q.; Fang, T. L.; Li, Y.; Xue, T. Y.; Zhang, Z. R.; Li, L. Y.; Meng, F. Q.; Wang, J. Q.; Hou, L. L.; Liang, X. et al. Engineered T cell extracellular vesicles displaying PD-1 boost anti-tumor immunity. Nano Today 2022, 46, 101606.

[18]

Meng, F. Q.; Li, L. Y.; Zhang, Z. R.; Lin, Z. D.; Zhang, J. X.; Song, X.; Xue, T. Y.; Xing, C. Y.; Liang, X.; Zhang, X. D. Biosynthetic neoantigen displayed on bacteria derived vesicles elicit systemic antitumour immunity. J. Extracell. Vesicles 2022, 11, 12289.

[19]

Fang, W. L.; Li, L. Y.; Lin, Z. D.; Zhang, Y. L.; Jing, Z. Y.; Li, Y.; Zhang, Z. R.; Hou, L. L.; Liang, X.; Zhang, X. D. et al. Engineered IL-15/IL-15Rα-expressing cellular vesicles promote T cell anti-tumor immunity. Extracell. Vesicle 2023, 2, 100021.

[20]

Li, L. Y.; Miao, Q. W.; Meng, F. Q.; Li, B. Q.; Xue, T. Y.; Fang, T. L.; Zhang, Z. R.; Zhang, J. X.; Ye, X. Y.; Kang, Y. et al. Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy. Theranostics 2021, 11, 6033–6043.

[21]

Rahib, L.; Smith, B. D.; Aizenberg, R.; Rosenzweig, A. B.; Fleshman, J. M.; Matrisian, L. M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921.

[22]

Yamakawa, K.; Nakano-Narusawa, Y.; Hashimoto, N.; Yokohira, M.; Matsuda, Y. Development and clinical trials of nucleic acid medicines for pancreatic cancer treatment. Int. J. Mol. Sci. 2019, 20, 4224.

[23]

Liu, Y.; Wu, W.; Wang, Y. Y.; Han, S. S.; Yuan, Y. Y.; Huang, J. S.; Shuai, X. T.; Peng, Z. Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater. Sci. 2021, 9, 6673–6690.

[24]

Yamanaka, K.; Rocchi, P.; Miyake, H.; Fazli, L.; So, A.; Zangemeister-Wittke, U.; Gleave, M. E. Induction of apoptosis and enhancement of chemosensitivity in human prostate cancer LNCaP cells using bispecific antisense oligonucleotide targeting Bcl-2 and Bcl-xL genes. BJU Int. 2006, 97, 1300–1308.

[25]

Ye, Z.; Wu, W. R.; Qin, Y. F.; Hu, J.; Liu, C.; Seeberger, P. H.; Yin, J. An integrated therapeutic delivery system for enhanced treatment of hepatocellular carcinoma. Adv. Funct. Mater. 2018, 28, 1706600.

[26]

Garbuzenko, O. B.; Saad, M.; Pozharov, V. P.; Reuhl, K. R.; Mainelis, G.; Minko, T. Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance. Proc. Natl. Acad. Sci. USA 2010, 107, 10737–10742.

[27]

Liu, B.; Hu, F.; Zhang, J. F.; Wang, C. L.; Li, L. L. A biomimetic coordination nanoplatform for controlled encapsulation and delivery of drug-gene combinations. Angew. Chem., Int. Ed. 2019, 58, 8804–8808.

[28]

Yin, F.; Yang, C. B.; Wang, Q. Q.; Zeng, S. W.; Hu, R.; Lin, G. M.; Tian, J. L.; Hu, S. Y.; Lan, R. F.; Yoon, H. S. et al. A light-driven therapy of pancreatic adenocarcinoma using gold nanorods-based nanocarriers for Co-delivery of doxorubicin and siRNA. Theranostics 2015, 5, 818–833.

[29]

Pan, G. F.; Ma, Y.; Zhang, J.; Guo, Y. Y.; Ding, F.; Ge, H.; Li, Q. F.; Zhu, X. Y.; Zhang, C. Engineering a floxuridine-integrated RNA prism as precise nanomedicine for drug delivery. Chem. Res. Chin. Univ. 2020, 36, 274–280.

[30]

Mou, Q. B.; Ma, Y.; Ding, F.; Gao, X. H.; Yan, D. Y.; Zhu, X. Y.; Zhang, C. Two-in-one chemogene assembled from drug-integrated antisense oligonucleotides to reverse chemoresistance. J. Am. Chem. Soc. 2019, 141, 6955–6966.

[31]

Zhu, L. J.; Guo, Y. Y.; Qian, Q. H.; Yan, D. Y.; Li, Y. H.; Zhu, X. Y.; Zhang, C. Carrier-free delivery of precise drug-chemogene conjugates for synergistic treatment of drug-resistant cancer. Angew. Chem., Int. Ed. 2020, 59, 17944–17950.

[32]

Zhu, L. J.; Yang, J. P.; Ma, Y.; Zhu, X. Y.; Zhang, C. Aptamers entirely built from therapeutic nucleoside analogues for targeted cancer therapy. J. Am. Chem. Soc. 2022, 144, 1493–1497.

[33]

Liu, Y. H.; Zhang, J.; Guo, Y. Y.; Wang, P.; Su, Y.; Jin, X.; Zhu, X. Y.; Zhang, C. Drug-grafted DNA as a novel chemogene for targeted combinatorial cancer therapy. Exploration 2022, 2, 20210172.

[34]

Sanjanwala, D.; Patravale, V. Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer. Drug Discovery Today 2023, 28, 103550.

[35]

Zeltz, C.; Primac, I.; Erusappan, P.; Alam, J.; Noel, A.; Gullberg, D. Cancer-associated fibroblasts in desmoplastic tumors: Emerging role of integrins. Semin. Cancer Biol. 2020, 62, 166–181.

[36]

Yu, X. Y.; Xu, Q. L.; Wu, Y.; Jiang, H. J.; Wei, W.; Zulipikaer, A.; Guo, Y.; Jirimutu; Chen, J. Nanobodies derived from Camelids represent versatile biomolecules for biomedical applications. Biomater. Sci. 2020, 8, 3559–3573.

[37]

Zhang, Q. S.; Ding, F.; Liu, X. L.; Shen, J.; Su, Y.; Qian, J. W.; Zhu, X. Y.; Zhang, C. Nanobody-guided targeted delivery of microRNA via nucleic acid nanogel to inhibit the tumor growth. J. Control. Release 2020, 10, 425–434.

[38]

Salvador, J. P.; Vilaplana, L.; Marco, M. P. Nanobody: Outstanding features for diagnostic and therapeutic applications. Anal. Bioanal. Chem. 2019, 411, 1703–1713.

[39]

Verma, H. K.; Kampalli, P. K.; Lakkakula, S.; Chalikonda, G.; Bhaskar, L. V. K. S.; Pattnaik, S. A retrospective look at anti-EGFR agents in pancreatic cancer therapy. Curr. Drug Metab. 2019, 20, 958–966.

[40]

Troiani, T.; Martinelli, E.; Capasso, A.; Morgillo, F.; Orditura, M.; De Vita, F.; Ciardiello, F. Targeting EGFR in pancreatic cancer treatment. Curr. Drug Targets 2012, 13, 802–810.

[41]

Chong, C. R.; Jänne, P. A. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat. Med. 2013, 19, 1389–400.

[42]

Yao, H. J.; Song, W. P.; Cao, R.; Ye, C.; Zhang, L.; Chen, H. B.; Wang, J. T.; Shi, Y. C.; Li, R.; Li, Y. et al. An EGFR/HER2-targeted conjugate sensitizes gemcitabine-sensitive and resistant pancreatic cancer through different SMAD4-mediated mechanisms. Nat. Commun. 2022, 13, 5506.

[43]

Moore, M. J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J. R.; Gallinger, S.; Au, H. J.; Murawa, P.; Walde, D.; Wolff, R. A. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 2007, 25, 1960–1966.

[44]

Holliger, P.; Hudson, P. J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 2005, 23, 1126–1136.

[45]

Khodabakhsh, F.; Behdani, M.; Rami, A.; Kazemi-Lomedasht, F. Single-domain antibodies or nanobodies: A class of next-generation antibodies. Int. Rev. Immunol. 2018, 37, 316–322.

[46]

Ansari, D.; Tingstedt, B.; Andersson, B.; Holmquist, F.; Sturesson, C.; Williamsson, C.; Sasor, A.; Borg, D.; Bauden, M.; Andersson, R. Pancreatic cancer: Yesterday, today and tomorrow. Future Oncol. 2016, 12, 1929–1946.

[47]

Ma, Y.; Mou, Q. B.; Zhu, L. J.; Su, Y.; Jin, X.; Feng, J.; Yan, D. Y.; Zhu, X. Y.; Zhang, C. Polygemcitabine nanogels with accelerated drug activation for cancer therapy. Chem. Commun. 2019, 55, 6603–6606.

[48]

Mini, E.; Nobili, S.; Caciagli, B.; Landini, I.; Mazzei, T. Cellular Pharmacology of gemcitabine. Ann. Oncol. 2006, 17, v7–v12.

[49]

Massa, S.; Xavier, C.; De Vos, J.; Caveliers, V.; Lahoutte, T.; Muyldermans, S.; Devoogdt, N. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug. Chem. 2014, 25, 979–988.

File
12274_2023_6245_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 August 2023
Revised: 04 October 2023
Accepted: 06 October 2023
Published: 17 November 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2018YFA0902601), the National Natural Science Foundation of China (Nos. 52225302, 52103265, and 22175116), the Shanghai Sailing Program (No. 21YF1434300), the Natural Science Foundation of Shanghai (No. 23ZR1448000), and the Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University (No. 21TQ1400219).

Return