Journal Home > Volume 17 , Issue 4

The van der Waals heterostructures have evolved as novel materials for complementing the Si-based semiconductor technologies. Group-10 noble metal dichalcogenides (e.g., PtS2, PtSe2, PdS2, and PdSe2) have been listed into two-dimensional (2D) materials toolkit to assemble van der Waals heterostructures. Among them, PdSe2 demonstrates advantages of high stability in air, high mobility, and wide tunable bandgap. However, the regulation of p-type doping of PdSe2 remains unsolved problem prior to fabricating p–n junction as a fundamental platform of semiconductor physics. Besides, a quantitative method for the controllable doping of PdSe2 is yet to be reported. In this study, the doping level of PdSe2 was correlated with the concentration of Lewis acids, for example, SnCl4, used for soaking. Considering the transfer characteristics, the threshold voltage (the gate voltage corresponding to the minimum drain current) increased after SnCl4 soaking treatment. PdSe2 transistors were soaked in SnCl4 solutions with five different concentrations. The threshold voltages from the as-obtained transfer curves were extracted for linear fitting to the threshold voltage versus doping concentration correlation equation. This study provides in-depth insights into the controllable p-type doping of PdSe2. It may also push forward the research of the regulation of conductivity behaviors of 2D materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Modulating p-type doping of two-dimensional material palladium diselenide

Show Author's information Jiali Yang1,3,§Yu Liu4,5,§En-Yang Wang10,§Jinbo Pang1,3( )Shirong Huang15,16,17,18Thomas Gemming2Jinshun Bi6,7,8( )Alicja Bachmatiuk9Hao Jia3Shu-Xian Hu10( )Chongyun Jiang11Hong Liu1,14( )Gianaurelio Cuniberti15,16,17,18( )Weijia Zhou1Mark H Rümmeli2,4,5,12,13( )
Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
Institute for Materials Chemistry, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), 20 Helmholtz Strasse, Dresden 01069, Germany
State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
College of Energy, Soochow Institute for Energy and Materials Innovations Soochow University, Suzhou 215006, China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing 101408, China
Institute of Microelectronics of Tianjin Binhai New Area, Tianjin 300451, China
Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Lukasiewicz Research Network, PORT Polish Center for Technology Development, Stablowicka 147, Wroclaw 54-066, Poland
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
College of electronic information and optical engineering, Nankai University, Tianjin 300350, China
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland
Center for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, Jinan 250100, China
Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden 01069, Germany
Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany

§ Jiali Yang, Yu Liu, and En-Yang Wang contributed equally to this work.

Abstract

The van der Waals heterostructures have evolved as novel materials for complementing the Si-based semiconductor technologies. Group-10 noble metal dichalcogenides (e.g., PtS2, PtSe2, PdS2, and PdSe2) have been listed into two-dimensional (2D) materials toolkit to assemble van der Waals heterostructures. Among them, PdSe2 demonstrates advantages of high stability in air, high mobility, and wide tunable bandgap. However, the regulation of p-type doping of PdSe2 remains unsolved problem prior to fabricating p–n junction as a fundamental platform of semiconductor physics. Besides, a quantitative method for the controllable doping of PdSe2 is yet to be reported. In this study, the doping level of PdSe2 was correlated with the concentration of Lewis acids, for example, SnCl4, used for soaking. Considering the transfer characteristics, the threshold voltage (the gate voltage corresponding to the minimum drain current) increased after SnCl4 soaking treatment. PdSe2 transistors were soaked in SnCl4 solutions with five different concentrations. The threshold voltages from the as-obtained transfer curves were extracted for linear fitting to the threshold voltage versus doping concentration correlation equation. This study provides in-depth insights into the controllable p-type doping of PdSe2. It may also push forward the research of the regulation of conductivity behaviors of 2D materials.

Keywords: two-dimensional (2D) materials, field-effect transistors, Lewis acid treatment, p-type doping, transfer characteristic

References(162)

[1]

Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Shan, J.; Mak, K. F. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2019, 2, 159–163.

[2]

Zhang, Z.; Lin, P.; Liao, Q. L.; Kang, Z.; Si, H. N.; Zhang, Y. Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics. Adv. Mater. 2019, 31, 1806411.

[3]

Zhang, S. Y.; Hill, H. M.; Moudgil, K.; Richter, C. A.; Hight Walker, A. R.; Barlow, S.; Marder, S. R.; Hacker, C. A.; Pookpanratana, S. J. Controllable, wide-ranging n-doping and p-doping of monolayer group 6 transition-metal disulfides and diselenides. Adv. Mater. 2018, 30, 1802991.

[4]

Liang, Q. J.; Zhang, Q.; Zhao, X. X.; Liu, M. Z.; Wee, A. T. S. Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano 2021, 15, 2165–2181.

[5]

Zheng, Y. J.; Chen, Y. F.; Huang, Y. L.; Gogoi, P. K.; Li, M. Y.; Li, L. J.; Trevisanutto, P. E.; Wang, Q. X.; Pennycook, S. J.; Wee, A. T. S. et al. Point defects and localized excitons in 2D WSe2. ACS Nano 2019, 13, 6050–6059.

[6]

Zheng, Y. J.; Huang, Y. L.; Chen, Y. E.; Zhao, W. J.; Eda, G.; Spataru, C. D.; Zhang, W. J.; Chang, Y. H.; Li, L. J.; Chi, D. Z. et al. Heterointerface screening effects between organic monolayers and monolayer transition metal dichalcogenides. ACS Nano 2016, 10, 2476–2484.

[7]

Yin, X. M.; Wang, Q. X.; Cao, L.; Tang, C. S.; Luo, X.; Zheng, Y. J.; Wong, L. M.; Wang, S. J.; Quek, S. Y.; Zhang, W. J. et al. Tunable inverted gap in monolayer quasi-metallic MoS2 induced by strong charge-lattice coupling. Nat. Commun. 2017, 8, 486.

[8]

Zhang, W. J.; Wang, Q. X.; Chen, Y.; Wang, Z.; Wee, A. T. S. Van der Waals stacked 2D layered materials for optoelectronics. 2D Mater. 2016, 3, 022001.

[9]

Feng, S.; Zou, C. J.; Cong, C. X.; Shang, J. Z.; Zhang, J.; Chen, Y.; Wu, L. S.; Zhang, H. B.; Huang, Z. M.; Gao, W. B. et al. Deterministic and scalable generation of exciton emitters in 2D semiconductor nanodisks. Adv. Opt. Mater. 2022, 10, 2102702.

[10]

Yang, W. H.; Shang, J. Z.; Wang, J. P.; Shen, X. N.; Cao, B. C.; Peimyoo, N.; Zou, C. J.; Chen, Y.; Wang, Y. L.; Cong, C. X. et al. Electrically tunable valley-light emitting diode (vLED) based on CVD-grown monolayer WS2. Nano Lett. 2016, 16, 1560–1567.

[11]

Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 2014, 9, 257–261.

[12]

Liu, Y. D.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Al-doped black phosphorus p–n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 2017, 27, 1604638.

[13]

Shang, J. Z.; Cong, C. X.; Wu, L. S.; Huang, W.; Yu, T. Light sources and photodetectors enabled by 2D semiconductors. Small Methods 2018, 2, 1800019.

[14]

Zhong, J. H.; Wu, B.; Madoune, Y.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Nano Res. 2022, 15, 2489–2496.

[15]

Zhang, Q.; Wang, W. J.; Zhang, J. Q.; Zhu, X. H.; Zhang, Q. Q.; Zhang, Y. J.; Ren, Z. M.; Song, S. S.; Wang, J. M.; Ying, Z. H. et al. Highly efficient photocatalytic hydrogen evolution by ReS2 via a two-electron catalytic reaction. Adv. Mater. 2018, 30, 1707123.

[16]

Zhang, Q.; Tan, S. J.; Mendes, R. G.; Sun, Z. T.; Chen, Y. T.; Kong, X.; Xue, Y. H.; Rümmeli, M. H.; Wu, X. J.; Chen, S. L. et al. Extremely weak van der Waals coupling in vertical ReS2 nanowalls for high-current-density lithium-ion batteries. Adv. Mater. 2016, 28, 2616–2623.

[17]

Xue, Y. H.; Zhang, Q.; Wang, W. J.; Cao, H.; Yang, Q. H.; Fu, L. Opening two-dimensional materials for energy conversion and storage: A concept. Adv. Energy Mater. 2017, 7, 1602684.

[18]

Wang, W. J.; Zhang, J. Q.; Zhang, Q.; Wan, S. Y.; Zhu, X. H.; Zhang, Q. Q.; Wang, W. Y.; Zhang, Y. J.; Liu, Y. J.; Fu, L. Self-adapting wettability of ReS2 under a constant stimulus. Adv. Mater. 2018, 30, 1804559.

[19]

Zhang, Q.; Zhang, J. Q.; Wan, S. Y.; Wang, W. Y.; Fu, L. Stimuli-responsive 2D materials beyond graphene. Adv. Funct. Mater. 2018, 28, 1802500.

[20]

Zhang, Q.; Wang, W. J.; Zhang, J. Q.; Zhu, X. H.; Fu, L. Thermally induced bending of ReS2 nanowalls. Adv. Mater. 2018, 30, 1704585.

[21]

Zhang, Q.; Wang, W. J.; Kong, X.; Mendes, R. G.; Fang, L. W.; Xue, Y. H.; Xiao, Y.; Rümmeli, M. H.; Chen, S. L.; Fu, L. Edge-to-edge oriented self-assembly of ReS2 nanoflakes. J. Am. Chem. Soc. 2016, 138, 11101–11104.

[22]

Zhang, Q.; Ren, Z. M.; Wu, N.; Wang, W. J.; Gao, Y. J.; Zhang, Q. Q.; Shi, J.; Zhuang, L.; Sun, X. N.; Fu, L. Nitrogen-doping induces tunable magnetism in ReS2. npj 2D Mater. Appl. 2018, 2, 22.

[23]

Zhang, Q.; Fu, L. Novel insights and perspectives into weakly coupled ReS2 toward emerging applications. Chem 2019, 5, 505–525.

[24]

Li, L.; Dong, J. C.; Geng, D. C.; Li, M. H.; Fu, W.; Ding, F.; Hu, W. P.; Yang, H. Y. Multi-stage anisotropic etching of two-dimensional heterostructures. Nano Res. 2022, 15, 4909–4915.

[25]

Zhang, Q.; He, W. Z.; Li, L.; Geng, D. C.; Xu, Z. P.; Chen, H. P.; Chen, W.; Hu, W. P. Oxygen-assisted anisotropic chemical etching of MoSe2 for enhanced phototransistors. Chem. Mater. 2022, 34, 4212–4223.

[26]

Geng, D. C.; Abdelwahab, I.; Xiao, X. F.; Cernescu, A.; Fu, W.; Giannini, V.; Maier, S. A.; Li, L.; Hu, W. P.; Loh, K. P. et al. One-pot confined epitaxial growth of 2D heterostructure arrays. ACS Mater. Lett. 2021, 3, 217–223.

[27]

Zhang, R. J.; Li, M. H.; Li, L.; Wei, Z. M.; Jiao, F.; Geng, D. C.; Hu, W. P. The more, the better-recent advances in construction of 2D multi-heterostructures. Adv. Funct. Mater. 2021, 31, 2102049.

[28]

Zhang, Q.; Li, E. L.; Wang, Y. S.; Gao, C. S.; Wang, C. Y.; Li, L.; Geng, D. C.; Chen, H. P.; Chen, W.; Hu, W. P. Ultralow-power vertical transistors for multilevel decoding modes. Adv. Mater. 2023, 35, 2208600.

[29]

Zhang, Q.; Geng, D. C.; Hu, W. P. Chemical vapor deposition for few-layer two-dimensional materials. SmartMat 2023, 4, e1177.

[30]

Fan, Y. X.; Li, L.; Zhang, Y.; Zhang, X. T.; Geng, D. C.; Hu, W. P. Recent advances in growth of transition metal carbides and nitrides (MXenes) crystals. Adv. Funct. Mater. 2022, 32, 2111357.

[31]

Fan, Y. X.; Li, L.; Yu, G.; Geng, D. C.; Zhang, X. T.; Hu, W. P. Recent advances in growth of large-sized 2D single crystals on Cu substrates. Adv. Mater. 2021, 33, 2003956.

[32]

Wang, Y. H.; Pang, J. B.; Cheng, Q. L.; Han, L.; Li, Y. F.; Meng, X.; Ibarlucea, B.; Zhao, H. B.; Yang, F.; Liu, H. Y. et al. Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 2021, 13, 143.

[33]

Kim, H.; Uddin, S. Z.; Lien, D. H.; Yeh, M.; Azar, N. S.; Balendhran, S.; Kim, T.; Gupta, N.; Rho, Y.; Grigoropoulos, C. P. et al. Actively variable-spectrum optoelectronics with black phosphorus. Nature 2021, 596, 232–237.

[34]

Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B. G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723–726.

[35]

Xie, Z. J.; Hui, L. L.; Wang, J. H.; Zhu, G. A.; Chen, Z. Q.; Li, C. M. Electronic and optical properties of monolayer black phosphorus induced by bi-axial strain. Comput. Mater. Sci. 2018, 144, 304–314.

[36]

Zhang, Y.; Ma, C. Y.; Xie, J. L.; Ågren, H.; Zhang, H. Black phosphorus/polymers: Status and challenges. Adv. Mater. 2021, 33, 2100113.

[37]

He, D. W.; Wang, Y. L.; Huang, Y.; Shi, Y.; Wang, X. R.; Duan, X. F. High-performance black phosphorus field-effect transistors with long-term air stability. Nano Lett. 2019, 19, 331–337.

[38]

Liu, Y. J.; Gao, P. F.; Zhang, T. M.; Zhu, X. J.; Zhang, M. M.; Chen, M. Q.; Du, P. W.; Wang, G. W.; Ji, H. X.; Yang, J. L. et al. Azide passivation of black phosphorus nanosheets: Covalent functionalization affords ambient stability enhancement. Angew. Chem., Int. Ed. 2019, 58, 1479–1483.

[39]

Cai, H. T.; Chin, Y. H. C. Catalytic Effects of chemisorbed sulfur on pyridine and cyclohexene hydrogenation on Pd and Pt clusters. ACS Catal. 2021, 11, 1684–1705.

[40]

Liang, Q. J.; Chen, Z. L.; Zhang, Q.; Wee, A. T. S. Pentagonal 2D transition metal dichalcogenides: PdSe2 and beyond. Adv. Funct. Mater. 2022, 32, 2203555.

[41]

Gu, Y. Y.; Cai, H.; Dong, J. C.; Yu, Y. L.; Hoffman, A. N.; Liu, C. Z.; Oyedele, A. D.; Lin, Y. C.; Ge, Z. Z.; Puretzky, A. A. et al. Two-dimensional palladium diselenide with strong in-plane optical anisotropy and high mobility grown by chemical vapor deposition. Adv. Mater. 2020, 32, 1906238.

[42]

Withanage, S. S.; Khondaker, S. I. Low pressure CVD growth of 2D PdSe2 thin film and its application in PdSe2-MoSe2 vertical heterostructure. 2D Mater. 2022, 9, 025025.

[43]

Lu, L. S.; Chen, G. H.; Cheng, H. Y.; Chuu, C. P.; Lu, K. C.; Chen, C. H.; Lu, M. Y.; Chuang, T. H.; Wei, D. H.; Chueh, W. C. et al. Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano 2020, 14, 4963–4972.

[44]

Jiang, S. L.; Xie, C. Y.; Gu, Y.; Zhang, Q. H.; Wu, X. X.; Sun, Y. L.; Li, W.; Shi, Y. P.; Zhao, L. Y.; Pan, S. Y. et al. Anisotropic growth and scanning tunneling microscopy identification of ultrathin even-layered PdSe2 ribbons. Small 2019, 15, 1902789.

[45]

Tai, K. L.; Chen, J.; Wen, Y.; Park, H.; Zhang, Q. Y.; Lu, Y.; Chang, R. J.; Tang, P.; Allen, C. S.; Wu, W. W. et al. Phase variations and layer epitaxy of 2D PdSe2 grown on 2D monolayers by direct selenization of molecular Pd precursors. ACS Nano 2020, 14, 11677–11690.

[46]

Nguyen, G. D.; Oyedele, A. D.; Haglund, A.; Ko, W.; Liang, L. B.; Puretzky, A. A.; Mandrus, D.; Xiao, K.; Li, A. P. Atomically precise PdSe2 pentagonal nanoribbons. ACS Nano 2020, 14, 1951–1957.

[47]

Liang, Q. J.; Zhang, Q.; Gou, J.; Song, T. T.; Arramel; Chen, H.; Yang, M.; Lim, S. X.; Wang, Q. X.; Zhu, R. et al. Performance improvement by ozone treatment of 2D PdSe2. ACS Nano 2020, 14, 5668–5677.

[48]

Shautsova, V.; Sinha, S.; Hou, L. L.; Zhang, Q. Y.; Tweedie, M.; Lu, Y.; Sheng, Y. W.; Porter, B. F.; Bhaskaran, H.; Warner, J. H. Direct laser patterning and phase transformation of 2D PdSe2 films for on-demand device fabrication. ACS Nano 2019, 13, 14162–14171.

[49]

Oyedele, A. D.; Yang, S. Z.; Feng, T. L.; Haglund, A. V.; Gu, Y. Y.; Puretzky, A. A.; Briggs, D.; Rouleau, C. M.; Chisholm, M. F.; Unocic, R. R. et al. Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc. 2019, 141, 8928–8936.

[50]

Das, T.; Seo, D.; Seo, J. E.; Chang, J. Tunable current transport in PdSe2 via layer-by-layer thickness modulation by mild plasma. Adv. Electron. Mater. 2020, 6, 2000008.

[51]

Hoffman, A. N.; Gu, Y. Y.; Tokash, J.; Woodward, J.; Xiao, K.; Rack, P. D. Layer-by-layer thinning of PdSe2 flakes via plasma induced oxidation and sublimation. ACS Appl. Mater. Interfaces 2020, 12, 7345–7350.

[52]

Xu, W. T.; Jiang, J. Y.; Ma, H. F.; Zhang, Z. W.; Li, J.; Zhao, B.; Wu, R. X.; Yang, X. D.; Zhang, H. M.; Li, B. L. et al. Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors. Nano Res. 2020, 13, 2091–2097.

[53]

Li, E.; Wang, D. F.; Fan, P.; Zhang, R. Z.; Zhang, Y. Y.; Li, G.; Mao, J. H.; Wang, Y. L.; Lin, X.; Du, S. X. et al. Construction of bilayer PdSe2 on epitaxial graphene. Nano Res. 2018, 11, 5858–5865.

[54]

Hoffman, A. N.; Gu, Y. Y.; Liang, L. B.; Fowlkes, J. D.; Xiao, K.; Rack, P. D. Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. npj 2D Mater. Appl. 2019, 3, 50.

[55]

Gu, Y. Y.; Zhang, L. Z.; Cai, H.; Liang, L. B.; Liu, C. Z.; Hoffman, A.; Yu, Y. L.; Houston, A.; Puretzky, A. A.; Duscher, G. et al. Stabilized synthesis of 2D verbeekite: Monoclinic PdSe2 crystals with high mobility and in-plane optical and electrical anisotropy. ACS Nano 2022, 16, 13900–13910.

[56]

Lei, W.; Zhang, S. L.; Heymann, G.; Tang, X.; Wen, J. F.; Zheng, X. J.; Hu, G. H.; Ming, X. A new 2D high-pressure phase of PdSe2 with high-mobility transport anisotropy for photovoltaic applications. J. Mater. Chem. C 2019, 7, 2096–2105.

[57]

Withanage, S. S.; Chamlagain, B.; Johnston, A. C.; Khondaker, S. I. Charge transfer doping of 2D PdSe2 thin film and its application in fabrication of heterostructures. Adv. Electron. Mater. 2021, 7, 2001057.

[58]

Wang, H. Y.; Li, Z. X.; Li, D. Y.; Xu, X.; Chen, P.; Pi, L. J.; Zhou, X.; Zhai, T. Y. Junction field-effect transistors based on PdSe2/MoS2 heterostructures for photodetectors showing high responsivity and detectivity. Adv. Funct. Mater. 2021, 31, 2106105.

[59]

Afzal, A. M.; Iqbal, M. Z.; Dastgeer, G.; Ahmad, A. U.; Park, B. Highly sensitive, ultrafast, and broadband photo-detecting field-effect transistor with transition-metal dichalcogenide van der Waals heterostructures of MoTe2 and PdSe2. Adv. Sci. 2021, 8, 2003713.

[60]

Li, G.; Yin, S. Q.; Tan, C. Y.; Chen, L. J.; Yu, M. X.; Li, L.; Yan, F. Fast photothermoelectric response in CVD-grown PdSe2 photodetectors with in-plane anisotropy. Adv. Funct. Mater. 2021, 31, 2104787.

[61]

Zhang, H. N.; Ma, P. F.; Zhu, M. X.; Zhang, W. F.; Wang, G. M.; Fu, S. G. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics 2020, 9, 2557–2567.

[62]

Xu, N. N.; Wang, H. F.; Zhang, H. N.; Guo, L. G.; Shang, X. X.; Jiang, S. Z.; Li, D. W. Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: From all anomalous dispersion to all normal dispersion. Nanophotonics 2020, 9, 4295–4306.

[63]

Ye, C. Y.; Yang, Z. Q.; Dong, J. H.; Huang, Y. F.; Song, M. M.; Sa, B.; Zheng, J. Y.; Zhan, H. B. Layer-tunable nonlinear optical characteristics and photocarrier dynamics of 2D PdSe2 in broadband spectra. Small 2021, 17, 2103938.

[64]

Chen, X.; Huang, J. W.; Chen, C. D.; Chen, M. L.; Hu, G. H.; Wang, H. Q.; Dong, N. N.; Wang, J. Broadband nonlinear photoresponse and ultrafast carrier dynamics of 2D PdSe2. Adv. Opt. Mater. 2022, 10, 2101963.

[65]

Wu, J. H.; Ma, H.; Zhong, C. Y.; Wei, M. L.; Sun, C. L.; Ye, Y. T.; Xu, Y.; Tang, B.; Luo, Y.; Sun, B. S. et al. Waveguide-integrated PdSe2 photodetector over a broad infrared wavelength range. Nano Lett. 2022, 22, 6816–6824.

[66]

Wu, D.; Xu, M. M.; Zeng, L. H.; Shi, Z. F.; Tian, Y. Z.; Li, X. J.; Shan, C. X.; Jie, J. S. In situ fabrication of PdSe2/GaN schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio. ACS Nano 2022, 16, 5545–5555

[67]

Dong, Z.; Yu, W. Z.; Zhang, L. B.; Mu, H. R.; Xie, L.; Li, J.; Zhang, Y.; Huang, L. Y.; He, X. Y.; Wang, L. et al. Highly efficient, ultrabroad PdSe2 phototransistors from visible to terahertz driven by mutiphysical mechanism. ACS Nano 2021, 15, 20403–20413.

[68]

Liang, Q. J.; Wang, Q. X.; Zhang, Q.; Wei, J. X.; Lim, S. X.; Zhu, R.; Hu, J. X.; Wei, W.; Lee, C.; Sow, C. et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019, 31, 1807609.

[69]

Di Bartolomeo, A.; Pelella, A.; Liu, X. W.; Miao, F.; Passacantando, M.; Giubileo, F.; Grillo, A.; Iemmo, L.; Urban, F.; Liang, S. J. Pressure-tunable ambipolar conduction and hysteresis in thin palladium diselenide field effect transistors. Adv. Funct. Mater. 2019, 29, 1902483.

[70]

Di Bartolomeo, A.; Urban, F.; Pelella, A.; Grillo, A.; Passacantando, M.; Liu, X.; Giubileo, F. Electron irradiation of multilayer PdSe2 field effect transistors. Nanotechnology 2020, 31, 375204.

[71]

Di Bartolomeo, A.; Pelella, A.; Urban, F.; Grillo, A.; Iemmo, L.; Passacantando, M.; Liu, X. W.; Giubileo, F. Field emission in ultrathin PdSe2 back-gated transistors. Adv. Electron. Mater. 2020, 6, 2000094.

[72]

Cheng, P. K.; Tang, C. Y.; Ahmed, S.; Qiao, J. P.; Zeng, L. H.; Tsang, Y. H. Utilization of group 10 2D TMDs-PdSe2 as a nonlinear optical material for obtaining switchable laser pulse generation modes. Nanotechnology 2021, 32, 055201.

[73]

Çakıroğlu, O.; Island, J. O.; Xie, Y.; Frisenda, R.; Castellanos-Gomez, A. An automated system for strain engineering and straintronics of 2D materials. Adv. Mater. Technol. 2023, 8, 2201091.

[74]

Li, Z. X.; Li, D. Y.; Wang, H. Y.; Xu, X.; Pi, L. J.; Chen, P.; Zhai, T. Y.; Zhou, X. Universal p-type doping via lewis acid for 2D transition-metal dichalcogenides. ACS Nano 2022, 16, 4884–4891.

[75]

Kozhakhmetov, A.; Stolz, S.; Tan, A. M. Z.; Pendurthi, R.; Bachu, S.; Turker, F.; Alem, N.; Kachian, J.; Das, S.; Hennig, R. G. et al. Controllable p-type doping of 2D WSe2 via vanadium substitution. Adv. Funct. Mater. 2021, 31, 2105252.

[76]

Endo, J.; Matsumoto, T.; Kido, J. Organic electroluminescent devices with a vacuum-deposited lewis-acid-doped hole-injecting layer. Jpn. J. Appl. Phys. 2002, 41, L358–L360.

[77]

Ganzorig, C.; Fujihira, M. Improved drive voltages of organic electroluminescent devices with an efficient p-type aromatic diamine hole-injection layer. Appl. Phys. Lett. 2000, 77, 4211–4213.

[78]

Lovchik, M. A.; Pinhas, A. R. The rearrangement of 3-vinylcyclobutene derivatives promoted by metallic Lewis acids. J. Organomet. Chem. 2002, 656, 299–303.

[79]

Morales, E. H.; He, Y. B.; Vinnichenko, M.; Delley, B.; Diebold, U. Surface structure of Sn-doped In2O3 (111) thin films by STM. New J. Phys. 2008, 10, 125030.

[80]

Bartolomeo, A. D.; Giubileo, F.; Romeo, F.; Sabatino, P.; Carapella, G.; Iemmo, L.; Schroeder, T.; Lupina, G. Graphene field effect transistors with niobium contacts and asymmetric transfer characteristics. Nanotechnology 2015, 26, 475202.

[81]

Chow, W. L.; Yu, P.; Liu, F. C.; Hong, J. H.; Wang, X. L.; Zeng, Q. S.; Hsu, C. H.; Zhu, C.; Zhou, J. D.; Wang, X. W. et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 2017, 29, 1602969.

[82]

Luo, L. B.; Wang, D.; Xie, C.; Hu, J. G.; Zhao, X. Y.; Liang, F. X. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater. 2019, 29, 1900849.

[83]

Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zhang, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090–14097.

[84]

Wei, M. Y.; Lian, J.; Zhang, Y.; Wang, C. L.; Wang, Y. M.; Xu, Z. Layer-dependent optical and dielectric properties of centimeter-scale PdSe2 films grown by chemical vapor deposition. npj 2D Mater. Appl. 2022, 6, 1.

[85]

Luo, W. J.; Oyedele, A. D.; Gu, Y. Y.; Li, T. S.; Wang, X. Z.; Haglund, A. V.; Mandrus, D.; Puretzky, A. A.; Xiao, K.; Liang, L. B. et al. Anisotropic phonon response of few-layer PdSe2 under uniaxial strain. Adv. Funct. Mater. 2020, 30, 2003215.

[86]

Wu, Z. H.; Lu, L.; Liang, X. C.; Dun, C.; Yan, S. C.; Mu, E. Z.; Liu, Y.; Hu, Z. Y. Formation of hexagonal PdSe2 for electronics and catalysis. J. Phys. Chem. C 2020, 124, 10935–10940.

[87]

Duan, R. H.; He, Y. C.; Zhu, C.; Wang, X. W.; Zhu, C.; Zhao, X. X.; Zhang, Z. H.; Zeng, Q. S.; Deng, Y.; Xu, M. Z. et al. 2D cairo pentagonal PdPS: Air-stable anisotropic ternary semiconductor with high optoelectronic performance. Adv. Funct. Mater. 2022, 32, 2113255.

[88]

Huang, Y. L.; Zheng, Y. J.; Song, Z. B.; Chi, D. Z.; Wee, A. T. S.; Quek, S. Y. The organic-2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev. 2018, 47, 3241–3264.

[89]

Huang, Y. L.; Wee, A. T. S. The electronic structure at organic-2D material heterointerfaces. Surf. Rev. Lett. 2021, 28, 2140003.

[90]

Hajlaoui, S.; Chaabane, I.; Oueslati, A.; Guidara, K.; Bulou, A. A theoretical study on the molecular structure and vibrational (FT-IR and Raman) spectra of new organic–inorganic compound [N(C3H7)4]2SnCl6. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2014, 117, 225–233.

[91]

Du, R. F.; Wang, Y. Z.; Cheng, M.; Wang, P.; Li, H.; Feng, W.; Song, L. Y.; Shi, J. P.; He, J. Two-dimensional multiferroic material of metallic p-doped SnSe. Nat. Commun. 2022, 13, 6130.

[92]

Fan, S. Q.; Tang, X. D.; Zhang, D. H.; Hu, X. D.; Liu, J.; Yang, L. J.; Su, J. Ambipolar and n/p-type conduction enhancement of two-dimensional materials by surface charge transfer doping. Nanoscale 2019, 11, 15359–15366.

[93]

Wu, J.; Zhuge, F. W.; Li, H. Q.; Zhai, T. Y. Recent advances in two-dimensional p-type metal chalcogenides: Synthesis, doping strategies and applications. J. Phys. D: Appl. Phys. 2023, 56, 023001.

[94]

Kim, J. K.; Cho, K.; Jang, J.; Baek, K. Y.; Kim, J.; Seo, J.; Song, M.; Shin, J.; Kim, J.; Parkin, S. S. P. et al. Molecular dopant-dependent charge transport in surface-charge-transfer-doped tungsten diselenide field effect transistors. Adv. Mater. 2021, 33, 2101598.

[95]

Wang, Z.; Xia, H.; Wang, P.; Zhou, X. H.; Liu, C. S.; Zhang, Q. H.; Wang, F.; Huang, M. L.; Chen, S. Y.; Wu, P. S. et al. Controllable doping in 2D layered materials. Adv. Mater. 2021, 33, 2104942.

[96]

Li, M. G.; Wu, X. X.; Guo, W. X.; Liu, Y. L.; Xiao, C.; Ou, T. J.; Zheng, Y.; Wang, Y. W. Controllable p-type doping of monolayer MoS2 with tantalum by one-step chemical vapor deposition. J. Mater. Chem. C 2022, 10, 7662–7673.

[97]

De Trizio, L.; Li, H. B.; Casu, A.; Genovese, A.; Sathya, A.; Messina, G. C.; Manna, L. Sn cation valency dependence in cation exchange reactions involving Cu2− x Se nanocrystals. J. Am. Chem. Soc. 2014, 136, 16277–16284.

[98]

Gaskell, T. F. The structure of braggite and palladium sulphide. Z. Kristallogr. Cryst. Mater. 1937, 96, 203–213.

[99]

Pace, R. B.; Lardinois, T. M.; Ji, Y. Y.; Gounder, R.; Heintz, O.; Crocker, M. Effects of treatment conditions on Pd speciation in CHA and beta zeolites for passive NO x adsorption. ACS Omega 2021, 6, 29471–29482.

[100]

Khivantsev, K.; Jaegers, N. R.; Koleva, I. Z.; Aleksandrov, H. A.; Kovarik, L.; Engelhard, M.; Gao, F.; Wang, Y.; Vayssilov, G. N.; Szanyi, J. Stabilization of super electrophilic Pd+2 cations in small-pore SSZ-13 zeolite. J. Phys. Chem. C 2020, 124, 309–321.

[101]

Bondarchuk, I.; Cadete Santos Aires, F. J.; Mamontov, G.; Kurzina, I. Preparation and investigation of Pd and bimetallic Pd-Sn nanocrystals on γ-Al2O3. Crystals 2021, 11, 444.

[102]

Selb, E.; Götsch, T.; Janka, O.; Penner, S.; Heymann, G. Crystal structures of the high-pressure palladium dichalcogenides Pd0.94(1)S2 and Pd0.88(1)Se2 comprising exceptional PdIV oxidation states. Z. Anorg. Allg. Chem. 2017, 643, 1415–1423.

[103]

Santner, S.; Yogendra, S.; Weigand, J. J.; Dehnen, S. Exploring the chemical reaction space at the formation of chalcogenidometalate superspheres in ionic liquids. Chem.—Eur. J. 2017, 23, 1999–2004.

[104]

Yang, X. M.; Wu, L.; Wang, Z.; Bian, J. J.; Lu, T. L.; Zhou, L. P.; Chen, C.; Xu, J. Conversion of dihydroxyacetone to methyl lactate catalyzed by highly active hierarchical Sn-USY at room temperature. Catal. Sci. Technol. 2016, 6, 1757–1763.

[105]

Chen, Y. X.; Qin, W. N.; Mansoor, A.; Abbas, A.; Li, F.; Liang, G. X.; Fan, P.; Muzaffar, M. U.; Jabar, B.; Ge, Z. H.; Zheng, Z. H. Realizing high thermoelectric performance via selective resonant doping in oxyselenide BiCuSeO. Nano Res. 2023, 16, 1679–1687.

[106]

Liang, H. D.; Zheng, Y.; Loh, L.; Hu, Z. H.; Liang, Q. J.; Han, C.; Bosman, M.; Chen, W.; Bettiol, A. A. Robust n-type doping of WSe2 enabled by controllable proton irradiation. Nano Res. 2023, 16, 1220–1227.

[107]

Zeng, P. Y.; Wang, W. H.; Jiang, J.; Liu, Z.; Han, D. S.; Hu, S. J.; He, J. Y.; Zheng, P.; Zheng, H.; Zheng, L. et al. Thickness-dependent enhanced optoelectronic performance of surface charge transfer-doped ReS2 photodetectors. Nano Res. 2022, 15, 3638–3646.

[108]

Sun, Y. M.; Xiong, J. X.; Wu, X. M.; Gao, W.; Huo, N. J.; Li, J. B. Highly sensitive infrared polarized photodetector enabled by out-of-plane PSN architecture composing of p-MoTe2, semimetal-MoTe2 and n-SnSe2. Nano Res. 2022, 15, 5384–5391.

[109]

Wang, Y. W.; Zhou, L.; Zhong, M. Z.; Liu, Y. P.; Xiao, S.; He, J. Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Res. 2022, 15, 3675–3694.

[110]

Li, H.; Liang, J. K.; Wang, Q. D.; Liu, F. B.; Zhou, G.; Qing, T.; Zhang, S. H.; Lu, J. Device performance limit of monolayer SnSe2 MOSFET. Nano Res. 2022, 15, 2522–2530.

[111]

Li, Z.; Jinkins, K. R.; Cui, D. Z.; Chen, M. R.; Zhao, Z. Y.; Arnold, M. S.; Zhou, C. W. Air-stable n-type transistors based on assembled aligned carbon nanotube arrays and their application in complementary metal-oxide-semiconductor electronics. Nano Res. 2022, 15, 864–871.

[112]

Wu, J.; Zhao, Y. S.; Sun, M. L.; Zheng, M. R.; Zhang, G.; Liu, X. K.; Chi, D. Z. Enhanced photoresponse of highly air-stable palladium diselenide by thickness engineering. Nanophotonics 2020, 9, 2467–2474.

[113]

Qi, S. Y.; Zhang, W. F.; Wang, X. L.; Ding, Y. F.; Zhang, Y.; Qiu, J. K.; Lei, T.; Long, R.; Liu, N. N-doped MoS2 via assembly transfer on an elastomeric substrate for high-photoresponsivity, air-stable and stretchable photodetector. Nano Res. 2022, 15, 9866–9874

[114]

Liang, Q. J.; Gou, J.; Arramel; Zhang, Q.; Zhang, W. J.; Wee, A. T. S. Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides. Nano Res. 2020, 13, 3439–3444.

[115]

Zhu, Z. Y.; Tiwari, J.; Feng, T. L.; Shi, Z.; Lou, Y.; Xu, B. High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in n-type PbS. Nano Res. 2022, 15, 4739–4746.

[116]

Ullah, S.; Liu, Y.; Hasan, M.; Zeng, W. W.; Shi, Q. T.; Yang, X. Q.; Fu, L.; Ta, H. Q.; Lian, X. Y.; Sun, J. Y. et al. Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene family. Nano Res. 2022, 15, 1310–1318.

[117]

Nan, J. L.; Liu, Y. Q.; Chao, D. Y.; Fang, Y. X.; Dong, S. J. Crystal defect engineering of Bi2Te3 nanosheets by Ce doping for efficient electrocatalytic nitrogen reduction. Nano Res. 2023, 16, 6544–6551.

[118]

Zhang, B.; Zhao, Y. G.; Li, L.; Li, Y. K.; Zhang, J.; Shao, G. S.; Zhang, P. Bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber composite: A high-performance oxygen reduction electrocatalyst for zinc-air batteries. Nano Res. 2023, 16, 545–554.

[119]

Ling, M.; Li, N.; Jiang, B. B.; Tu, R. Y.; Wu, T.; Guan, P. L.; Ye, Y.; Cheong, W. C. M.; Sun, K.; Liu, S. J. et al. Rationally engineered Co and N co-doped WS2 as bifunctional catalysts for pH-universal hydrogen evolution and oxidative dehydrogenation reactions. Nano Res. 2022, 15, 1993–2002.

[120]

Li, Y. K.; Li, L.; Liu, F. Y.; Wang, B.; Gao, F.; Liu, C.; Fang, J. Y.; Huang, F.; Lin, Z.; Wang, M. Y. Robust route to H2O2 and H2 via intermediate water splitting enabled by capitalizing on minimum vanadium-doped piezocatalysts. Nano Res. 2022, 15, 7986–7993.

[121]

Pam, M. E.; Hu, J. P.; Ang, Y. S.; Huang, S. Z.; Kong, D. Z.; Shi, Y. M.; Zhao, X. X.; Geng, D. C.; Pennycook, S. J.; Ang, L. K. et al. High-concentration niobium-substituted WS2 basal domains with reconfigured electronic band structure for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 34862–34868.

[122]

Li, M. G.; Yao, J. D.; Wu, X. X.; Zhang, S. C.; Xing, B. R.; Niu, X. Y.; Yan, X. Y.; Yu, Y.; Liu, Y. L.; Wang, Y. W. p-type doping in large-area monolayer MoS2 by chemical vapor deposition. ACS Appl. Mater. Interfaces 2020, 12, 6276–6282.

[123]

Li, B.; Xing, T.; Zhong, M. Z.; Huang, L.; Lei, N.; Zhang, J.; Li, J. B.; Wei, Z. M. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958.

[124]

Wang, C.; Furlan de Oliveira, R.; Jiang, K. Y.; Zhao, Y. D.; Turetta, N.; Ma, C.; Han, B.; Zhang, H. M.; Tranca, D.; Zhuang, X. D. et al. Boosting the electronic and catalytic properties of 2D semiconductors with supramolecular 2D hydrogen-bonded superlattices. Nat. Commun. 2022, 13, 510.

[125]

Wan, W.; Harsh, R.; Dreher, P.; de Juan, F.; Ugeda, M. M. Superconducting dome by tuning through a van Hove singularity in a two-dimensional metal. npj 2D Mater. Appl. 2023, 7, 41.

[126]

Jena, T.; Hossain, M. T.; Nath, U.; Sarma, M.; Sugimoto, H.; Fujii, M.; Giri, P. K. Evidence for intrinsic defects and nanopores as hotspots in 2D PdSe2 dendrites for plasmon-free SERS substrate with a high enhancement factor. npj 2D Mater. Appl. 2023, 7, 8.

[127]

Kundu, T.; Pal, B.; Das, B.; Paramanik, R.; Maity, S.; Ghosh, A.; Palit, M.; Kopciuszynski, M.; Barinov, A.; Mahatha, S. K. et al. Tunable electron transport in defect-engineered PdSe2. Chem. Mater. 2023, 35, 5212–5221.

[128]

Yu, Z. Y.; Lv, S. Y.; Yao, Q.; Fang, N.; Xu, Y.; Shao, Q.; Pao, C. W.; Lee, J. F.; Li, G. L.; Yang, L. M. et al. Low-coordinated Pd site within amorphous palladium selenide for active, selective, and stable H2O2 electrosynthesis. Adv. Mater. 2023, 35, 2208101.

[129]

Semkin, V. A.; Shabanov, A. V.; Mylnikov, D. A.; Kashchenko, M. A.; Domaratskiy, I. K.; Zhukov, S. S.; Svintsov, D. A. Zero-bias photodetection in 2D materials via geometric design of contacts. Nano Lett. 2023, 23, 5250–5256.

[130]

Wang, Z. P.; Ali, N.; Ngo, T. D.; Shin, H.; Lee, S.; Yoo, W. J. Achieving ultrahigh electron mobility in PdSe2 field-effect transistors via semimetal antimony as contacts. Adv. Funct. Mater. 2023, 33, 2301651.

[131]

Zha, J.; Liu, H. D.; Wang, H. D.; Li, S. Y.; Huang, H. X.; Xia, Y. P.; Ma, C.; Yang, P.; Zhang, Z. M.; Yang, Z. B. et al. Plasma-optimized contact for high-performance PdSe2 nanoflake-based field-effect transistors. Appl. Phys. Lett. 2023, 123, 042104.

[132]
Wang, W. X.; Jin, J. Y.; Wang, Y. R.; Wei, Z.; Xu, Y. S.; Peng, Z. S.; Liu, H.; Wang, Y.; You, J. W.; Impundu, J. et al. High-speed optoelectronic nonvolatile memory based on van der Waals heterostructures. Small, in press, https://doi.org/10.1002/smll.202304730.
[133]

Zhang, X. R.; Dai, M. J.; Deng, W. J.; Zhang, Y. Z.; Wang, Q. J. A broadband, self-powered, and polarization-sensitive PdSe2 photodetector based on asymmetric van der Waals contacts. Nanophotonics 2023, 12, 607–618.

[134]
Chen, H. L.; Kuklin, A.; Xiao, J.; Al-Hartomy, O. A.; Al-Ghamdi, A.; Wageh, S.; Zhang, Y. L.; Ågren, H.; Gao, L. F.; Zhang, H. Direct observation of photon induced giant band renormalization in 2D PdSe2 dichalcogenide by transient absorption spectroscopy. Small, in press, https://doi.org/10.1002/smll.202302760.
[135]

Chen, T. H.; Xiao, L.; Liu, Y.; Wang, J. Z.; Wang, X. R.; Wang, X. M.; Yan, S. C.; Shi, Y. Gate-tunable photovoltaic efficiency in graphene-sandwiched pdse2 photodetectors with restrained carrier recombination. Adv. Opt. Mater. 2023, 11, 2300167.

[136]
Zhang, R.; Yang, Z. J.; Liu, L. W.; Lin, J.; Wen, S. F.; Meng, Y.; Yin, Y.; Lan, C. Y.; Li, C.; Liu, Y. et al. Highly sensitive broadband bolometric photodetectors based on 2D PdSe2 thin film. Adv. Opt. Mater., in press, https://doi.org/10.1002/adom.202301055.
[137]

Sun, Y. L.; Wei, Z. Q.; Zhao, C. Y.; Zhang, G. P.; Zhang, G. Y.; Zhou, S.; Zhang, Z. Z.; Yu, Y. G.; Zhang, Q.; Li, X. G. et al. PdSe2 quantum dots for improving the photovoltaic performance of nonfullerene organic solar cells. Sol. RRL 2023, 7, 2200965.

[138]

Wang, S. Y.; Li, D. K.; Zha, M. J.; Yan, X. Q.; Liu, Z. B.; Tian, J. G. Tunable optical activity in twisted anisotropic two-dimensional materials. ACS Nano 2023, 17, 16230–16238.

[139]

Jiang, X. X.; Zhang, S. Z.; Jiang, D. Q.; Wang, Y. G.; Molokeev, M. S.; Wang, N. Z.; Liu, Y. Q.; Zhang, X. Y.; Lin, Z. S. Unexpected giant negative area compressibility in palladium diselenide. Natl. Sci. Rev. 2023, 10, nwad016.

[140]

Zhang, S. M.; Deng, X. N.; Wu, Y. F.; Wang, Y. Q.; Ke, S. X.; Zhang, S. S.; Liu, K.; Lv, R. T.; Li, Z. C.; Xiong, Q. H. et al. Lateral layered semiconductor multijunctions for novel electronic devices. Chem. Soc. Rev. 2022, 51, 4000–4022.

[141]

Lee, D.; Choi, Y.; Kim, J.; Kim, J. Recessed-channel WSe2 field-effect transistor via self-terminated doping and layer-by-layer etching. ACS Nano 2022, 16, 8484–8492.

[142]

Jeong, B. J.; Lee, B.; Choi, K. H.; Sung, D.; Ghods, S.; Lee, J.; Jeon, J.; Cho, S.; Lee, S. H.; Kim, B. J. et al. Controlled bipolar doping of one-dimensional van der Waals Nb2Pd3Se8. Nano Lett. 2023, 23, 6269–6275.

[143]

Kwon, G.; Choi, Y. H.; Lee, H.; Kim, H. S.; Jeong, J.; Jeong, K.; Baik, M.; Kwon, H.; Ahn, J.; Lee, E. et al. Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 2022, 5, 241–247.

[144]

Wang, Y.; Kim, J. C.; Li, Y.; Ma, K. Y.; Hong, S.; Kim, M.; Shin, H. S.; Jeong, H. Y.; Chhowalla, M. p-type electrical contacts for 2D transition-metal dichalcogenides. Nature 2022, 610, 61–66

[145]

Li, M. J.; Liu, H. F.; Zhao, R. Y.; Yang, F. S.; Chen, M. R.; Zhuo, Y.; Zhou, C. W.; Wang, H.; Lin, Y. F.; Yang, J. J. Imperfection-enabled memristive switching in van der Waals materials. Nat. Electron. 2023, 6, 491–505.

[146]

Dong, J. F.; Suwardi, A.; Tan, X. Y.; Jia, N.; Saglik, K.; Ji, R.; Wang, X. Z.; Zhu, Q.; Xu, J. W.; Yan, Q. Y. Challenges and opportunities in low-dimensional thermoelectric nanomaterials. Mater. Today 2023, 66, 137–157.

[147]
Xiong, Y. H.; Xu, D.; Feng, Y. P.; Zhang, G. J.; Lin, P.; Chen, X. p-type 2D semiconductors for future electronics. Adv. Mater., in press, https://doi.org/10.1002/adma.202206939.
[148]

Li, Z. Q.; Yan, T. T.; Fang, X. S. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat. Rev. Mater. 2023, 8, 587–603.

[149]

Shreiner, R.; Hao, K.; Butcher, A.; High, A. A. Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor. Nat. Photonics 2022, 16, 330–336.

[150]

Cho, Y.; Schleder, G. R.; Larson, D. T.; Brutschea, E.; Byun, K. E.; Park, H.; Kim, P.; Kaxiras, E. Modulation doping of single-layer semiconductors for improved contact at metal interfaces. Nano Lett. 2022, 22, 9700–9706.

[151]

Jang, J.; Kim, J. K.; Shin, J.; Kim, J.; Baek, K. Y.; Park, J.; Park, S.; Kim, Y. D.; Parkin, S. S. P.; Kang, K. et al. Reduced dopant-induced scattering in remote charge-transfer-doped MoS2 field-effect transistors. Sci. Adv. 2022, 8, eabn3181.

[152]
Mondal, A.; Biswas, C.; Park, S.; Cha, W.; Kang, S. H.; Yoon, M.; Choi, S. H.; Kim, K. K.; Lee, Y. H. Low ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer. Nat. Nanotechnol., in press, https://doi.org/10.1038/s41565-023-01497-x.
[153]

Kang, X. L.; Lan, C. Y.; Li, F. Z.; Wang, W.; Yip, S.; Meng, Y.; Wang, F.; Lai, Z. X.; Liu, C. Y.; Ho, J. C. van der Waals PdSe2/WS2 heterostructures for robust high-performance broadband photodetection from visible to infrared optical communication band. Adv. Opt. Mater. 2021, 9, 2001991.

[154]

Dong, Q. S.; Wang, F.; Hu, X.; Lu, Y.; Zhao, D. X.; Zhang, M.; Han, T.; Hou, X. Y.; Wang, S. L.; Long, M. S. et al. High-performance broadband photodetector based on PdSe2/black phosphorus heterodiode. Appl. Phys. Lett. 2022, 120, 231103.

[155]

Afzal, A. M.; Dastgeer, G.; Iqbal, M. Z.; Gautam, P.; Faisal, M. M. High-performance p-BP/n-PdSe2 near-infrared photodiodes with a fast and gate-tunable photoresponse. ACS Appl. Mater. Interfaces 2020, 12, 19625–19634.

[156]

Aftab, S.; Samiya, M.; Liao, W. G.; Iqbal, M. W.; Ishfaq, M.; Ramachandraiah, K.; Ajmal, H. M. S.; Haque, H. M. U.; Yousuf, S.; Ahmed, Z. et al. Switching photodiodes based on (2D/3D) PdSe2/Si heterojunctions with a broadband spectral response. J. Mater. Chem. C 2021, 9, 3998–4007.

[157]

Fu, C.; Xiao, Y. T.; Xing, Y.; Tong, X. W.; Wang, J.; Zhang, Z. X.; Wang, L.; Wu, D.; Luo, L. B. Filterless discrimination of wavelengths in the range from ultraviolet to near-infrared light using two PdSe2/Thin Si/PdSe2 heterojunction photodetectors. ACS Appl. Mater. Interfaces 2021, 13, 43273–43281.

[158]

Zeng, L. H.; Chen, Q. M.; Zhang, Z. X.; Wu, D.; Yuan, H. Y.; Li, Y. Y.; Qarony, W.; Lau, S. P.; Luo, L. B.; Tsang, Y. H. Multilayered PdSe2/perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 2019, 6, 1901134.

[159]
Sze, S. M.; Li, Y. M.; Ng, K. K. Physics of Semiconductor Devices, 4th ed.; John Wiley & Sons: Hoboken, 2021.
[160]

Lee, M.; Park, C. Y.; Sim, S.; Lee, K.; Lee, Y. T. Homogeneous palladium diselenide pn-junction diodes for reconfigurable circuit applications. Adv. Electron. Mater. 2022, 8, 2101282.

[161]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[162]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

File
12274_2023_6196_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 07 August 2023
Revised: 11 September 2023
Accepted: 12 September 2023
Published: 24 November 2023
Issue date: April 2024

Copyright

© The Author(s) 2023

Acknowledgements

Acknowledgements

J. B. P. thanks the Natural Science Foundation of Shandong Province for Excellent Young Scholars (No. ZR2022YQ41) and the fund (No. SKT2203) from the State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences for support. This work was partially supported by the National Key Research and Development Program of China (No. 2022YFE0124200) and the National Natural Science Foundation of China (No. U2241221). W. J. Z. thanks the Major innovation project of Shandong Province (No. 2021CXGC010603), the National Natural Science Foundation of China (No. 52022037), and the Taishan Scholars Project Special Funds (No. TSQN201812083). The project was supported by the Foundation (No. GZKF202107) of State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences. M. H. R. thanks the National Natural Science Foundation of China (No. 52071225), the National Science Center and the Czech Republic under the ERDF program “Institute of Environmental Technology—Excellent Research” (No. CZ.02.1.01/0.0/0.0/16_019/0000853), and the Sino-German Research Institute (No. GZ 1400) for support. S. X. H. thanks the National Natural Science Foundation of China (Nos. 21976014 and 22276013) for funding, and thanks the Tianhe2-JK HPC for generous computer time.

Rights and permissions

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return