Journal Home > Volume 17 , Issue 4

Reconfigurable devices can be used to achieve multiple logic operation and intelligent optical sensing with low power consumption, which is promising candidates for new generation electronic and optoelectronic integrated circuits. However, the versatility is still limited and need to be extended by the device architectures design. Here, we report an asymmetrically gate two-dimensional (2D) van der Waals heterostructure with hybrid dielectric layer SiO2/hexagonal boron nitride (h-BN), which enable rich function including reconfigurable logic operation and in-sensor information encryption enabled by both volatile and non-volatile optoelectrical modulation. When the partial gate is grounded, the non-volatile light assisted electrostatic doping endowed partially reconfigurable doping between n-type and p-type, which allow the switching of logic XOR and not implication (NIMP). When the global gate is grounded, additionally taking the optical signal as another input signal, logic AND and OR is realized by combined regulation of the light and localized gate voltage. Depending on the high on/off current ratio approaching 105 and reliable & switchable logic gate, in-sensor information encryption and decryption is demonstrated by manipulating the logic output. Hence, these results provide strong extension for current reconfigurable electronic and optoelectronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reconfigurable logic and in-sensor encryption operations in an asymmetrically tunable van der Waals heterostructure

Show Author's information Fan Gong1,2,§Wenjie Deng1,2,§( )Yi Wu1,2Fengming Liu1,2Yihao Guo1,2Zelin Che1,2Jingjie Li1,2Jingzhen Li1,2Yang Chai3Yongzhe Zhang1,2( )
Key Laboratory of Optoelectronics Technology of Education Ministry of China, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Department of Applied Physics, Hong Kong Polytechnic University, Kowloon, Hong Kong, China

§ Fan Gong and Wenjie Deng contributed equally to this work.

Abstract

Reconfigurable devices can be used to achieve multiple logic operation and intelligent optical sensing with low power consumption, which is promising candidates for new generation electronic and optoelectronic integrated circuits. However, the versatility is still limited and need to be extended by the device architectures design. Here, we report an asymmetrically gate two-dimensional (2D) van der Waals heterostructure with hybrid dielectric layer SiO2/hexagonal boron nitride (h-BN), which enable rich function including reconfigurable logic operation and in-sensor information encryption enabled by both volatile and non-volatile optoelectrical modulation. When the partial gate is grounded, the non-volatile light assisted electrostatic doping endowed partially reconfigurable doping between n-type and p-type, which allow the switching of logic XOR and not implication (NIMP). When the global gate is grounded, additionally taking the optical signal as another input signal, logic AND and OR is realized by combined regulation of the light and localized gate voltage. Depending on the high on/off current ratio approaching 105 and reliable & switchable logic gate, in-sensor information encryption and decryption is demonstrated by manipulating the logic output. Hence, these results provide strong extension for current reconfigurable electronic and optoelectronic devices.

Keywords: van der Waals heterostructure, in-sensor encryption, reconfigurable logic, asymmetrical tunable architecture

References(59)

[1]

Young, K. K. Short-channel effect in fully depleted soi mosfets. IEEE Trans. Electron Dev. 1989, 36, 399–402.

[2]

Bricout, P. H.; Dubois, E. Short-channel effect immunity and current capability of sub-0.1-micron MOSFET's using a recessed channel. IEEE Trans. Electron Dev. 1996, 43, 1251–1255.

[3]

Yu, B.; Wann, C. H. J.; Nowak, E. D.; Noda, K.; Hu, C. M. Short-channel effect improved by lateral channel-engineering in deep-submicronmeter MOSFET's. IEEE Trans. Electron Dev. 1997, 44, 627–634.

[4]

Moore, G. E. Cramming more components onto integrated circuits. Proc. IEEE 1998, 86, 82–85.

[5]

Kim, N. S.; Austin, T.; Baauw, D.; Mudge, T.; Flautner, K.; Hu, J. S.; Irwin, M. J.; Kandemir, M.; Narayanan, V. Leakage current: Moore's law meets static power. Computer 2003, 36, 68–75.

[6]

Pan, C.; Wang, C. Y.; Liang, S. J.; Wang, Y.; Cao, T. J.; Wang, P. F.; Wang, C.; Wang, S.; Cheng, B.; Gao, A. Y. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 2020, 3, 383–390.

[7]

Sun, X. X.; Zhu, C. G.; Yi, J. L.; Xiang, L.; Ma, C.; Liu, H. W.; Zheng, B. Y.; Liu, Y.; You, W. X.; Zhang, W. J. et al. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron. 2022, 5, 752–760.

[8]

Hayakawa, R.; Honma, K.; Nakaharai, S.; Kanai, K.; Wakayama, Y. Electrically reconfigurable organic logic gates: A promising perspective on a dual-gate antiambipolar transistor. Adv. Mater. 2022, 34, 2109491.

[9]

Kim, W.; Kim, H.; Yoo, T. J.; Lee, J. Y.; Jo, J. Y.; Lee, B. H.; Sasikala, A. A.; Jung, G. Y.; Pak, Y. Perovskite multifunctional logic gates via bipolar photoresponse of single photodetector. Nat. Commun. 2022, 13, 720.

[10]

Han, J. K.; Lee, M. W.; Yu, J. M.; Choi, Y. K. A single transistor-based threshold switch for a bio-inspired reconfigurable threshold logic. Adv. Electron. Mater. 2021, 7, 2100117.

[11]

Yu, W.; Wang, Z. S.; Zhao, X. X.; Wang, J. Y.; Herng, T. S.; Ma, T.; Zhu, Z. Y.; Ding, J.; Eda, G.; Pennycook, S. J. et al. Domain engineering in ReS2 by coupling strain during electrochemical exfoliation. Adv. Funct. Mater. 2020, 30, 2003057.

[12]

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

[13]

Yao, J. D.; Yang, G. W. All-2D architectures toward advanced electronic and optoelectronic devices. Nano Today 2021, 36, 101026.

[14]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[15]

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

[16]

Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A. et al. One-dimensional electrical contact to a two-dimensional material. Science 2013, 342, 614–617.

[17]

Banszerus, L.; Schmitz, M.; Engels, S.; Goldsche, M.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ballistic transport exceeding 28 μm in CVD grown graphene. Nano Lett. 2016, 16, 1387–1391.

[18]

Dröegeler, M.; Banszerus, L.; Volmer, F.; Taniguchi, T.; Watanabe, K.; Beschoten, B.; Stampfer, C. Dry-transferred CVD graphene for inverted spin valve devices. Appl. Phys. Lett. 2017, 111, 152402.

[19]

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

[20]

Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

[21]

Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590–5597.

[22]

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

[23]

Bie, Y. Q.; Grosso, G.; Heuck, M.; Furchi, M. M.; Cao, Y.; Zheng, J. B.; Bunandar, D.; Navarro-Moratalla, E.; Zhou, L.; Efetov, D. K. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 2017, 12, 1124–1129.

[24]

Tsai, T. H.; Liang, Z. Y.; Lin, Y. C.; Wang, C. C.; Lin, K. I.; Suenaga, K.; Chiu, P. W. Photogating WS2 photodetectors using embedded WSe2 charge puddles. ACS Nano 2020, 14, 4559–4566.

[25]

Wu, D.; Guo, J. W.; Wang, C. Q.; Ren, X. Y.; Chen, Y. S.; Lin, P.; Zeng, L. H.; Shi, Z. F.; Li, X. J.; Shan, C. X. et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 2021, 15, 10119–10129.

[26]

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

[27]

Dean, C.; Young, A. F.; Wang, L.; Meric, I.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Shepard, K.; Kim, P.; Hone, J. Graphene based heterostructures. Solid State Commun. 2012, 152, 1275–1282.

[28]

Yang, Y.; Fu, Q.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Wei, W.; Bao, X. H. Creating a nanospace under an h-BN cover for adlayer growth on nickel(111). ACS Nano 2015, 9, 11589–11598.

[29]

Piquemal-Banci, M.; Galceran, R.; Godel, F.; Caneva, S.; Martin, M. B.; Weatherup, R. S.; Kidambi, P. R.; Bouzehouane, K.; Xavier, S.; Anane, A. et al. Insulator-to-metallic spin-filtering in 2D-magnetic tunnel junctions based on hexagonal boron nitride. ACS Nano 2018, 12, 4712–4718.

[30]

Sun, J. Y.; Lu, C.; Song, Y. Z.; Ji, Q. Q.; Song, X. J.; Li, Q. C.; Zhang, Y. F.; Zhang, L.; Kong, J.; Liu, Z. F. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem. Soc. Rev. 2018, 47, 4242–4257.

[31]

Wei, W.; Liao, W. G.; Zeng, Z.; Zhu, C. X. Extended gate reference-FET (REFET) using 2D h-BN sensing layer for pH sensing applications. IEEE Electron Device Lett. 2020, 41, 159–162.

[32]

Qian, K. P.; Zhou, Q. F.; Thaiboonrod, S.; Fang, J. H.; Miao, M.; Wu, H. M.; Cao, S. M.; Feng, X. Highly thermally conductive Ti3C2T x /h-BN hybrid films via coulombic assembly for electromagnetic interference shielding. J. Colloid Interf. Sci. 2022, 613, 488–498.

[33]

Jena, D. Tunneling transistors based on graphene and 2-D crystals. Proc. IEEE 2013, 101, 1585–1602.

[34]
Kang, J. H.; Cao, W.; Xie, X. J.; Sarkar, D.; Liu, W.; Banerjee, K. Graphene and beyond-graphene 2D crystals for next-generation green electronics. In Proceedings of SPIE 9083, Micro- and Nanotechnology Sensors, Systems, and Applications VI, Baltimore, MD, United States, 2014, pp 908305.
[35]

Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

[36]

Cao, W.; Chu, J. H.; Parto, K.; Banerjee, K. A mode-balanced reconfigurable logic gate built in a van der Waals strata. npj 2D Mater. Appl. 2021, 5, 20.

[37]

Shingaya, Y.; Zulkefli, A.; Iwasaki, T.; Hayakawa, R.; Nakaharai, S.; Watanabe, K.; Taniguchi, T.; Wakayama, Y. Dual-gate anti-ambipolar transistor with van der Waals ReS2/WSe2 heterojunction for reconfigurable logic operations. Adv. Electron. Mater. 2023, 9, 2200704.

[38]

Liu, Y.; Zhang, G.; Zhou, H. L.; Li, Z.; Cheng, R.; Xu, Y.; Gambin, V.; Huang, Y.; Duan, X. F. Ambipolar barristors for reconfigurable logic circuits. Nano Lett. 2017, 17, 1448–1454.

[39]

Resta, G. V.; Balaji, Y.; Lin, D.; Radu, I. P.; Catthoor, F.; Gaillardon, P. E.; De Micheli, G. Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano 2018, 12, 7039–7047.

[40]

Marega, G. M.; Zhao, Y. F.; Avsar, A.; Wang, Z. Y.; Tripathi, M.; Radenovic, A.; Kis, A. Logic-in-memory based on an atomically thin semiconductor. Nature 2020, 587, 72–77.

[41]

Wu, P.; Reis, D.; Hu, X. S.; Appenzeller, J. Two-dimensional transistors with reconfigurable polarities for secure circuits. Nat. Electron. 2021, 4, 45–53.

[42]

Lee, S. J.; Lin, Z. Y.; Huang, J.; Choi, C. S.; Chen, P.; Liu, Y.; Guo, J.; Jia, C. C.; Wang, Y. L.; Wang, L. Y. et al. Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat. Electron. 2020, 3, 630–637.

[43]

Li, S. Y.; Chen, X. Q.; Zhang, Z. Y.; Li, X. H.; Deng, W. J.; Liu, F. M.; Lu, Y.; Zhang, Y. Z. Light-rewritable logic devices based on van der Waals heterostructures. Adv. Electron. Mater. 2022, 8, 2100708.

[44]

Yang, Q. Y.; Luo, Z. D.; Zhang, D. W.; Zhang, M. W.; Gan, X. T.; Seidel, J.; Liu, Y.; Hao, Y.; Han, G. Q. Controlled optoelectronic response in van der waals heterostructures for in-sensor computing. Adv. Funct. Mater. 2022, 32, 202207290.

[45]

Wu, N. J. Neuromorphic vision chips. Sci. China Inform. Sci. 2018, 61, 060421.

[46]

Li, S. Y.; Zhang, Z. Y.; Chen, X. Q.; Deng, W. J.; Lu, Y.; Sui, M. L.; Gong, F.; Xu, G. L.; Li, X. H.; Liu, F. M. et al. A high-performance in-memory photodetector realized by charge storage in a van der Waals MISFET. Adv. Mater. 2022, 34, 2107734.

[47]

Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267.

[48]

Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257–261.

[49]

Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

[50]

Hu, W. N.; Sheng, Z.; Hou, X.; Chen, H. W.; Zhang, Z. X.; Zhang, D. W.; Zhou, P. Ambipolar 2D semiconductors and emerging device applications. Small Methods 2021, 5, 2000837.

[51]

Li, D.; Chen, M. Y.; Sun, Z. Z.; Yu, P.; Liu, Z.; Ajayan, P. M.; Zhang, Z. X. Two-dimensional non-volatile programmable p-n junctions. Nat. Nanotechnol. 2017, 12, 901–906.

[52]

Jin, T. Y.; Gao, J.; Wang, Y. N.; Zheng, Y.; Sun, S.; Liu, L.; Lin, M.; Chen, W. Two-dimensional reconfigurable electronics enabled by asymmetric floating gate. Nano Res. 2022, 15, 4439–4447.

[53]

Sheng, Z.; Wang, Y.; Hu, W. N.; Sun, H. R.; Dong, J. G.; Yu, R.; Zhang, D. W.; Zhou, P.; Zhang, Z. X. Two-dimensional complementary gate-programmable PN junctions for reconfigurable rectifier circuit. Nano Res. 2023, 16, 1252–1258.

[54]

Wang, S. J.; Geng, G. Y.; Sun, Y.; Wu, S.; Hu, X. D.; Wu, E. X.; Liu, J. Flash memory based on MoTe2/boron nitride/graphene semi-floating gate heterostructure with non-volatile and dynamically tunable polarity. Nano Res. 2022, 15, 6507–6514.

[55]

Wu, H.; Cui, Y. H.; Xu, J. L.; Yan, Z.; Xie, Z. D.; Hu, Y. H.; Zhu, S. N. Multifunctional half-floating-gate field-effect transistor based on MoS2-BN-graphene van der Waals heterostructures. Nano Lett. 2022, 22, 2328–2333.

[56]

Rachmawati, D.; Budiman, M. A.; Aulia, I. Super-encryption implementation using monoalphabetic algorithm and XOR algorithm for data security. J. Phys.: Conf. Ser. 2018, 979, 012033.

[57]

Kaur, M.; Kumar, V. A comprehensive review on image encryption techniques. Arch. Comput. Methods Eng. 2020, 27, 15–43.

[58]

Wang, X. Y.; Xue, W. H.; An, J. B. Image encryption algorithm based on tent-dynamics coupled map lattices and diffusion of Household. Chaos Solitons Fractals 2020, 141, 110309.

[59]

Kaur, M.; Singh, S.; Kaur, M.; Singh, A.; Singh, D. A systematic review of metaheuristic-based image encryption techniques. Arch. Comput. Methods Eng. 2022, 29, 2563–2577.

File
12274_2023_6234_MOESM1_ESM.pdf (820.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 June 2023
Revised: 19 September 2023
Accepted: 26 September 2023
Published: 07 November 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (No. JQ20027), the National Science Foundation of China (No. 62305013), China Postdoctoral Science Foundation (No. 2023M730137), the China National Postdoctoral Program for Innovative Talents (No. BX20230033), and Beijing Postdoctoral Research Foundation (No. 2023-zz-95).

Return