Journal Home > Volume 17 , Issue 3

In this paper, the structure evolution of cerium cobaltohexanoate (Ce[Co(CN)6], Ce-Co Prussian blue analog (PBA)) has been realized by solvent catalysis at room temperature. The hexagonal bipyramidal microcrystals of Ce-Co PBA can be gradually transformed into dendrites by different proportions of ethanol (EtOH) and water. At the same time, the porous dendrites CeO2/Co@carbon nanotub (CNT) with oxygen-rich vacancies (OVs) can be obtained by annealing Ce-Co PBA at 700 °C. The microstructure study shows that carbon nanotubes will be catalyzed after annealing at high temperature, and the cobalt metal particles encapsulated in carbon nanotubes will be anchored in the matrix, regulating the impedance matching and multi-polarization suppression of the material, and its unique structure, vacancies, and strong interface effect make the material exhibit excellent electromagnetic wave (EMW) absorption performance. When the matching thickness is 2.5 mm, the minimum reflection loss (RLmin) of the composite is −51.68 dB, and the effective absorption bandwidth (RL < −10 dB) is 7.76 GHz. These results show that the prepared CeO2/Co@CNT composite has excellent EMW absorption properties. It is expected to be a candidate material for EMW absorption.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polymorphic cerium-based Prussian blue derivatives with in situ growing CNT/Co heterojunctions for enhanced microwave absorption via polarization and magnetization

Show Author's information Jixi Zhou1,§Xinmeng Huang1,§Di Lan2Yuhang Cheng1Fengyi Xue1Chenyu Jia1Guanglei Wu1( )Zirui Jia1,3( )
Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China

§ Jixi Zhou and Xinmeng Huang contributed equally to this work.

Abstract

In this paper, the structure evolution of cerium cobaltohexanoate (Ce[Co(CN)6], Ce-Co Prussian blue analog (PBA)) has been realized by solvent catalysis at room temperature. The hexagonal bipyramidal microcrystals of Ce-Co PBA can be gradually transformed into dendrites by different proportions of ethanol (EtOH) and water. At the same time, the porous dendrites CeO2/Co@carbon nanotub (CNT) with oxygen-rich vacancies (OVs) can be obtained by annealing Ce-Co PBA at 700 °C. The microstructure study shows that carbon nanotubes will be catalyzed after annealing at high temperature, and the cobalt metal particles encapsulated in carbon nanotubes will be anchored in the matrix, regulating the impedance matching and multi-polarization suppression of the material, and its unique structure, vacancies, and strong interface effect make the material exhibit excellent electromagnetic wave (EMW) absorption performance. When the matching thickness is 2.5 mm, the minimum reflection loss (RLmin) of the composite is −51.68 dB, and the effective absorption bandwidth (RL < −10 dB) is 7.76 GHz. These results show that the prepared CeO2/Co@CNT composite has excellent EMW absorption properties. It is expected to be a candidate material for EMW absorption.

Keywords: carbon nanotubes (CNTs), electromagnetic wave absorption, CeO2/Co@CNT, solvent catalysis, Ce-Co Prussian blue analog (PBA)

References(86)

[1]

Lv, H. L.; Yao, Y. X.; Li, S. C.; Wu, G. L.; Zhao, B.; Zhou, X. D.; Dupont, R. L.; Kara, U. I.; Zhou, Y. M.; Xi, S. B. et al. Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 2023, 14, 1982.

[2]

Wei, C. H.; He, M. K.; Li, M. Q.; Ma, X.; Dang, W. L.; Liu, P. B.; Gu, J. W. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 2023, 36, 101142.

[3]

Zhao, T. B.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Multiphase molybdenum carbide doped carbon hollow sphere engineering: The superiority of unique double-shell structure in microwave absorption. Small 2023, 19, 2206323.

[4]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[5]

Zhang, S.; Liu, X. H.; Jia, C. Y.; Sun, Z. S.; Jiang, H. W.; Jia, Z. R.; Wu, G. L. Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett., 2023, 15, 204.

[6]

Gao, S. T.; Zhang, Y. C.; Zhang, X. Z.; Jiao, F. C.; Liu, T.; Li, H. X.; Bai, Y. H.; Wu, C. L. Synthesis of hollow ZnFe2O4/residual carbon from coal gasification fine slag composites for multiband electromagnetic wave absorption. J. Alloys Compd. 2023, 952, 170016.

[7]

Zhang, H. X.; Jia, Z. R.; Feng, A. L.; Zhou, Z. H.; Chen, L.; Zhang, C. H.; Liu, X. H.; Wu, G. L. In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. Part B Eng. 2020, 199, 108261

[8]

Pan, Y. L.; Zhu, Q. Q.; Zhu, J. H.; Cheng, Y. H.; Yu, B. W.; Jia, Z. R.; Wu, G. L. Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res. 2023, 16, 10666–10677.

[9]

Wu, D.; Wang, Y. Q.; Deng, S. L.; Lan, D.; Xiang, Z. N.; He, Q. C. Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption. Nano Res. 2023, 16, 1859–1868.

[10]

Chang, M.; Li, Q. Y.; Jia, Z. R.; Zhao, W. R.; Wu, G. L. Tuning microwave absorption properties of Ti3C2T x MXene-based materials: Component optimization and structure modulation. J. Mater. Sci. Technol. 2023, 148, 150–170.

[11]

Zhou, Z. H.; Zhu, Q. Q.; Liu, Y.; Zhang, Y.; Jia, Z. R.; Wu, G. L. Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 2023, 15, 137.

[12]

Wu, Y. L.; Lan, D.; Ren, J. W.; Zhang, S. J. A mini review of MOFs derived multifunctional absorbents: From perspective of components regulation. Mater. Today Phys. 2023, 36, 101178.

[13]

Wang, Y.; Gao, X.; Lin, C. H.; Shi, L. Y.; Li, X. H.; Wu, G. L. Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J. Alloys Compd. 2019, 785, 765–773.

[14]

Jia, Z. R.; Zhang, X. Y.; Gu, Z.; Wu, G. L. MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber. Adv. Compos. Hybrid. Mater. 2023, 6, 28.

[15]

Pan, C.; Zhang, J. Q.; Kou, K. C.; Zhang, Y.; Wu, G. L. Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. Int. J. Heat Mass Transfer 2018, 120, 1–8.

[16]
Zhang, S. J.; Lan, D.; Chen, X. L.; Gu, Y. Y.; Ren, J. W.; Du, S. X.; Cai, S. C.; Zhao, X. M.; Zhao, Z. W.; Wu, G. L. Three-dimensional macroscopic absorbents: From synergistic effects to advanced multifunctionalities. Nano Res., in press, https://doi.org/10.1007/s12274-023-6120-1.
DOI
[17]

Huang, X. M.; Liu, X. H.; Jia, Z. R.; Wang, B. B.; Wu, X. M.; Wu, G. L. Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv. Compos. Hybrid. Mater. 2021, 4, 1398–1412.

[18]

Yao, Z. Q.; Liu, F.; Xu, S. Q.; Zhang, X. K.; Rong, C. C.; Xiong, Z. Z.; Yuan, J. J.; Yu, Y.; Zhu, X. R.; Yu, H. J. Facile synthesis of La2O3/Co@N-doped carbon nanotubes via Prussian blue analogues toward strong microwave absorption. Carbon 2022, 196, 763–773.

[19]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[20]

Wu, G. L.; Jia, Z. R.; Zhou, X. F.; Nie, G. Z.; Lv, H. L. Interlayer controllable of hierarchical MWCNTs@C@Fe x O y cross-linked composite with wideband electromagnetic absorption performance. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105687.

[21]

Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

[22]

Wang, H. Y.; Sun, X. B.; Yang, S. H.; Zhao, P. Y.; Zhang, X. J.; Wang, G. S.; Huang, Y. 3D ultralight hollow NiCo Compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 2021, 13, 206

[23]

Liu, Q.; Guo, Z. Q.; Wang, C.; Guo, S.; Xu, Z. W.; Hu, C. G.; Liu, Y. J.; Wang, Y. L.; He, J.; Wong, W. Y. A cobalt-based metal-organic framework nanosheet as the electrode for high-performance asymmetric supercapacitor. Adv. Sci. 2023, 10, 2207545.

[24]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[25]

Guo, X.; Zhang, H.; Yao, Y. Y.; Xiao, C. M.; Yan, X.; Chen, K.; Qi, J. W.; Zhou, Y. J.; Zhu, Z. G.; Sun, X. Y. et al. Derivatives of two-dimensional MXene-MOFs heterostructure for boosting peroxymonosulfate activation: Enhanced performance and synergistic mechanism. Appl. Catal. B Environ. 2023, 323, 122136.

[26]

Liu, P. B.; Zhang, G. Z.; Xu, H. X.; Cheng, S. C.; Huang, Y.; Ouyang, B.; Qian, Y. T.; Zhang, R. X.; Che, R. C. Synergistic dielectric-magnetic enhancement via phase evolution engineering and dynamic magnetic resonance. Adv. Funct. Mater. 2023, 33, 2211298.

[27]

Jia, Z. R.; Gao, Z. G.; Feng, A. L.; Zhang, Y.; Zhang, C. H.; Nie, G. Z.; Wang, K. K.; Wu, G. L. Laminated microwave absorbers of A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon. Compos. Part B Eng. 2019, 176, 107246.

[28]

Zeng, S. P.; Shi, H.; Dai, T. Y.; Liu, Y.; Wen, Z.; Han, G. F.; Wang, T. H.; Zhang, W.; Lang, X. Y.; Zheng, W. T. et al. Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution. Nat. Commun. 2023, 14, 1811.

[29]

Gao, S. T.; Zhang, Y. C.; He, J.; Zhang, X. Z.; Jiao, F. C.; Liu, T.; Li, H. X.; Wu, C. L.; Ma, M. L. Coal gasification fine slag residual carbon decorated with hollow-spherical Fe3O4 nanoparticles for microwave absorption. Ceram. Int. 2023, 49, 17554–17565.

[30]

Zhang, S.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers. Nano Res. 2023, 16, 3395–3407.

[31]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[32]

Zhang, Y. C.; Gao, S. T.; Xia, B. L.; He, J.; Wei, F.; Zhang, X. Z. Coal gasification fine slag doped with Fe3O4: High-performance electromagnetic-wave absorbers. J. Magn. Magn. Mater. 2023, 580, 170916.

[33]

Yang, Y. F.; Han, M. R.; Liu, W.; Wu, N.; Liu, J. R. Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding. Nano Res. 2022, 15, 9614–9630

[34]

Zhang, H. X.; Sun, K. G.; Sun, K. K.; Chen, L.; Wu, G. L. Core–shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 158, 242–252.

[35]

Sun, L. F.; Zhu, Q. Q.; Jia, Z. R.; Guo, Z. Q.; Zhao, W. R.; Wu, G. L. CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. Carbon 2023, 208, 1–9.

[36]

Ding, X. W.; Lyu, L. F.; Wang, F. L.; Yang, Y. F.; Qiao, J.; Xu, D. M.; Zhang, X.; Kong, L. X.; Liu, J. R. Novel ternary Co3O4/CeO2/CNTs composites for high-performance broadband electromagnetic wave absorption. J. Alloys Compd. 2021, 864, 158141.

[37]

Wu, M.; Darboe, A. K.; Qi, X. S.; Xie, R.; Qin, S. J.; Deng, C. Y.; Wu, G. L.; Zhong, W. Optimization, selective and efficient production of CNTs/Co x Fe3− x O4 core/shell nanocomposites as outstanding microwave absorbers. J. Mater. Chem. C 2020, 8, 11936–11949.

[38]

Wang, Y.; Di, X. C.; Wu, X. M.; Li, X. H. MOF-derived nanoporous carbon/Co/Co3O4/CNTs/RGO composite with hierarchical structure as a high-efficiency electromagnetic wave absorber. J. Alloys Compd. 2020, 846, 156215.

[39]

Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; Wang, Y.; Luo, J. H. Core–shell CoNi@Graphitic carbon decorated on B,N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 2019, 11, 25624–25635.

[40]

Shen, Z. Y.; Xing, H. L.; Wang, H.; Jia, H. X.; Liu, Y.; Chen, A. J.; Yang, P. Y. Synthesis and enhanced electromagnetic absorption properties of Co-doped CeO2/RGO nanocomposites. J. Alloys Compd. 2018, 753, 28–34.

[41]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778

[42]

Wang, C. X.; Liu, Y.; Jia, Z. R.; Zhao, W. R.; Wu, G. L. Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 2023, 15, 13.

[43]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[44]

Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

[45]

Dai, X. Y.; Du, Y. Z.; Yang, J. Y.; Wang, D.; Gu, J. W.; Li, Y. F.; Wang, S.; Xu, B. B.; Kong, J. Recoverable and self-healing electromagnetic wave absorbing nanocomposites. Compos. Sci. Technol. 2019, 174, 27–32.

[46]

Xiang, Z.; Zhu, X. J.; Dong, Y. Y.; Zhang, X.; Shi, Y. Y.; Lu, W. Enhanced electromagnetic wave absorption of magnetic Co nanoparticles/CNTs/EG porous composites with waterproof, flame-retardant and thermal management functions. J. Mater. Chem. A 2021, 9, 17538–17552.

[47]

Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; He, W. J.; Huang, W. H.; Luo, J. H. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 2020, 381, 122653

[48]

Wen, B.; Yang, H. B.; Lin, Y.; Qiu, Y.; Cheng, Y.; Jin, L. X. Novel bimetallic MOF derived hierarchical Co@C composites modified with carbon nanotubes and its excellent electromagnetic wave absorption properties. J. Colloid Interface Sci. 2022, 605, 657–666.

[49]

Qin, M.; Zhang, L. M.; Zhao, X. R.; Wu, H. J. Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 2021, 8, 2004640.

[50]

Zhang, Y.; Tan, S. J.; Zhou, Z. T.; Guan, X. M.; Liao, Y.; Li, C.; Ji, G. B. Construction of Co2NiO4@MnCo2O4.5 nanoparticles with multiple hetero-interfaces for enhanced electromagnetic wave absorption. Particuology 2023, 81, 86–97.

[51]

Pan, C.; Kou, K. C.; Jia, Q.; Zhang, Y.; Wu, G. L.; Ji, T. Z. Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent. Compos. Part B Eng. 2017, 111, 83–90.

[52]

Zhou, X. H.; Gao, Y.; Lyu, L. H.; Liang, Y. Y.; Li, Z. H. General construction of molybdenum-based compounds embedded in flexible 3D interconnected porous carbon nanofibers with protective porous shell for high-performance lithium-ion battery. Carbon 2021, 179, 142–150.

[53]

Xu, H. L.; Yin, X. W.; Zhu, M.; Han, M. K.; Hou, Z. X.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2017, 9, 6332–6341.

[54]

Zhang, N. Q.; Tsang, E. P.; Chen, J. Y.; Fang, Z. Q.; Zhao, D. Y. Critical role of oxygen vacancies in heterogeneous Fenton oxidation over ceria-based catalysts. J. Colloid Interface Sci. 2020, 558, 163–172.

[55]

Sivanantham, A.; Ganesan, P.; Shanmugam, S. A synergistic effect of Co and CeO2 in nitrogen-doped carbon nanostructure for the enhanced oxygen electrode activity and stability. Appl. Catal. B Environ. 2018, 237, 1148–1159.

[56]

Sun, X. C.; Yuan, K.; Hua, W. D.; Gao, Z. R.; Zhang, Q.; Yuan, C. Y.; Liu, H. C.; Zhang, Y. W. Weakening the metal–support interactions of M/CeO2 (M = Co, Fe, Ni) using a NH3-treated CeO2 support for an enhanced water-gas shift reaction. ACS Catal. 2022, 12, 11942–11954.

[57]

Li, Q. Q.; Zhao, Y. H.; Wang, L.; Zhang, J.; Li, X.; Che, R. C. 3D conductive network wrapped CeO2− x Yolk@Shell hybrid microspheres for selective-frequency microwave absorption. Carbon 2020, 162, 86–94

[58]

Guo, Z. Z.; Ren, P. G.; Yang, F.; Wu, T.; Zhang, L. X.; Chen, Z. Y.; Huang, S. Q.; Ren, F. MOF-derived Co/C and MXene co-decorated cellulose-derived hybrid carbon aerogel with a multi-interface architecture toward absorption-dominated ultra-efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2023, 15, 7308–7318.

[59]

Cha, D. C.; Singh, T. I.; Maibam, A.; Kim, T. H.; Nam, D. H.; Babarao, R.; Lee, S. Metal-organic framework-derived mesoporous B-doped CoO/Co@N-doped carbon hybrid 3D heterostructured interfaces with modulated cobalt oxidation states for alkaline water splitting. Small 2023, 2301405

[60]

Wang, H.; Xing, H. L.; Liu, Q. C.; Jia, H. X.; Chen, A. J.; Liu, Y. Synthesis and microwave absorbing properties of CeO2/multi-walled carbon nanotubes composites. J. Mater. Sci. Mater. Electron. 2018, 29, 19308–19315.

[61]

Wang, Z. Q.; Zhao, P. F.; Li, P. W.; Li, S. D.; Liao, L. S.; Luo, Y. Y.; Peng, Z.; He, D. N.; Cheng, Y. Hierarchical cerium oxide anchored multi-walled carbon nanotube hybrid with synergistic effect for microwave attenuation. Compos. Part B Eng. 2019, 167, 477–486.

[62]

Wu, Y.; Shu, R. W.; Shan, X. M.; Zhang, J. B.; Shi, J. J.; Liu, Y.; Zheng, M. D. Facile design of cubic-like cerium oxide nanoparticles decorated reduced graphene oxide with enhanced microwave absorption properties. J. Alloys Compd. 2020, 817, 152766.

[63]
Hou, T. Q.; Wang, J. W.; Zheng, T. T.; Liu, Y.; Wu, G. L.; Yin, P. F. Anion exchange of metal particles on carbon-based skeletons for promoting dielectric equilibrium and high-efficiency electromagnetic wave absorption. Small, in press, https://doi.org/10.1002/smll.202303463.
DOI
[64]

Zhu, M.; Lei, Y. T.; Wu, H.; Kong, L.; Xu, H. L.; Yan, X. X.; Xu, Y. J.; Dai, L. Porous hybrid scaffold strategy for the realization of lightweight, highly efficient microwave absorbing materials. J. Mater. Sci. Technol. 2022, 129, 215–222.

[65]

Zhang, H. X.; Wang, B. B.; Feng, A. L.; Zhang, N.; Jia, Z. R.; Huang, Z. Y.; Liu, X. H.; Wu, G. L. Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. Part B Eng. 2019, 167, 690–699.

[66]

Yu, L. Y.; Zhu, Q. Q.; Guo, Z. Q.; Cheng, Y. H.; Jia, Z. R.; Wu, G. L. Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures. J. Mater. Sci. Technol. 2024, 170, 129–139.

[67]

Cao, X. L.; Jia, Z. R.; Hu, D. Q.; Wu, G. L. Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption. Adv. Compos. Hybrid. Mater. 2022, 5, 1030–1043.

[68]

Jiang, Z. Y.; Si, H. X.; Li, Y.; Li, D.; Chen, H. H.; Gong, C. H.; Zhang, J. W. Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 2022, 15, 8546–8554.

[69]

Liang, C. B.; Qiu, H.; Zhang, Y. L.; Liu, Y. Q.; Gu, J. W. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 2023, 68, 1938–1953.

[70]

Lan, D.; Wang, Y.; Wang, Y. Y.; Zhu, X. F.; Li, H. F.; Guo, X. M.; Ren, J. N.; Guo, Z. H.; Wu, G. L. Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 2023, 651, 494–503.

[71]

Cao, X. L.; Liu, X. H.; Zhu, J. H.; Jia, Z. R.; Liu, J. K.; Wu, G. L. Optimal particle distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance. J. Colloid Interface Sci. 2023, 634, 268–278.

[72]

Pan, C.; Kou, K. C.; Zhang, Y.; Li, Z. Y.; Wu, G. L. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos. Part B Eng. 2018, 153, 1–8.

[73]
Zhou, J. X.; Lan, D.; Zhang, F.; Cheng, Y. H.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band. Small, in press, DOI: 10.1002/smll.202304932.
DOI
[74]

Zhang, S. J.; Cheng, B.; Jia, Z. R.; Zhao, Z. W.; Jin, X. T.; Zhao, Z. H.; Wu, G. L. The art of framework construction: Hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid. Mater. 2022, 5, 1658–1698.

[75]

Wang, Q. Y.; Liu, J.; Li, Y. D.; Lou, Z. C.; Li, Y. J. A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis. Int. J. Miner. Metall. Mater. 2023, 30, 446–473

[76]

Zhang, S. J.; Jia, Z. R.; Cheng, B.; Zhao, Z. W.; Lu, F.; Wu, G. L. Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-review. Adv. Compos. Hybrid. Mater. 2022, 5, 2440–2460.

[77]

Gao, Z. G.; Xu, B. H.; Ma, M. L.; Feng, A. L.; Zhang, Y.; Liu, X. H.; Jia, Z. R.; Wu, G. L. Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption. Compos. Part B Eng. 2019, 179, 107417.

[78]

Liu, J. L.; Liang, H. S.; Zhang, Y.; Wu, G. L.; Wu, H. J. Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos. Part B Eng. 2019, 176, 107240.

[79]

Gao, T.; Rong, H. W.; Mahmoud, K. H.; Ruan, J. C.; El-Bahy, S. M.; Faheim, A. A.; Li, Y. X.; Huang, M. N.; Nassan, M. A.; Zhao, R. Z. Iron/silicon carbide composites with tunable high-frequency magnetic and dielectric properties for potential electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 1158–1167

[80]

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

[81]
Zhao J.; Gu Z.; Zhang Q. G. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res., in press, https://doi.org/10.1007/s12274-023-6090-3.
DOI
[82]

Liu, G. J.; Wang, L.; Zhang, H.; Du, Z. Y.; Zhou, X. Y.; Wang, K. K.; Sun, Y. M.; Gao, S. M. Cage-structured CoFe2O4@CNTs from Fe-Co-MOF confined growth in CNTs for high electromagnetic wave absorption performances. Compos. Commun. 2021, 27, 100910

[83]

Zhang, F.; Jia, Z. R.; Zhou, J. X.; Liu, J. K.; Wu, G. L.; Yin, P. F. Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 450, 138205.

[84]

Liu, J. K.; Jia, Z. R.; Dong, Y. H.; Li, J. J.; Cao, X. L.; Wu, G. L. Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption. Mater. Today Phys. 2022, 27, 100801.

[85]

Zhang, H. X.; Jia, Z. R.; Feng, A. L.; Zhou, Z. H.; Zhang, C. H.; Wang, K. K.; Liu, N.; Wu, G. L. Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber. Compos. Commun. 2020, 19, 42–50.

[86]

Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

File
12274_2023_6216_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 July 2023
Revised: 28 August 2023
Accepted: 18 September 2023
Published: 18 November 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52377026 and 52301192), the Natural Science Foundation of Shandong Province (Nos. ZR2019YQ24 and ZR2020QF084), the Taishan Scholars and Young Experts Program of Shandong Province (No. tsqn202103057), the Qingchuang Talents Induction Program of Shandong Higher Education Institution (Research and Innovation Team of Structural-Functional Polymer Composites), and the Special Financial of Shandong Province (Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams).

Return