Journal Home > Volume 17 , Issue 4

The electrocatalytic nitrogen reduction reaction (e-NRR) is a promising alternative method for the Haber–Bosch process. However, it still faces many challenges in searching for high activity, stability, and selectivity catalysts and ascertaining the catalytic mechanism with complete insight. Here, a series of graphene-based N-bridged dual-atom catalysts (M1-N-M2/NC) are systematically investigated via first-principle calculation and a high-throughput screening strategy. The result unveils that N2 adsorption on M1-N-M2/NC in bridge-on adsorption mode can effectively break the scaling relationship on single-atom catalysts (SACs). Moreover, V-N-Ru/NC and V-N-Os/NC are systematically screened out as promising e-NRR catalysts, with extremely low limiting potentials of −0.20 and −0.18 V, respectively. Furthermore, the adsorption site competition between *N2 and *H, as well as the competitive twin reactions of hydrogen evolution reaction (HER) on intermediates (NnHm) during the e-NRR process, is systematically evaluated to form a remodeling insight for the reactions in mechanism, and the e-NRR of new proposed dual-atom catalysts (DACs) is strategically optimized for its high-efficiency performance potential via our remolding insight in e-NRR mechanism. This work provides new ideas and insights for the design and mechanism of e-NRR catalysts and an effective strategy for rapidly screening highly efficient e-NRR catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Theoretical screening of cooperative N-bridged dual-atom sites for efficient electrocatalytic nitrogen reduction with remolding insight

Show Author's information Huimei Chen,§Yan Yang,§Chi JiaoZhiwen Zhuo( )Junjie Mao( )Yan Liu( )
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China

§ Huimei Chen and Yan Yang contributed equally to this work.

Abstract

The electrocatalytic nitrogen reduction reaction (e-NRR) is a promising alternative method for the Haber–Bosch process. However, it still faces many challenges in searching for high activity, stability, and selectivity catalysts and ascertaining the catalytic mechanism with complete insight. Here, a series of graphene-based N-bridged dual-atom catalysts (M1-N-M2/NC) are systematically investigated via first-principle calculation and a high-throughput screening strategy. The result unveils that N2 adsorption on M1-N-M2/NC in bridge-on adsorption mode can effectively break the scaling relationship on single-atom catalysts (SACs). Moreover, V-N-Ru/NC and V-N-Os/NC are systematically screened out as promising e-NRR catalysts, with extremely low limiting potentials of −0.20 and −0.18 V, respectively. Furthermore, the adsorption site competition between *N2 and *H, as well as the competitive twin reactions of hydrogen evolution reaction (HER) on intermediates (NnHm) during the e-NRR process, is systematically evaluated to form a remodeling insight for the reactions in mechanism, and the e-NRR of new proposed dual-atom catalysts (DACs) is strategically optimized for its high-efficiency performance potential via our remolding insight in e-NRR mechanism. This work provides new ideas and insights for the design and mechanism of e-NRR catalysts and an effective strategy for rapidly screening highly efficient e-NRR catalysts.

Keywords: hydrogen evolution reaction, density functional theory calculations, nitrogen reduction, high-throughput screening, dual-atom catalysts

References(59)

[1]

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, 6611–6617.

[2]

Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166–3180.

[3]

Wen, L. L.; Sun, K.; Liu, X. S.; Yang, W. J.; Li, L. Y.; Jiang, H. L. Electronic state and microenvironment modulation of metal nanoparticles stabilized by MOFs for boosting electrocatalytic nitrogen reduction. Adv. Mater. 2023, 35, 2210669.

[4]

Feng, X. T.; Liu, J. Y.; Chen, L.; Kong, Y.; Zhang, Z. D.; Zhang, Z. X.; Wang, D. S.; Liu, W.; Li, S. Z.; Tong, L. M. et al. Hydrogen radical-induced electrocatalytic N2 reduction at a low potential. J. Am. Chem. Soc. 2023, 145, 10259–10267.

[5]

Ren, Y. W.; Yu, C.; Tan, X. Y.; Wei, Q. B.; Wang, Z.; Ni, L.; Wang, L. S.; Qiu, J. S. Strategies to activate inert nitrogen molecules for efficient ammonia electrosynthesis: Current status, challenges, and perspectives. Energy Environ. Sci. 2022, 15, 2776–2805.

[6]

Wu, X. H.; Nazemi, M.; Gupta, S.; Chismar, A.; Hong, K.; Jacobs, H.; Zhang, W. Q.; Rigby, K.; Hedtke, T.; Wang, Q. X. et al. Contrasting capability of single atom palladium for thermocatalytic versus electrocatalytic nitrate reduction reaction. ACS Catal. 2023, 13, 6804–6812.

[7]

Liu, C. W.; Li, Q. Y.; Wu, C. Z.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 2019, 141, 2884–2888.

[8]

Mukherjee, S.; Cullen, D. A.; Karakalos, S.; Liu, K. X.; Zhang, H.; Zhao, S.; Xu, H.; More, K. L.; Wang, G. F.; Wu, G. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 2018, 48, 217–226.

[9]

Zhao, S. L.; Lu, X. Y.; Wang, L. Z.; Gale, J.; Amal, R. Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Adv. Mater. 2019, 31, 1805367.

[10]

Huang, Z. L.; Rafiq, M.; Woldu, A. R.; Tong, Q. X.; Astruc, D.; Hu, L. S. Recent progress in electrocatalytic nitrogen reduction to ammonia (NRR). Coord. Chem. Rev. 2023, 478, 214981.

[11]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[12]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[13]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[14]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[15]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[16]
Song, W. Q.; Xiao, C. X.; Ding, J.; Huang, Z. C.; Yang, X. Y.; Zhang, T.; Mitlin, D.; Hu, W. B. Review of carbon support coordination environments for single metal atom electrocatalysts (SACs). Adv. Mater., in press, https://doi.org/10.1002/adma.202301477.
DOI
[17]
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, https://doi.org/10.1007/s12274-023-5700-4.
DOI
[18]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[19]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[20]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[21]

Li, Y.; Li, J. W.; Huang, J. H.; Chen, J. X.; Kong, Y.; Yang, B.; Li, Z. J.; Lei, L. C.; Chai, G. L.; Wen, Z. H. et al. Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew. Chem., Int. Ed. 2021, 60, 9078–9085.

[22]

Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517–7525.

[23]

Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.

[24]

Singstock, N. R.; Musgrave, C. B. How the bioinspired Fe2Mo6S8 chevrel breaks electrocatalytic nitrogen reduction scaling relations. J. Am. Chem. Soc. 2022, 144, 12800–12806.

[25]

Zhou, Y.; Song, E. H.; Chen, W.; Segre, C. U.; Zhou, J. D.; Lin, Y. C.; Zhu, C.; Ma, R. G.; Liu, P.; Chu, S. F. et al. Dual-metal interbonding as the chemical facilitator for single-atom dispersions. Adv. Mater. 2020, 32, 2003484.

[26]
Pu, T. C.; Ding, J. Q.; Zhang, F. X.; Wang, K.; Cao, N.; Hensen, E. J. M.; Xie, P. F. Dual atom catalysts for energy and environmental applications. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202305964.
DOI
[27]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[28]

Ying, Y. R.; Fan, K.; Qiao, J. L.; Huang, H. T. Rational design of atomic site catalysts for electrocatalytic nitrogen reduction reaction: One step closer to optimum activity and selectivity. Electrochem. Energy Rev. 2022, 5, 6.

[29]

Guo, X. Y.; Gu, J. X.; Lin, S. R.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 2020, 142, 5709–5721.

[30]

Wang, Y. Z.; Wang, J.; Li, H.; Li, Y. G.; Li, J. K.; Wei, K.; Peng, F.; Gao, F. M. Nitrogen reduction reaction: Heteronuclear double-atom electrocatalysts. Small Structures 2023, 4, 2200306.

[31]
Shu, Z.; Chen, H. F.; Liu, X.; Jia, H. X.; Yan, H. J.; Cai, Y. Q. High-throughput screening of heterogeneous transition metal dual-atom catalysts by synergistic effect for nitrate reduction to ammonia. Adv. Funct. Mater., in press, https://doi.org/10. 1002/adfm. 202301493.
[32]

Lv, X. S.; Wei, W.; Huang, B. B.; Dai, Y.; Frauenheim, T. High-throughput screening of synergistic transition metal dual-atom catalysts for efficient nitrogen fixation. Nano Lett. 2021, 21, 1871–1878.

[33]

Kang, W.; Lee, C. C.; Jasniewski, A. J.; Ribbe, M. W.; Hu, Y. L. Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase. Science 2020, 368, 1381–1385.

[34]

Tyburski, R.; Liu, T. F.; Glover, S. D.; Hammarström, L. Proton-coupled electron transfer guidelines, fair and square. J. Am. Chem. Soc. 2021, 143, 560–576.

[35]

Yang, Y.; Zhang, W. Y.; Tan, X. H.; Jiang, K. R.; Zhai, S. L.; Li, Z. Atomic-level reactive sites for electrocatalytic nitrogen reduction to ammonia under ambient conditions. Coord. Chem. Rev. 2023, 489, 215196.

[36]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[37]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[38]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[39]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[40]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[41]

Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461–5466.

[42]

Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[43]

Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[44]

Pei, J. J.; Wang, T.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Qin, F. J.; Zhao, X.; Liu, Q. H.; Yan, W. S.; Dong, J. C. et al. N-bridged Co-N-Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 2021, 14, 3019–3028.

[45]

Li, J. J.; Guan, Q. Q.; Wu, H.; Liu, W.; Lin, Y.; Sun, Z. H.; Ye, X. X.; Zheng, X. S.; Pan, H. B.; Zhu, J. F. et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal–support interactions. J. Am. Chem. Soc. 2019, 141, 14515–14519.

[46]

Guo, Y.; Gu, J. X.; Zhang, R.; Zhang, S. C.; Li, Z.; Zhao, Y. W.; Huang, Z. D.; Fan, J.; Chen, Z. F.; Zhi, C. Y. Molecular crowding effect in aqueous electrolytes to suppress hydrogen reduction reaction and enhance electrochemical nitrogen reduction. Adv. Energy Mater. 2021, 11, 2101699.

[47]

Choi, C.; Gu, G. H.; Noh, J.; Park, H. S.; Jung, Y. Understanding potential-dependent competition between electrocatalytic dinitrogen and proton reduction reactions. Nat. Commun. 2021, 12, 4353.

[48]

Li, L. B.; Yuan, K.; Chen, Y. W. Breaking the scaling relationship limit: From single-atom to dual-atom catalysts. Acc. Mater. Res. 2022, 3, 584–596.

[49]

Mao, C. L.; Wang, J. X.; Zou, Y. J.; Qi, G. D.; Yang Loh, J. Y.; Zhang, T. H.; Xia, M. K.; Xu, J.; Deng, F.; Ghoussoub, M. et al. Hydrogen spillover to oxygen vacancy of TiO2–xHy/Fe: Breaking the scaling relationship of ammonia synthesis. J. Am. Chem. Soc. 2020, 142, 17403–17412.

[50]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[51]

Chun, H. J.; Apaja, V.; Clayborne, A.; Honkala, K.; Greeley, J. Atomistic insights into nitrogen-cycle electrochemistry: A combined DFT and kinetic monte carlo analysis of NO electrochemical reduction on Pt (100). ACS Catal. 2017, 7, 3869–3882.

[52]

Nosé, S. Constant temperature molecular dynamics methods. Prog. Theor. Phys. Suppl. 1991, 103, 1–46.

[53]

Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.

[54]

Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F. ELF: The electron localization function. Angew. Chem., Int. Ed. 1997, 36, 1808–1832.

[55]

Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.

[56]

MacFarlane, D. R.; Cherepanov, P. V.; Choi, J.; Suryanto, B. H. R.; Hodgetts, R. Y.; Bakker, J. M.; Ferrero Vallana, F. M.; Simonov, A. N. A roadmap to the ammonia economy. Joule 2020, 4, 1186–1205.

[57]

Shen, H. D.; Choi, C.; Masa, J.; Li, X.; Qiu, J. S.; Jung, Y. S.; Sun, Z. Y. Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design. Chem 2021, 7, 1708–1754.

[58]

Liu, S. S.; Qian, T.; Wang, M. F.; Ji, H. Q.; Shen, X. W.; Wang, C.; Yan, C. L. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 2021, 4, 322–331.

[59]

Ren, Y. W.; Yu, C.; Han, X. T.; Tan, X. Y.; Wei, Q. B.; Li, W. B.; Han, Y. N.; Yang, L.; Qiu, J. S. Methanol-mediated electrosynthesis of ammonia. ACS Energy Lett. 2021, 6, 3844–3850.

File
12274_2023_6140_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 July 2023
Revised: 28 August 2023
Accepted: 29 August 2023
Published: 11 November 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21971002) and the Natural Science Foundation of Anhui province (Nos. 2008085QB81 and 2208085QA11). The numerical calculations in this paper have been done on Hefei advanced computing center.

Return