Journal Home > Volume 17 , Issue 4

Photothermal carbon dioxide (CO2) methanation has attracted increasing interest in solar fuel synthesis, which employs the advantages of photocatalytic H2O splitting as a hydrogen source and photothermal catalytic CO2 reduction. This work prepared three-dimensional (3D) honeycomb N-doped carbon (NC) loaded with core–shell NiO@Ni nanoparticles generated in situ at 500 °C (NiO@Ni/NC-500). Under the photothermal catalysis (200 °C, 1.5 W/cm2), the CH4 evolution rate of NiO@Ni/NC-500 reached 5.5 mmol/(g·h), which is much higher than that of the photocatalysis (0.8 mmol/(g·h)) and the thermal catalysis (3.7 mmol/(g·h)). It is found that the generated localized surface plasmon resonance enhances the injection of hot electrons from Ni to NiO, while thermal heating accelerates the thermal motion of radicals, thus generating a strong photo-thermal synergistic effect on the reaction. The CO2 reduction to CH4 follows the *OCH pathway. This work demonstrates the synergistic effect of NiO@Ni and NC can enhance the catalytic performance of photothermal CO2 reduction reaction coupled with water splitting reaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

NiO@Ni nanoparticles embedded in N-doped carbon for efficient photothermal CO2 methanation coupled with H2O splitting

Show Author's information Yun Zhou1,§Peng Zheng2,3,§Fang Wang4( )Fangna Gu5( )Wenqing Xu1( )Qinyang Lu6Tingyu Zhu1Ziyi Zhong7,8Guangwen Xu2,3Fabing Su1,3( )
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China
Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang 110142, China
School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
International School of Beijing 10 An Hua Street, Shunyi District, Beijing 100048, China
Department of Chemical Engineering, Guangdong Technion Israel Institute of Technology (GTIIT), Shantou 515063, China
Technion Israel Institute of Technology (IIT), Haifa, 32000, Israel

§ Yun Zhou and Peng Zheng contributed equally to this work.

Abstract

Photothermal carbon dioxide (CO2) methanation has attracted increasing interest in solar fuel synthesis, which employs the advantages of photocatalytic H2O splitting as a hydrogen source and photothermal catalytic CO2 reduction. This work prepared three-dimensional (3D) honeycomb N-doped carbon (NC) loaded with core–shell NiO@Ni nanoparticles generated in situ at 500 °C (NiO@Ni/NC-500). Under the photothermal catalysis (200 °C, 1.5 W/cm2), the CH4 evolution rate of NiO@Ni/NC-500 reached 5.5 mmol/(g·h), which is much higher than that of the photocatalysis (0.8 mmol/(g·h)) and the thermal catalysis (3.7 mmol/(g·h)). It is found that the generated localized surface plasmon resonance enhances the injection of hot electrons from Ni to NiO, while thermal heating accelerates the thermal motion of radicals, thus generating a strong photo-thermal synergistic effect on the reaction. The CO2 reduction to CH4 follows the *OCH pathway. This work demonstrates the synergistic effect of NiO@Ni and NC can enhance the catalytic performance of photothermal CO2 reduction reaction coupled with water splitting reaction.

Keywords: localized surface plasmon resonance, photothermal, Ni, methanation

References(53)

[1]

Wang, Z. Q.; Yang, Z. Q.; Kadirova, Z. C.; Guo, M. N.; Fang, R. M.; He, J.; Yan, Y. F.; Ran, J. Y. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect. Coord. Chem. Rev. 2022, 473, 214794.

[2]

Song, C. Q.; Wang, Z. H.; Yin, Z.; Xiao, D. Q.; Ma, D. Principles and applications of photothermal catalysis. Chem Catal. 2022, 2, 52–83.

[3]

Guo, Y. C.; Wang, X. X.; Feng, L.; Liu, F.; Liang, J. S.; Wang, X. M.; Zhang, X. Large-scale and solvent-free synthesis of magnetic bamboo-like nitrogen-doped carbon nanotubes with nickel active sites for photothermally driven CO2 fixation. Green Chem. 2023, 25, 3585–3591.

[4]

Li, Y. R.; Liu, J. X.; Sun, Z. J.; Li, R.; Guo, L. J.; Zhang, X. C.; Wang, Y. W.; Wang, Y. F.; Yu, Z. B.; Fan, C. M. Enhanced photocatalytic ammonia synthesis over a Bi/carbon cloth float: Triphase reaction system-assisted N2 supply and photothermal co-activation. Green Chem. 2022, 24, 9253–9262.

[5]

Lin, L. L.; Wang, K.; Yang, K.; Chen, X.; Fu, X. Z.; Dai, W. X. The visible-light-assisted thermocatalytic methanation of CO2 over Ru/TiO2- x N x . Appl. Catal. B: Environ. 2017, 204, 440–455.

[6]

Chen, X.; Li, Q.; Zhang, M.; Li, J. J.; Cai, S. C.; Chen, J.; Jia, H. P. MOF-templated preparation of highly dispersed Co/Al2O3 composite as the photothermal catalyst with high solar-to-fuel efficiency for CO2 methanation. ACS Appl. Mater. Interfaces 2020, 12, 39304–39317.

[7]

Weatherbee, G. D.; Bartholomew, C. H. Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. J. Catal. 1982, 77, 460–472.

[8]

Yang, Y. S.; Yuan, S. Y.; Pan, H. L.; Li, Z. X.; Shen, X. L.; Gao, Y. J. Catalytically transforming cellulose into methane under natural solar irradiation. Green Chem. 2023, 25, 1004–1013.

[9]

Li, Z. H.; Shi, R.; Zhao, J. Q.; Zhang, T. R. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 2021, 14, 4828–4832.

[10]

Li, Q.; Gao, Y. X.; Zhang, M.; Gao, H.; Chen, J.; Jia, H. P. Efficient infrared-light-driven photothermal CO2 reduction over MOF-derived defective Ni/TiO2. Appl. Catal. B: Environ. 2022, 303, 120905.

[11]

Huang, Q. Q.; Fang, Z. B.; Pang, K.; Qin, W. K.; Liu, T. F.; Cao, R. The impact of secondary building units in metal-organic frameworks on plasmonic gold-sensitized photocatalysis. Adv. Funct. Mater. 2022, 32, 2205147.

[12]

Wang, Z. J.; Song, H.; Pang, H.; Ning, Y. X.; Dao, T. D.; Wang, Z.; Chen, H. L.; Weng, Y. X.; Fu, Q.; Nagao, T. et al. Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Appl. Catal. B: Environ. 2019, 250, 10–16.

[13]

Xiao, Q.; Sarina, S.; Jaatinen, E.; Jia, J. F.; Arnold, D. P.; Liu, H. W.; Zhu, H. Y. Efficient photocatalytic Suzuki cross-coupling reactions on Au-Pd alloy nanoparticles under visible light irradiation. Green Chem. 2014, 16, 4272–4285.

[14]

Zhao, W.; Li, Y. J.; Zhao, P. S.; Zhang, L. L.; Dai, B. L.; Xu, J. M.; Huang, H. B.; He, Y. L.; Leung, D. Y. C. Novel Z-scheme Ag-C3N4/SnS2 plasmonic heterojunction photocatalyst for degradation of tetracycline and H2 production. Chem. Eng. J. 2021, 405, 126555.

[15]

Tang, H. B.; Tang, Z. H.; Bright, J.; Liu, B. T.; Wang, X. J.; Meng, G. W.; Wu, N. Q. Visible-light localized surface plasmon resonance of WO3− x nanosheets and its photocatalysis driven by plasmonic hot carriers. ACS Sustain. Chem. Eng. 2021, 9, 1500–1506.

[16]

Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447

[17]

Han, Y. Q.; Xu, H. T.; Su, Y. Q.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J. Catal. 2019, 370, 70–78.

[18]

Pan, J. Q.; Xiao, G. S.; Niu, J. J.; Fu, Y. Y.; Cao, J.; Wang, J. J.; Zheng, Y. Y.; Zhu, M.; Li, C. R. The photocatalytic hydrogen evolution and photoreduction CO2 selective enhancement of Co3O4/Ti3+-TiO2/NiO hollow core–shell dual pn junction. J. Cleaner Prod. 2022, 380, 135037.

[19]

Li, J. H.; Zhang, Y. M.; Huang, Y. L.; Luo, B.; Jing, L.; Jing, D. W. Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications-A review. Nano Res. 2022, 15, 10268–10291.

[20]

Wang, R.; He, Z.; Kurouski, D. Near-field and photocatalytic properties of mono- and bimetallic nanostructures monitored by nanocavity surface-enhanced Raman scattering. Nano Res. 2023, 16, 1545–1551.

[21]

Ma, J. M.; Liu, X. F.; Wang, R. W.; Zhang, F.; Tu, G. L. Plasmon-induced near-field and resonance energy transfer enhancement of photodegradation activity by Au wrapped CuS dual-chain. Nano Res. 2022, 15, 5671–5677.

[22]

Wu, Z. Y.; Li, C. R.; Li, Z.; Feng, K.; Cai, M. J.; Zhang, D. K.; Wang, S. H.; Chu, M. Y.; Zhang, C. C.; Shen, J. H. et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano 2021, 15, 5696–5705.

[23]

Li, P. Y.; Liu, L.; An, W. J.; Wang, H.; Guo, H. X.; Liang, Y. H.; Cui, W. Q. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C–C coupling photothermal catalytic reduction of CO2 to ethanol. Appl. Catal. B: Environ. 2020, 266, 118618.

[24]

Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, 2107668.

[25]

Wang, W. K.; Xu, D. F.; Cheng, B.; Yu, J. G.; Jiang, C. J. Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity. J. Mater. Chem. A 2017, 5, 5020–5029.

[26]

Wang, J. M.; Jiang, J. Z.; Li, F. Y.; Zou, J.; Xiang, K.; Wang, H. T.; Li, Y. J.; Li, X. Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chem. 2023, 25, 32–58.

[27]

Kumar, A.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, V. K.; Nguyen, V. H.; Singh, P. C-, N-vacancy defect engineered polymeric carbon nitride towards photocatalysis: Viewpoints and challenges. J. Mater. Chem. A 2021, 9, 111–153.

[28]

Xu, M.; Hu, X. T.; Wang, S. L.; Yu, J. C.; Zhu, D. J.; Wang, J. Y. Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content. J. Catal. 2019, 377, 652–661.

[29]

Wang, L. B.; Tan, H. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. In-situ growth of few-layer graphene on ZnO with intimate interfacial contact for enhanced photocatalytic CO2 reduction activity. Chem. Eng. J. 2021, 411, 128501.

[30]

Xia, Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Liu, G. Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci. China Mater. 2020, 63, 552–565.

[31]

Chen, Y.; Dai, Y. T.; Li, Y. W.; Hou, Z. X.; Gao, B. Y.; Yue, Q. Y.; Li, Q. Oxygen vacancies-mediated CuO@N-doped carbon nanocomposites for non-radical-dominated photothermal catalytic degradation of contaminants. J. Cleaner Prod. 2023, 389, 136054.

[32]

Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

[33]

Duan, C. Y.; Ding, M. L.; Feng, Y.; Cao, M. J.; Yao, J. F. ZIF-L-derived ZnO/N-doped carbon with multiple active sites for efficient catalytic CO2 cycloaddition. Sep. Purif. Technol. 2022, 285, 120359.

[34]
Yan, K.; Chen, L.; Hu, Y. G.; Wang, T.; Chen, C.; Gao, C.; Huang, Y. J.; Li, B. X. Accelerating solar driven CO2 reduction via sulfur-doping boosted water dissociation and proton transfer. Nano Res., in press, DOI: 10.1007/s12274-023-5888-3.
[35]

He, H. B.; Gao, X. M.; Xu, K. X.; Li, H. Y.; Hu, Y. N.; Yang, C. M.; Fu, F. 1D/0D Z-scheme heterostructure of Bi2S3/Cd X Zn1− X S with strong interfacial electric field coupling enhanced mass transfer based on gas-liquid-solid micro interface contact for efficient photothermal synergistic catalytic CO2 reduction to syngas. Chem. Eng. J. 2022, 450, 138266.

[36]

He, L.; Wu, H. Y.; Zhang, W. Y.; Bai, X.; Chen, J. K.; Ikram, M.; Wang, R. H.; Shi, K. Y. High-dispersed Fe2O3/Fe nanoparticles residing in 3D honeycomb-like N-doped graphitic carbon as high-performance room-temperature NO2 sensor. J. Hazard. Mater. 2021, 405, 124252.

[37]

Inagaki, M. Pores in carbon materials-importance of their control. New Carbon Mater. 2009, 24, 193–232.

[38]
Ma, J.; Yu, J.; Chen, G. Y.; Bai, Y.; Liu, S. K.; Hu, Y. G.; Al-Mamun, M.; Wang, Y.; Gong, W. B.; Liu, D. et al. Rational design of N-doped carbon-coated cobalt nanoparticles for highly efficient and durable photothermal CO2 conversion. Adv. Mater., in press, DOI: 10.1002/adma.202302537.
[39]

Mateo, D.; Albero, J.; García, H. Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl. Catal. B: Environ. 2018, 224, 563–571.

[40]

He, L.; Zhang, W. Y.; Zhao, K.; Liu, S.; Zhao, Y. Core–shell Cu@Cu2O nanoparticles embedded in 3D honeycomb-like N-doped graphitic carbon for photocatalytic CO2 reduction. J. Mater. Chem. A 2022, 10, 4758–4769.

[41]

He, L.; Zhang, W. Q.; Liu, S.; Zhao, Y. Three-dimensional palm frondlike Co3O4@NiO/graphitic carbon composite for photocatalytic CO2 reduction. J. Alloys Compd. 2023, 934, 168053.

[42]

Mateo, D.; De Masi, D.; Albero, J.; Lacroix, L. M.; Fazzini, P. F.; Chaudret, B.; García, H. Synergism of Au and Ru nanoparticles in low-temperature photoassisted CO2 methanation. Chem.—Eur. J. 2018, 24, 18436–18443.

[43]

Li, Y. Y.; Wang, C. H.; Song, M.; Li, D. S.; Zhang, X. T.; Liu, Y. C. TiO2− x /CoO x photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Appl. Catal. B: Environ. 2019, 243, 760–770.

[44]

Wei, G. H.; Zheng, D. M.; Xu, L. J.; Guo, Q. S.; Hu, J. F.; Sha, N.; Zhao, Z. Photothermal catalytic activity and mechanism of LaNi x Co1− x O3 (0 ≤ x ≤ 1) perovskites for CO2 reduction to CH4 and CH3OH with H2O. Mater. Res. Express 2019, 6, 086221.

[45]

Rohlfs, J.; Bossers, K. W.; Meulendijks, N.; Valega Mackenzie, F.; Xu, M.; Verheijen, M. A.; Buskens, P.; Sastre, F. Continuous-flow sunlight-powered CO2 methanation catalyzed by γ-Al2O3-supported plasmonic Ru nanorods. Catalysts 2022, 12, 126.

[46]

Siakavelas, G. I.; Charisiou, N. D.; AlKhoori, S.; AlKhoori, A. A.; Sebastian, V.; Hinder, S. J.; Baker, M. A.; Yentekakis, I. V.; Polychronopoulou, K.; Goula, M. A. Highly selective and stable nickel catalysts supported on ceria promoted with Sm2O3, Pr2O3 and MgO for the CO2 methanation reaction. Appl. Catal. B: Environ. 2021, 282, 119562.

[47]

Li, D.; Chen, W. H.; Wu, J. P.; Jia, C. Q.; Jiang, X. The preparation of waste biomass-derived N-doped carbons and their application in acid gas removal: Focus on N functional groups. J. Mater. Chem. A 2020, 8, 24977–24995.

[48]

Miao, H.; Li, S. H.; Wang, Z. H.; Sun, S. S.; Kuang, M.; Liu, Z. P.; Yuan, J. L. Enhancing the pyridinic N content of Nitrogen-doped graphene and improving its catalytic activity for oxygen reduction reaction. Int. J. Hyd. Energy 2017, 42, 28298–28308.

[49]

Li, L. J.; Wang, Y.; Gu, X.; Yang, Q. P.; Zhao, X. B. Increasing the CO2/N2 selectivity with a higher surface density of pyridinic lewis basic sites in porous carbon derived from a pyridyl-ligand-based metal-organic framework. Chem.—Asian J. 2016, 11, 1913–1920.

[50]

Bian, H.; Liu, T. F.; Li, D.; Xu, Z.; Lian, J. H.; Chen, M.; Yan, J. Q.; Liu, S. F. Unveiling the effect of interstitial dopants on CO2 activation over CsPbBr3 catalyst for efficient photothermal CO2 reduction. Chem. Eng. J. 2022, 435, 135071.

[51]

Wu, X. Z.; Zhou, J.; Xing, W.; Zhang, Y.; Bai, P.; Xu, B. J.; Zhuo, S. P.; Xue, Q. Z.; Yan, Z. F. Insight into high areal capacitances of low apparent surface area carbons derived from nitrogen-rich polymers. Carbon 2015, 94, 560–567.

[52]

Wang, T. F.; Zhai, Y. B.; Zhu, Y.; Peng, C.; Xu, B. B.; Wang, T.; Li, C. T.; Zeng, G. M. Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste. Bioresource Technol. 2018, 247, 182–189.

[53]

Zhao, L.; Zhang, Y.; Zhao, Z. L.; Zhang, Q. H.; Huang, L. B.; Gu, L.; Lu, G.; Hu, J. S.; Wan, L. J. Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. Natl. Sci. Rev. 2020, 7, 27–36.

File
12274_2023_6226_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 August 2023
Revised: 20 September 2023
Accepted: 20 September 2023
Published: 31 October 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research was funded by the National Key R&D Program of China (No. 2022YFE0208100) and the National Natural Science Foundation of China (Nos. 22278405, 52222005, and 22278006).

Return