AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-assembly tungsten selenide hybrid ternary MOF derived magnetic alloys via multi-polarization to boost microwave absorption

Tianbao Zhao1,§Tingting Zheng1,§Di Lan2Yan Zhang1Zhengshuo Sun1Chao Wang1( )Zirui Jia1,3( )Guanglei Wu1( )
Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China

§ Tianbao Zhao and Tingting Zheng contributed equally to this work.

Show Author Information

Graphical Abstract

The synergistic effect of dielectric and magnetic components optimizes impedance matching and allows more electromagnetic waves to enter the absorber. Through the conduction loss of high conductivity graphitized carbon, interfacial polarization, and dipole polarization of heterogeneous interfaces among WSe2, CoCu, and C components, the magnetic loss provided by CoCu alloy can work together to maximize the attenuation ability of electromagnetic waves.

Abstract

Confronted with severe electromagnetic wave pollution, the development of high-performance electromagnetic wave shielding or absorbing materials is an effective way to deal with it. Notably, double transition metal alloys and transition metal dichalcogenides have attracted extensive attention in electromagnetic wave absorption, but few reports have studied the effects of these two materials on electromagnetic wave absorption at the same time. In this work, cobalt-based alloy with magnetic loss mechanism was selected for composition optimization. The ternary metal-organic framework was prepared by the one-step method, and then CoCu/C was prepared by high temperature annealing. Finally, in the hydrothermal process, ultra-thin tungsten selenide nanosheets were coated on the surface of magnetic component, and the final polyhedral WSe2/CoCu/C composites with multiple heterogeneous interfaces were obtained. The synergistic effect of dielectric and magnetic components optimizes impedance matching and allows more electromagnetic waves to enter the absorber. Subsequently, through the conduction loss of high conductivity graphitized carbon, interfacial polarization, and dipole polarization of heterogeneous interfaces between the components, the magnetic loss provided by CoCu alloy can work together to maximize the attenuation ability of electromagnetic waves. Exactly, the minimum reflection loss (RLmin) value of the composite reaches −53.43 dB when the matched thickness is 2.1 mm, while the maximum effective absorption bandwidth (EABmax) reaches 6.0 GHz at a thin thickness of 1.8 mm. This work provides some support and reference for the design of novel electromagnetic wave absorbing materials via the dielectric/magnetic loss synergistic mechanism.

Electronic Supplementary Material

Download File(s)
12274_2023_6160_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Zeng, Z. H.; Wang, G.; Wolan, B. F.; Wu, N.; Wang, C. X.; Zhao, S. Y.; Yue, S. Y.; Li, B.; He, W. D.; Liu, J. R. et al. Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 2022, 14, 179.

[2]

Yang, Y. F.; Han, M. R.; Liu, W.; Wu, N.; Liu, J. R. Hydrogel-based composites beyond the porous architectures for electromagnetic interference shielding. Nano Res. 2022, 15, 9614–9630.

[3]

Wu, N.; Yang, Y. F.; Wang, C. X.; Wu, Q. L.; Pan, F. Zhang, R. N.; Liu, J. R.; Zeng, Z. H. Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 2023, 35, 2207969.

[4]

Wu, Y. L.; Lan, D.; Ren, J. W.; Zhang, S. J. A mini review of MOFs derived multifunctional absorbents: From perspective of components regulation. Mater. Today Phys. 2023, 36, 101178.

[5]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[6]

Li, B.; Wu, N.; Yang, Y. F.; Pan, F.; Wang, C. X.; Wang, G.; Xiao, L.; Liu, W.; Liu, J. R.; Zeng, Y. H. Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 2023, 33, 2213357.

[7]

Lv, H. L.; Yao, Y. X.; Li, S. C.; Wu, G. L.; Zhao, B.; Zhou, X. D.; Dupont, R. L.; Kara, U. I.; Zhou, Y. M.; Xi, S. B. et al. Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 2023, 14, 1982.

[8]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[9]

Li, B.; Yang, Y. F.; Wu, N.; Zhao, S. Y.; Jin, H.; Wang, G. L.; Li, X. Y.; Liu, W.; Liu, J. R.; Zeng, Z. H. Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 2022, 16, 19293–19304.

[10]

Lv, H. L.; Yang, Z. H.; Liu, B.; Wu, G. L.; Lou, Z. C.; Fei, B.; Wu, R. B. A flexible electromagnetic wave-electricity harvester. Nat. Commun. 2021, 12, 834.

[11]

Pan, C.; Kou, K. C.; Zhang, Y.; Li, Z. Y.; Wu, G. L. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos. Part B: Eng. 2018, 153, 1–8.

[12]

Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

[13]

Zhang, H. X.; Wang, B. B.; Feng, A. L.; Zhang, N.; Jia, Z. R.; Huang, Z. Y.; Liu, X. H.; Wu, G. L. Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos. Part B: Eng. 2019, 167, 690–699.

[14]

Lan, D.; Wang, Y.; Wang, Y. Y.; Zhu, X. F.; Li, H. F.; Guo, X. M.; Ren, J. N.; Guo, Z. H.; Wu, G. L. Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 2023, 651, 494–503.

[15]

Wang, Y.; Gao, X.; Lin, C. H.; Shi, L. Y.; Li, X. H.; Wu, G. L. Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J. Alloys Compd. 2019, 785, 765–773.

[16]

Gao, Z. G.; Xu, B. H.; Ma, M. L.; Feng, A. L.; Zhang, Y.; Liu, X. H.; Jia, Z. R.; Wu, G. L. Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption. Compos. Part B: Eng. 2019, 179, 107417.

[17]

Zhang, H. X.; Jia, Z. R.; Feng, A. L.; Zhou, Z. H.; Chen, L.; Zhang, C. H.; Liu, X. H.; Wu, G. L. In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. Part B: Eng. 2020, 199, 108261.

[18]

Zhang, H. X.; Jia, Z. R.; Feng, A. L.; Zhou, Z. H.; Zhang, C. H.; Wang, K. K.; Liu, N.; Wu, G. L. Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber. Compos. Commun. 2020, 19, 42–45.

[19]

Liu, J. L.; Liang, H. S.; Zhang, Y.; Wu, G. L.; Wu, H. J. Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos. Part B: Eng. 2019, 176, 107240.

[20]

Wu, M.; Darboe, A. K.; Qi, X. S.; Xie, R.; Qin, S. J.; Deng, C. Y.; Wu, G. L.; Zhong, W. Optimization, selective and efficient production of CNTs/CoxFe3−xO4 core/shell nanocomposites as outstanding microwave absorbers. J. Mater. Chem. C 2020, 8, 11936–11949.

[21]

Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes:Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

[22]

Liu, X. M.; Chai, N.; Yu, Z. J.; Xu, H. L.; Li, X. L.; Liu, J. Q.; Yin, X. W.; Riedel, R. Ultra-light, high flexible and efficient CNTs/Ti3C2-sodium alginate foam for electromagnetic absorption application. J. Mater. Sci. Technol. 2019, 35, 2859–2867.

[23]

Gao, T.; Rong, H. W.; Mahmoud, K. H.; Ruan, J. C.; El-Bahy, S. M.; Faheim, A. A.; Li, Y. X.; Huang, M. N.; Nassan, M. A.; Zhao, R. Z. Iron/silicon carbide composites with tunable high-frequency magnetic and dielectric properties for potential electromagnetic wave absorption. Adv. Compos. Hybrid. Mater. 2022, 5, 1158–1167.

[24]

Li, Y.; Qing, Y. C.; Li, W.; Zong, M.; Luo, F. Novel Magnéli Ti4O7/Ni/poly(vinylidene fluoride) hybrids for high-performance electromagnetic wave absorption. Adv. Compos. Hybrid. Mater. 2021, 4, 1027–1038.

[25]

Wang, Q. Y.; Liu, J.; Li, Y. D.; Lou, Z. C.; Li, Y. J. A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis. Int. J. Miner. Metall. Mater. 2023, 30, 446–473.

[26]

Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; He, W. J.; Huang, W. H.; Luo, J. H. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 2020, 381, 122653.

[27]

Li, C. P.; Sui, J.; Jiang, X. H.; Zhang, Z. M.; Yu, L. M. Efficient broadband electromagnetic wave absorption of flower-like nickel/carbon composites in 2–40 GHz. Chem. Eng. J. 2020, 385, 123882.

[28]

Liang, Q. Q.; Wang, L.; Qi, X. S.; Peng, Q.; Gong, X.; Chen, Y. L.; Xie, R.; Zhong, W. Hierarchical engineering of CoNi@Air@C/SiO2@Polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic–dielectric synergy. J. Mater. Sci. Technol. 2023, 147, 37–46.

[29]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[30]

Xiang, L. L.; Qi, X. S.; Rao, Y. C.; Wang, L.; Gong, X.; Chen, Y. L.; Peng, Q.; Zhong, W. A simple strategy to develop heterostructured carbon paper/Co nanoparticles composites with lightweight, tunable and broadband microwave absorption. Mater. Today Phys. 2023, 34, 101030.

[31]

Jia, Z. R.; Kong, M. Y.; Yu, B. W.; Ma, Y. Z.; Pan, J. Y.; Wu, G. L. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J. Mater. Sci. Technol. 2022, 127, 153–163.

[32]

Cheng, J. Y.; Zhang, H. B.; Wang, H. N.; Huang, Z. H.; Raza, H.; Hou, C. X.; Zheng, G. P.; Zhang, D. Q.; Zheng, Q. B.; Che, R. C. Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 2022, 32, 2201129.

[33]

Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

[34]

Wu, N. N.; Zhao, B. B.; Liu, J. Y.; Li, Y. L.; Chen, Y. B.; Chen, L.; Wang, M.; Guo, Z. H. MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv. Compos. Hybrid. Mater. 2021, 4, 707–715.

[35]

Jia, Z. R.; Zhang, X. Y.; Gu, Z.; Wu, G. L. MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber. Adv. Compos. Hybrid. Mater. 2023, 6, 28.

[36]

Guo, J.; Chen, Z. R.; Xu, X. J.; Li, X.; Liu, H.; Xi, S. H.; Abdul, W.; Wu, Q.; Zhang, P.; Xu, B. B. et al. Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv. Compos. Hybrid. Mater. 2022, 5, 1769–1777.

[37]

Wang, W.; Liu, D. Q.; Cheng, H. F.; Cao, T. S.; Li, Y. L.; Deng, Y. J.; Xie, W. Structural design and broadband radar absorbing performance of multi-layer patch using carbon black. Adv. Compos. Hybrid. Mater. 2022, 5, 3137–3145.

[38]

Zhou, Z. H.; Zhu, Q. Q.; Liu, Y.; Zhang, Y.; Jia, Z. R.; Wu, G. L. Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 2023, 15, 137.

[39]

Jia, T. M.; Qi, X. S.; Wang, L.; Yang, J. L.; Gong, X.; Chen, Y. L.; Qu, Y. P.; Peng, Q.; Zhong, W. Constructing mixed-dimensional lightweight flexible carbon foam/carbon nanotubes-based heterostructures: An effective strategy to achieve tunable and boosted microwave absorption. Carbon 2023, 206, 364–374.

[40]

Liang, X. H.; Man, Z. M.; Quan, B. Zheng, J.; Gu, W. H.; Zhang, Z.; Ji, G. B. Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 2020, 12, 102.

[41]

Zhang, S. J.; Jia, Z. R.; Cheng, B.; Zhao, Z. W.; Lu, F.; Wu, G. L. Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-review. Adv. Compos. Hybrid. Mater. 2022, 5, 2440–2460.

[42]

Cheng, Y.; Zhao, Y.; Zhao, H. Q.; Lv, H. L.; Qi, X. D.; Cao, J. M.; Ji, G. B.; Du, Y. W. Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J. 2019, 372, 390–398.

[43]

Cao, X. L.; Liu, X. H.; Zhu, J. H.; Jia, Z. R.; Liu, J. K.; Wu, G. L. Optimal particle distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance. J. Colloid Interface Sci. 2023, 634, 268–278.

[44]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

[45]

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

[46]

Sun, L. F.; Zhu, Q. Q.; Jia, Z. R.; Guo, Z. Q.; Zhao, W. R.; Wu, G. L. CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. Carbon 2023, 208, 1–9.

[47]

Luo, F.; Liu, D. Q.; Cao, T. S.; Cheng, H. F.; Kuang, J. C.; Deng, Y. J.; Xie, W. Study on broadband microwave absorbing performance of gradient porous structure. Adv. Compos. Hybrid. Mater. 2021, 4, 591–601.

[48]

Liu, J. K.; Jia, Z. R.; Dong, Y. H.; Li, J. J.; Cao, X. L.; Wu, G. L. Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption. Mater. Today Phys. 2022, 27, 100801.

[49]

Han, Y. H.; Yuan, J.; Zhu, Y. H.; Wang, Q. Q.; Li, L.; Cao, M. S. Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for enhanced microwave absorption. J. Colloid Interface Sci. 2022, 609, 746–754.

[50]
Zhou, J. X.; Lan, D.; Zhang, F.; Cheng, Y. H.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band. Small, in press, https://doi.org/10.1002/smll.202304932.
[51]
Zhao, J.; Gu, Z.; Zhang, Q. G. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res., in press, https://doi.org/10.1007/s12274-023-6090-3.
[52]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni and Zn) nanocomposites by defect and interface engineering. J. Mater. Sci. Technol. 2023, 139, 137–146.

[53]

Wang, W.; Deng, X. J.; Liu, D. Q.; Luo, F.; Cheng, H. F.; Cao, T. S.; Li, Y. L.; Deng, Y. J.; Xie, W. Broadband radar-absorbing performance of square-hole structure. Adv. Compos. Hybrid. Mater. 2022, 5, 525–535.

[54]
Hou, T. Q.; Wang, J. W.; Zheng, T. T.; Liu, Y.; Wu, G. L.; Yin, P. F. Anion exchange of metal particles on carbon-based skeletons for promoting dielectric equilibrium and high-efficiency electromagnetic wave absorption. Small, in press, https://doi.org/10.1002/smll.202303463.
[55]

Zhang, S. J.; Cheng, B.; Jia, Z. R.; Zhao, Z. W.; Jin, X. T.; Zhao, Z. H.; Wu, G. L. The art of framework construction: Hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid. Mater. 2022, 5, 1658–1698.

[56]

Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

[57]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[58]

Zhang, Y. C.; Gao, S. T.; Xia, B. L.; He, J.; Wei, F.; Zhao, X. Z. Coal gasification fine slag doped with Fe3O4: High-performance electromagnetic-wave absorbers. J. Magn. Magn. Mater. 2023, 580, 170916.

[59]

Wang, X. Q.; Chen, Y. F.; Qi, F.; Zheng, B. J.; He, J. R.; Li, Q.; Li, P. J.; Zhang, W. L.; Li, Y. R. Interwoven WSe2/CNTs hybrid network: A highly efficient and stable electrocatalyst for hydrogen evolution. Electrochem. Commun. 2016, 72, 74–78.

[60]

Xin, W.; Liu, B. T.; Zhao, Y. R.; Chen, G.; Chen, P.; Zhou, Y.; Li, W. M.; Xu, Y. K.; Zhong, Y.; Nikolaevich, Y. A. Flower-like CuCoMoOx nanosheets decorated with CoCu nanoparticles as bifunctional electrocatalysts for hydrogen evolution reaction and water splitting. Electrochim. Acta 2022, 404, 139748.

[61]

Wang, J. W.; Jia, Z. R.; Liu, X. H.; Dou, J. L.; Xu, B. H.; Wang, B. B.; Wu, G. L. Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 2021, 131, 175.

[62]

Zhang, F. W.; Li, Z. H.; Ma, C. L.; Han, X.; Dong, X.; Dong, Z. P.; Zhang, X. M. N-doped hierarchical porous carbon embedded synergistic bimetallic CoCu NPs with unparalleled catalytic performance. ChemCatChem 2019, 11, 2415–2422.

[63]

Chen, W.; Hu, M. L.; Zong, J. Y.; Xie, X. D.; Meng, Q. H.; Yu, F.; Wang, L.; Ren, W.; Chen, A. X.; Liu, G. et al. Epitaxial growth of single-phase 1T'-WSe2 monolayer with assistance of enhanced interface interaction. Adv. Mater. 2021, 33, 2004930.

[64]

Zhu, M.; Lei, Y. T.; Wu, H.; Kong, L.; Xu, H. L.; Yan, X. X.; Xu, Y. J.; Dai, L. Porous hybrid scaffold strategy for the realization of lightweight, highly efficient microwave absorbing materials. J. Mater. Sci. Technol. 2022, 129, 215–222.

[65]

Lu, X. K.; Li, X.; Zhu, W. J.; Xu, H. L. Construction of embedded heterostructures in biomass-derived carbon frameworks for enhancing electromagnetic wave absorption. Carbon 2022, 191, 600–609.

[66]

Zhao, T. B.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Multiphase molybdenum carbide doped carbon hollow sphere engineering: The superiority of unique double-shell structure in microwave absorption. Small 2023, 19, 2206323.

[67]

Chang, M.; Li, Q. Y.; Jia, Z. R.; Zhao, W. R.; Wu, G. L. Tuning microwave absorption properties of Ti3C2Tx MXene-based materials: Component optimization and structure modulation. J. Mater. Sci. Technol. 2023, 148, 150–170.

[68]

Wang, C. X.; Liu, Y.; Jia, Z. R.; Zhao, W. R.; Wu, G. L. Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 2023, 15, 13.

[69]

Zhou, J.; Guo, F.; Luo, J. L.; Hao, G. Z.; Liu, G. G.; Hu, Y. B.; Zhang, G. P.; Guo, H.; Zhou, H.; Jiang, W. Designed 3D heterostructure with 0D/1D/2D hierarchy for low-frequency microwave absorption in the S-band. J. Mater. Chem. C 2022, 10, 1470–1478.

[70]

Gao, S. T.; Zhang, Y. C.; Zhang, X. Z.; Jiao, F. C.; Liu, T.; Li, H. X.; Bai, Y. H.; Wu, C. L. Synthesis of hollow ZnFe2O4/residual carbon from coal gasification fine slag composites for multiband electromagnetic wave absorption. J. Alloys Compd. 2023, 952, 170016.

[71]

Zhou, X. F.; Jia, Z. R.; Feng, A. L.; Wang, X. X.; Liu, J. J.; Zhang, M.; Cao, H. J.; Wu, G. L. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 2019, 152, 827–836.

[72]

Gao, S. T.; Zhang, Y. C.; He, J.; Zhang, X. Z.; Jiao, F. C.; Liu, T.; Li, H. X.; Wu, C. L.; Ma, M. L. Coal gasification fine slag residual carbon decorated with hollow-spherical Fe3O4 nanoparticles for microwave absorption. Ceram. Int. 2023, 49, 17554–17565.

[73]

Zhang, S.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers. Nano Res. 2023, 16, 3395–3407.

[74]

Liang, C. B.; Qiu, H.; Zhang, Y. L.; Liu, Y. Q.; Gu, J. W. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 2023, 68, 1938–1953.

[75]

Cao, X. L.; Jia, Z. R.; Hu, D. Q.; Wu, G. L. Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption. Adv. Compos. Hybrid. Mater. 2022, 5, 1030–1043.

[76]

Zhang, Y.; Liu, X. H.; Guo, Z. Q.; Jia, C. Y.; Lu, F.; Jia, Z. R.; Wu, G. L. MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 2024, 176, 167–175.

[77]

Liu, Y.; Liu, X. H.; E, X. Y.; Wang, B. B.; Jia, Z. R.; Chi, Q. Q.; Wu, G. L. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption. J. Mater. Sci. Technol. 2022, 103, 157–164.

[78]

Zhou, X. F.; Jia, Z. R.; Zhang, X. X.; Wang, B. B.; Liu, X. H.; Xu, B. H.; Bi, L.; Wu, G. L. Electromagnetic wave absorption performance of NiCo2X4 (X = O, S, Se, Te) spinel structures. Chem. Eng. J. 2021, 420, 129907.

[79]

Zhang, S. J.; Li, J. Y.; Jin, X. T.; Wu, G. L. Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review. Int. J. Miner. Metall. Mater. 2023, 30, 428–445.

[80]

Ren, L. G.; Wang, Y. Q.; Zhang, X.; He, Q. C.; Wu, G. L. Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres. Int. J. Miner. Metall. Mater. 2023, 30, 504–514.

[81]

Zhang, H. X.; Sun, K. G.; Sun, K. K.; Chen, L.; Wu, G. L. Core–shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 158, 242–252.

[82]

Wei, C. H.; He, M. K.; Li, M. Q.; Ma, X.; Dang, W. L.; Liu, P. B.; Gu, J. W. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 2023, 36, 101142.

[83]

Zhang, S.; Liu, X. H.; Jia, C. Y.; Sun, Z. S.; Jiang, H. W.; Jia, Z. R.; Wu, G. L. Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 2023, 15, 204.

[84]

Pan, C.; Kou, K. C.; Jia, Q.; Zhang, Y.; Wu, G. L.; Ji, T. Z. Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent. Compos. Part B: Eng. 2017, 111, 83–90.

[85]

Yu, L. Y.; Zhu, Q. Q.; Guo, Z. Q.; Cheng, Y. H.; Jia, Z. R.; Wu, G. L. Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures. J. Mater. Sci. Technol. 2024, 170, 129–139.

[86]

Pan, Y. L.; Zhu, Q. Q.; Zhu, J. H.; Cheng, Y. H.; Yu, B. W.; Jia, Z. R.; Wu, G. L. Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res. 2023, 16, 10666–10677.

[87]

Niu, H. H.; Jiang, X. W.; Xia, Y. D.; Wang, H. L.; Zhang, R.; Li, H. X.; Fan, B. B.; Zhou, Y. C. Construction of hydrangea-like core-shell SiO2@Ti3C2Tx@CoNi microspheres for tunable electromagnetic wave absorbers. J. Adv. Ceram. 2023, 12, 711–723.

[88]
Li, Y.; Qing, Y. C.; Cao, Y. R.; Luo, F.; Wu, H. J. Positive charge holes revealed by energy band theory in multiphase TixO2x−1 and exploration of its microscopic electromagnetic loss mechanism. Small, in press, https://doi.org/10.1002/smll.202302769.
[89]

Song, L. M.; Zhang, F.; Chen, Y. Q.; Guan, L.; Zhu, Y. Q.; Chen, M.; Wang, H. L.; Putra, B. R.; Zhang, R.; Fan, B. B. Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 152.

[90]

Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828.

[91]

Hu, F. Y.; Zhang, F.; Wang, X. H.; Li, Y. Y.; Wang, H. L.; Zhang, R.; Li, H. X.; Fan, B. B. Ultrabroad band microwave absorption from hierarchical MoO3/TiO2/Mo2TiC2Tx hybrids via annealing treatment. J. Adv. Ceram. 2022, 11, 1466–1478.

[92]

Zhou, Z. H.; Zhou, X. F.; Lan, D.; Zhang, Y.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Modulation engineering of electromagnetic wave absorption performance of layered double hydroxides derived hollow metal carbides integrating corrosion protection. Small 2023, 2305849.

Nano Research
Pages 1625-1635
Cite this article:
Zhao T, Zheng T, Lan D, et al. Self-assembly tungsten selenide hybrid ternary MOF derived magnetic alloys via multi-polarization to boost microwave absorption. Nano Research, 2024, 17(3): 1625-1635. https://doi.org/10.1007/s12274-023-6160-6
Topics:

937

Views

17

Crossref

24

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 06 August 2023
Revised: 28 August 2023
Accepted: 04 September 2023
Published: 04 November 2023
© Tsinghua University Press 2023
Return