Journal Home > Volume 17 , Issue 4

Sodium-ion batteries (SIBs) are required to possess long cycle life when used for large-scale energy storage. The polyanionic Na4MnV(PO4)3 (NMVP) reveals good cyclic stability due to its unique three-dimensional (3D) frame structure, but it still faces the challenge of interfacial degradation in practical applications. In this work, NASICON-type Na1.3Al0.7Ti1.3(PO4)3 (NATP) was deposited on the surface of NMVP to promote interface stability by surface modification and gradient doping. As a result, the optimized NMVP@2%NATP released a capacity retention of 44.8% after 1000 cycles at 5 C, much higher than that of the initial NMVP (28.9%). The enhanced electrochemical performance was mainly attributed to NATP coating acting as a fast ion transport carrier and physical barrier, significantly facilitating the Na+ diffusion and isolating side reaction at the electrode/electrolyte interface. On the other hand, Ti4+ and Al3+ cations from the NATP were partially doped inside the NMVP surface to boost the transport of Na+, and the perfect lattice matching of NVMP and NATP improved the interface and structural stability accompanying long cycling. This work demonstrated the effectiveness of surface modification with high lattice match material and provided new perspectives for high energy density solid-state SIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-lattice-adapted surface modifying Na4MnV(PO4)3 for better sodium storage

Show Author's information Chongran SongShiyu Li( )Ying Bai( )
International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China

Abstract

Sodium-ion batteries (SIBs) are required to possess long cycle life when used for large-scale energy storage. The polyanionic Na4MnV(PO4)3 (NMVP) reveals good cyclic stability due to its unique three-dimensional (3D) frame structure, but it still faces the challenge of interfacial degradation in practical applications. In this work, NASICON-type Na1.3Al0.7Ti1.3(PO4)3 (NATP) was deposited on the surface of NMVP to promote interface stability by surface modification and gradient doping. As a result, the optimized NMVP@2%NATP released a capacity retention of 44.8% after 1000 cycles at 5 C, much higher than that of the initial NMVP (28.9%). The enhanced electrochemical performance was mainly attributed to NATP coating acting as a fast ion transport carrier and physical barrier, significantly facilitating the Na+ diffusion and isolating side reaction at the electrode/electrolyte interface. On the other hand, Ti4+ and Al3+ cations from the NATP were partially doped inside the NMVP surface to boost the transport of Na+, and the perfect lattice matching of NVMP and NATP improved the interface and structural stability accompanying long cycling. This work demonstrated the effectiveness of surface modification with high lattice match material and provided new perspectives for high energy density solid-state SIBs.

Keywords: sodium-ion batteries, surface modification, cathode, high-lattice-adapted

References(41)

[1]

Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

[2]

Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.

[3]

Chen, M. Z.; Liu, Q. N.; Wang, S. W.; Wang, E. H.; Guo, X. D.; Chou, S. L. High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: Problems, progress, and key technologies. Adv. Energy Mater. 2019, 9, 1803609.

[4]

Eftekhari, A.; Kim, D. W. Sodium-ion batteries: New opportunities beyond energy storage by lithium. J. Power Sources 2018, 395, 336–348.

[5]

Xiao, Y.; Abbasi, N. M.; Zhu, Y. F.; Li, S.; Tan, S. J.; Ling, W.; Peng, L.; Yang, T. Q.; Wang, L. D.; Guo, X. D. et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries. Adv. Funct. Mater., 2020, 30, 2001334.

[6]

Mauger, A.; Julien, C. M. State-of-the-art electrode materials for sodium-ion batteries. Materials (Basel) 2020, 13, 3453.

[7]

Li, H. X.; Xu, M.; Zhang, Z. A.; Lai, Y. Q.; Ma, J. M. Engineering of polyanion type cathode materials for sodium-ion batteries: Toward higher energy/power density. Adv. Funct. Mater. 2020, 30, 2000473.

[8]

Chen, G. X.; Huang, Q.; Wu, T.; Lu, L. Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—A review. Adv. Funct. Mater. 2020, 30, 2001289.

[9]

Yan, D.; Yang, H. Y.; Bai, Y. Tactics to optimize conversion-type metal fluoride/sulfide/oxide cathodes toward advanced lithium metal batteries. Nano Res. 2023, 16, 8173–8190.

[10]

Chen, S. Q.; Wu, C.; Shen, L. F.; Zhu, C. B.; Huang, Y. Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700431.

[11]

Barpanda, P.; Lander, L.; Nishimura, S. I.; Yamada, A. Polyanionic insertion materials for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1703055.

[12]

Jin, T.; Li, H. X.; Zhu, K. J.; Wang, P. F.; Liu, P.; Jiao, L. F. Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 2020, 49, 2342–2377.

[13]

Zhou, W. D.; Xue, L. G.; Lü, X. J.; Gao, H. C.; Li, Y. T.; Xin, S.; Fu, G. T.; Cui, Z. M.; Zhu, Y.; Goodenough, J. B. NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction. Nano Lett. 2016, 12, 7836–7841.

[14]

Ma, H. Y.; Bai, J.; Wang, P. Y.; Li, W. Y.; Mao, Y. J.; Xiao, K.; Zhu, X. B.; Zhao, B. C.; Sun Y. P. Double-carbon-layer coated Na4MnV(PO4)3 towards high-performance sodium-ion full batteries. Adv. Mater. Interfaces 2022, 9, 2201386.

[15]

Ling, R.; Cai, S.; Shen, K. E.; Sang, Z. Y.; Xie, D. L.; Sun, J. Y.; Xiong, K. Z.; Guo, J. Z.; Sun, X. H. Dual carbon-confined Na2MnPO4F nanoparticles as a superior cathode for rechargeable sodium-ion battery. Ceram. Int. 2019, 45, 19799–19807.

[16]

Shang, Y.; Li, X. X.; Song, J. J.; Huang, S. Z.; Yang, Z.; Xu, Z. J.; Yang, H. Y. Unconventional Mn vacancies in Mn-Fe Prussian blue analogs: Suppressing Jahn–Teller distortion for ultrastable sodium storage. Chem 2020, 6, 1804–1818.

[17]

Xu, C. L.; Zhao, J. M.; Wang, E. H.; Liu, X. H.; Shen, X.; Rong, X. H.; Zheng, Q.; Ren, G. X.; Zhang, N.; Liu, X. S. et al. A novel NASICON-typed Na4VMn0.5Fe0.5(PO4)3 cathode for high-performance Na-ion batteries. Adv. Energy Mater. 2021, 11, 2100729.

[18]

Xu, C. L.; Xiao, R. J.; Zhao, J. M.; Ding, F. X.; Yang, Y.; Rong, X. H.; Guo, X. H.; Yang, C.; Liu, H. Z.; Zhong, B. H. et al. Mn-rich phosphate cathodes for Na-ion batteries with superior rate performance. ACS Energy Lett. 2022, 7, 97–107.

[19]

Or, T.; Gourley, S. W. D.; Kaliyappan, K.; Zheng, Y.; Li, M.; Chen, Z. W. Recent progress in surface coatings for sodium-ion battery electrode materials. Electrochem. Energy Rev. 2022, 5, 20.

[20]

Qian, H. M.; Ren, H. Q.; Zhang, Y.; He, X. F.; Li, W. B.; Wang, J. J.; Hu, J. H.; Yang, H.; Sari, H. M. K.; Chen, Y. et al. Surface doping vs. bulk doping of cathode materials for lithium-ion batteries: A review. Electrochem. Energy Rev. 2022, 5, 2.

[21]

Ghosh, S.; Barman, N.; Senguttuvan, P. Impact of Mg2+ and Al3+ substitutions on the structural and electrochemical properties of nasicon-NaxVMn0.75M0.25(PO4)3 (M = Mg and Al) cathodes for sodium-ion batteries. Small 2020, 16, 2003973.

[22]

Cai, C. C.; Hu, P.; Zhu, T.; Chen, C. M.; Hu, G. W.; Liu, Z. H.; Tian, Y.; Chen, Q.; Zhou, L.; Mai, L. Encapsulation of Na4MnV(PO4)3 in robust dual-carbon framework rendering high-energy, durable sodium storage. J. Phys. Energy 2020, 2, 025003.

[23]

Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater. 2021, 38, 309–328.

[24]

Zakharkin, M. V.; Drozhzhin, O. A.; Tereshchenko, I. V.; Chernyshov, D.; Abakumov, A. M.; Antipov, E. V.; Stevenson, K. J. Enhancing Na+ extraction limit through high voltage activation of the NASICON-Type Na4MnV(PO4)3 cathode. ACS Appl. Energy Mater. 2018, 1, 5842–5846.

[25]

Zhang, W.; Zhang, Z. A.; Li, H. X.; Wang, D. P.; Wang, T. S.; Sun, X. W.; Zheng, J. Q.; Lai, Y. Q. Engineering 3D well-interconnected Na4MnV(PO4)3 facilitates ultrafast and ultrastable sodium storage. ACS Appl. Mater. Interfaces 2019, 11, 35746–35754.

[26]

Ramesh Kumar, P.; Kheireddine, A.; Nisar, U.; Shakoor, R. A.; Essehli, R.; Amin, R.; Belharouak, I. Na4MnV(PO4)3-rGO as advanced cathode for aqueous and non-aqueous sodium ion batteries. J. Power Sources 2019, 429, 149–155.

[27]

Buryak, N. S.; Anishchenko, D. V.; Levin, E. E.; Ryazantsev, S. V.; Martin-Diaconescu, V.; Zakharkin, M. V.; Nikitina, V. A.; Antipov, E. V. High-voltage structural evolution and its kinetic consequences for the Na4MnV(PO4)3 sodium-ion battery cathode material. J. Power Sources 2022, 518, 230769.

[28]

Liu, X. H.; Tang, L. B.; Li, Z.; Zhang, J. H.; Xu, Q. J.; Liu, H. M.; Wang, Y. G.; Xia, Y. Y.; Cao, Y. L.; Ai, X. P. An Al-doped high voltage cathode of Na4Co3(PO4)2P2O7 enabling highly stable 4 V full sodium-ion batteries. J. Mater. Chem. A 2019, 7, 18940–18949.

[29]

Li, Y.; Shi, Q. H.; Yin, X. P.; Wang, J.; Wang, J.; Zhao, Y. F.; Zhang, J. J. Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage. Chem. Eng. J. 2020, 402, 126181.

[30]

Cui, G. J.; Dong, Q. Y.; Wang, Z. Z.; Liao, X. Z.; Yuan, S. Q.; Jiang, M. D.; Shen, Y. B.; Wang, H.; Che, H. Y.; He, Y. S. et al. Achieving highly reversible and fast sodium storage of Na4VMn(PO4)3/C-rGO composite with low-fraction rGO via spray-drying technique. Nano Energy 2021, 89, 106462.

[31]

Zhu, T.; Hu, P.; Wang, X. P.; Liu, Z. H.; Luo, W.; Owusu, K. A.; Cao, W. W.; Shi, C. W.; Li, J. T.; Zhou, L. et al. Realizing three-electron redox reactions in NASICON-structured Na3MnTi(PO4)3 for sodium-ion batteries. Adv. Energy Mater. 2019, 9, 1803436.

[32]

Li, H. X.; Chen, X. B.; Jin, T.; Bao, W. Z.; Zhang, Z. A.; Jiao, L. F. Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Storage Mater. 2019, 16, 383–390.

[33]

Zhou, Y.; Shao, X. J.; Lam, K. H.; Zheng, Y.; Zhao, L. Z.; Wang, K. D.; Zhao, J. Z.; Chen, F. M.; Hou, X. H. Symmetric sodium-ion battery based on dual-electron reactions of nasicon-structured Na3MnTi(PO4)3 material. ACS Appl. Mater. Interfaces 2020, 12, 30328–30335.

[34]

Ren, W.; Qin, M. L.; Zhou, Y. F.; Zhou, H.; Zhu, J.; Pan, J. N.; Zhou, J.; Cao, X. X.; Liang, S. Q. Electrospun Na4Fe3(PO4)2(P2O7) nanofibers as free-standing cathodes for ultralong-life and high-rate sodium-ion batteries. Energy Storage Mater. 2023, 54, 776–783.

[35]

Pan, W. L.; Guan, W. H.; Liu, S. Y.; Xu, B. B.; Liang, C.; Pan, H. G.; Yan, M.; Jiang, Y. Z. Na2Fe(SO4)2: An anhydrous 3.6 V, low-cost and good-safety cathode for a rechargeable sodium-ion battery. J. Mater. Chem. A 2019, 7, 13197–13204.

[36]

Dong, J. M.; Xiao, J. C.; Yu, Y. F.; Wang, J. R.; Chen, F.; Wang, S.; Zhang, L. M.; Ren, N. Q.; Pan, B. C.; Chen, C. H. Electronic structure regulation of Na2FePO4F cathode toward superior high-rate and high-temperature sodium-ion batteries. Energy Storage Mater. 2022, 45, 851–860.

[37]

Zhao, A. L.; Liu, C. Y.; Ji, F. J.; Zhang, S. H.; Fan, H. M.; Ni, W. H.; Fang, Y. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Revealing the phase evolution in Na4FexP4O12+x (2 ≤ x ≤ 4) cathode materials. ACS Energy Lett. 2023, 8, 753–761.

[38]

Liu, Y.; Wu, X. Y.; Moeez, A.; Peng, Z.; Xia, Y. Y.; Zhao, D. Y.; Liu, J.; Li, W. Na-rich Na3V2(PO4)3 cathodes for long cycling rechargeable sodium full cells. Adv. Energy Mater. 2023, 13, 2203283.

[39]

Hou, J. R.; Hadouchi, M.; Sui, L.; Liu, J.; Tang, M. X.; Kan, W. H.; Avdeev, M.; Zhong, G. M.; Liao, Y. K.; Lai, Y. H. et al. Unlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution. Energy Storage Mater. 2021, 42, 307–316.

[40]

Senthilkumar, B.; Murugesan, C.; Sharma, L.; Lochab, S.; Barpanda, P. An overview of mixed polyanionic cathode materials for sodium-ion batteries. Small Methods 2019, 3, 1800253.

[41]

Zhang, J.; Liu, Y. C.; Zhao, X. D.; He, L. H.; Liu, H.; Song, Y. Z.; Sun, S. D.; Li, Q.; Xing, X. R.; Chen, J. A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries. Adv. Mater. 2020, 32, 1906348.

File
12274_2023_6164_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 July 2023
Revised: 04 September 2023
Accepted: 04 September 2023
Published: 25 October 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 52102239, 52072112, and 51672069), the Foundation of Henan Educational Committee (No. 22A140003), the Zhongyuan Thousand Talents Program of Henan Province (No. ZYQR201912155), the Henan Overseas Expertise Introduction Center for Discipline Innovation (No. CXJD2021003), the Program for Innovative Research Team in Science and Technology in the University of Henan Province (No. 20IRTSTHN012), and the Science and Technology Development Project of Henan Province (No. 202102210105).

Return