Journal Home > Volume 17 , Issue 4

The main problem faced by ethanol oxidation reaction (EOR) includes low activity, poor selectivity, and durability. In the study, we found that polysulfide modified on the surface of PtCu intermetallic (IM)/C can simultaneously enrich hydroxyl and ethanol, which could effectively improve the catalytic activity, CO2 selectivity, and durability of catalyst. The mass activity and the specific activity of the product in 1 M KOH electrolyte reached 17.83 A·mgPt−1 and 24.67 mA·cm−2. The CO2 selectivity of polysulfide modified product achieved 93.5%, which was 30 folds higher than Pt/C. In addition, the catalyst showed high catalytic stability. The mechanism study demonstrates that the surface modified polysulfide could significantly boost the enrichment effect of ethanol and hydroxyl species, accelerating C–C bond cleavage and CO oxidation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polysulfide modified PtCu intermetallic nanocatalyst with enrichment realizes efficient electrooxidation ethanol to CO2

Show Author's information Shuanglong Zhou1Zheng Lv1Liang Zhao1Dan Zhang1Zuocao Wang1Yu Dai2Bin Li3Olga Starostenko4Jianping Lai1( )Lei Wang1,5( )
Key Laboratory of Eco-chemical Engineering, Ministry of Education, Taishan scholar advantage and characteristic discipline team of Eco-chemical process and technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Foreign Languages, Qingdao City University, Qingdao 266106, China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, Kyiv 02160, Ukraine
Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Abstract

The main problem faced by ethanol oxidation reaction (EOR) includes low activity, poor selectivity, and durability. In the study, we found that polysulfide modified on the surface of PtCu intermetallic (IM)/C can simultaneously enrich hydroxyl and ethanol, which could effectively improve the catalytic activity, CO2 selectivity, and durability of catalyst. The mass activity and the specific activity of the product in 1 M KOH electrolyte reached 17.83 A·mgPt−1 and 24.67 mA·cm−2. The CO2 selectivity of polysulfide modified product achieved 93.5%, which was 30 folds higher than Pt/C. In addition, the catalyst showed high catalytic stability. The mechanism study demonstrates that the surface modified polysulfide could significantly boost the enrichment effect of ethanol and hydroxyl species, accelerating C–C bond cleavage and CO oxidation.

Keywords: electrocatalyst, Pt, ethanol oxidation reaction (EOR), enrichment effect, CO2 selectivity

References(50)

[1]

Badalyan, A.; Stahl, S. S. Cooperative electrocatalytic alcohol oxidation with electron–proton-transfer mediators. Nature 2016, 535, 406–410.

[2]

Zeb Gul Sial, M. A.; Ud Din, M. A.; Wang, X. Multimetallic nanosheets: Synthesis and applications in fuel cells. Chem. Soc. Rev. 2018, 47, 6175–6200.

[3]

Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572–19590.

[4]

Han, S. M.; He, C. H.; Yun, Q. B.; Li, M. Y.; Chen, W.; Cao, W. B.; Lu, Q. P. Pd-based intermetallic nanocrystals: From precise synthesis to electrocatalytic applications in fuel cells. Coord. Chem. Rev. 2021, 445, 214085.

[5]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[6]

Fang, Y.; Guo, S. Y.; Cao, D. J.; Zhang, G. L.; Wang, Q.; Chen, Y. Z.; Cui, P.; Cheng, S.; Zuo, W. S. Five-fold twinned Ir-alloyed Pt nanorods with high C1 pathway selectivity for ethanol electrooxidation. Nano Res. 2022, 15, 3933–3939.

[7]

Bai, S. X.; Xu, Y.; Cao, K. L.; Huang, X. Q. Selective ethanol oxidation reaction at the Rh–SnO2 interface. Adv. Mater. 2021, 33, 2005767.

[8]

Lv, F.; Zhang, W. Y.; Sun, M. Z.; Lin, F. X.; Wu, T.; Zhou, P.; Yang, W. X.; Gao, P.; Huang, B. L.; Guo, S. J. Au clusters on Pd nanosheets selectively switch the pathway of ethanol electrooxidation: Amorphous/crystalline interface matters. Adv. Energy Mater. 2021, 11, 2100187.

[9]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p–d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[10]

Jiang, K. Z.; Wang, P. T.; Guo, S. J.; Zhang, X.; Shen, X.; Lu, G.; Su, D.; Huang, X. Q. Ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angew. Chem., Int. Ed. 2016, 55, 9030–9035.

[11]

Li, S. P.; Lai, J. P.; Luque, R.; Xu, G. B. Designed multimetallic Pd nanosponges with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2016, 9, 3097–3102.

[12]

Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748–3751.

[13]

Ding, J. B.; Bu, L. Z.; Guo, S. J.; Zhao, Z. P.; Zhu, E. B.; Huang, Y.; Huang, X. Q. Morphology and phase controlled construction of Pt-Ni nanostructures for efficient electrocatalysis. Nano Lett. 2016, 16, 2762–2767.

[14]

Li, M. X.; Cai, Y. D.; Zhang, J. J.; Sun, H. X.; Li, Z.; Liu, Y. J.; Zhang, X.; Dai, X. P.; Gao, F.; Song, W. Y. Highly stable Pt3Ni ultralong nanowires tailored with trace Mo for the ethanol oxidation. Nano Res. 2022, 15, 3230–3238.

[15]

Huang, W. J.; Ma, X. Y.; Wang, H.; Feng, R. F.; Zhou, J. G.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Zhao, F. P. et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 2017, 29, 1703057.

[16]

Li, S. N.; Wang, Y.; Li, Y. R.; Fang, X.; Liu, Y. J.; Li, M. X.; Wang, Z.; Gao, Y. F.; Sun, H. X.; Gao, F. et al. PtNiCu nanowires with advantageous lattice-plane boundary for enhanced ethanol electrooxidation. Nano Res. 2022, 15, 2877–2886.

[17]

Rodríguez-Gómez, A.; Dorado, F.; Sánchez, P.; De La Osa, A. R. Boosting hydrogen and chemicals production through ethanol electro-reforming on Pt-transition metal anodes. J. Energy Chem. 2022, 70, 394–406.

[18]

Wang, K. L.; Wang, F.; Zhao, Y. F.; Zhang, W. Q. Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell. J. Energy Chem. 2021, 52, 251–261.

[19]

Chen, J. Y.; Lim, S. C.; Kuo, C. H.; Tuan, H. Y. Sub-1 nm PtSn ultrathin sheet as an extraordinary electrocatalyst for methanol and ethanol oxidation reactions. J. Colloid Interface Sci. 2019, 545, 54–62.

[20]

Kodiyath, R.; Ramesh, G. V.; Koudelkova, E.; Tanabe, T.; Ito, M.; Manikandan, M.; Ueda, S.; Fujita, T.; Umezawa, N.; Noguchi, H. et al. Promoted C–C bond cleavage over intermetallic TaPt3 catalyst toward low-temperature energy extraction from ethanol. Energy Environ. Sci. 2015, 8, 1685–1689.

[21]

Dai, S.; Huang, T. H.; Yan, X. X.; Yang, C. Y.; Chen, T. Y.; Wang, J. H.; Pan, X. Q.; Wang, K. W. Promotion of ternary Pt-Sn-Ag catalysts toward ethanol oxidation reaction: Revealing electronic and structural effects of additive metals. ACS Energy Lett. 2018, 3, 2550–2557.

[22]

Wang, K.; Du, H. Y.; Sriphathoorat, R.; Shen, P. K. Vertex-type engineering of Pt-Cu-Rh heterogeneous nanocages for highly efficient ethanol electrooxidation. Adv. Mater. 2018, 30, 1804074.

[23]

Tian, H.; Zhu, R.; Deng, P.; Li, J.; Huang, W.; Chen, Q.; Su, Y.; Jia, C.; Liu, Z.; Shen, Y. et al. Ultrathin Pd3Pt1Rh0.1 nanorings with strong C–C bond breaking ability for the ethanol oxidation reaction. Small 2022, 18, 2203506.

[24]

Li, J. R.; Jilani, S. Z.; Lin, H. H.; Liu, X. M.; Wei, K. C.; Jia, Y. K.; Zhang, P.; Chi, M. F.; Tong, Y. J.; Xi, Z. et al. Ternary CoPtAu nanoparticles as a general catalyst for highly efficient electro-oxidation of liquid fuels. Angew. Chem., Int. Ed. 2019, 58, 11527–11533.

[25]

Bai, J.; Liu, D. Y.; Yang, J.; Chen, Y. Nanocatalysts for electrocatalytic oxidation of ethanol. ChemSusChem 2019, 12, 2117–2132.

[26]

Liang, Z. X.; Song, L.; Deng, S. Q.; Zhu, Y. M.; Stavitski, E.; Adzic, R. R.; Chen, J. Y.; Wang, J. X. Direct 12-electron oxidation of ethanol on a ternary Au (core)–PtIr (shell) electrocatalyst. J. Am. Chem. Soc. 2019, 141, 9629–9636.

[27]

Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruña, H. D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc. 2004, 126, 4043–4049.

[28]

Shi, Y. D.; Liao, F.; Zhu, W. X.; Shi, H. X.; Yin, K.; Shao, M. W. Carbon dots promote the performance of anodized nickel passivation film on ethanol oxidation by enhancing oxidation of the intermediate. Chin. J. Chem. 2021, 39, 1199–1204.

[29]

Lv, H.; Lopes, A.; Xu, D. D.; Liu, B. Multimetallic hollow mesoporous nanospheres with synergistically structural and compositional effects for highly efficient ethanol electrooxidation. ACS Cent. Sci. 2018, 4, 1412–1419.

[30]

He, Q. G.; Shyam, B.; Macounová, K.; Krtil, P.; Ramaker, D.; Mukerjee, S. Dramatically enhanced cleavage of the C–C bond using an electrocatalytically coupled reaction. J. Am. Chem. Soc. 2012, 134, 8655–8661.

[31]

Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Structurally ordered Pt3Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts. ACS Catal. 2020, 10, 3455–3461.

[32]

Luo, A. P.; Zhang, L.; Liao, Y. J.; Li, L. X.; Yang, Q.; Wu, X. T.; Wu, X. Y.; He, D. S.; He, C. Y.; Chen, W. et al. A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation. Adv. Mater. 2021, 33, 2008508.

[33]

Ji, X. L.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J. J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2010, 2, 286–293.

[34]

Zhao, X. R.; Cheng, H.; Song, L.; Han, L. L.; Zhang, R.; Kwon, G.; Ma, L.; Ehrlich, S. N.; Frenkel, A. I.; Yang, J. et al. Rhombohedral ordered intermetallic nanocatalyst boosts the oxygen reduction reaction. ACS Catal. 2021, 11, 184–192.

[35]

Luo, L. H.; Wang, M. L.; Cui, Y.; Chen, Z. Y.; Wu, J. X.; Cao, Y. L.; Luo, J.; Dai, Y. Z.; Li, W. X.; Bao, J. et al. Surface iron species in palladium-iron intermetallic nanocrystals that promote and stabilize CO2 methanation. Angew. Chem. 2020, 132, 14542–14550.

[36]

Xie, X. F.; Zhang, Z. H.; Chen, Z. K.; Wu, J. Y.; Li, Z. L.; Zhong, S. P.; Liu, H.; Xu, Z. F.; Liu, Z. L. In-situ preparation of zinc sulfide adsorbent using local materials for elemental mercury immobilization and recovery from zinc smelting flue gas. Chem. Eng. J. 2022, 429, 132115.

[37]

Hui, L.; Zhang, X. T.; Xue, Y. R.; Chen, X.; Fang, Y.; Xing, C. Y.; Liu, Y. X.; Zheng, X. C.; Du, Y. C.; Zhang, C. et al. Highly dispersed platinum chlorine atoms anchored on gold quantum dots for a highly efficient electrocatalyst. J. Am. Chem. Soc. 2022, 144, 1921–1928.

[38]

Chen, C.; Zhu, Y. Z.; Tian, M.; Chen, Y.; Yang, Y. J.; Jiang, K.; Gao, S. Y. Sustainable self-powered electro-Fenton degradation using N,S co-doped porous carbon catalyst fabricated with adsorption–pyrolysis–doping strategy. Nano Energy 2021, 81, 105623.

[39]

Xiao, L. P.; Li, G.; Yang, Z.; Chen, K.; Zhou, R. S.; Liao, H. G.; Xu, Q. C.; Xu, J. Engineering of amorphous PtOx interface on Pt/WO3 nanosheets for ethanol oxidation electrocatalysis. Adv. Funct. Mater. 2021, 31, 2100982.

[40]

Bach Delpeuch, A.; Maillard, F.; Chatenet, M.; Soudant, P.; Cremers, C. Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: A DEMS and in situ FTIR study. Appl. Catal. B: Environ. 2016, 181, 672–680.

[41]

Qin, Y. N.; Huang, H.; Yu, W. H.; Zhang, H. N.; Li, Z. J.; Wang, Z. C.; Lai, J. P.; Wang, L.; Feng, S. H. Porous PdWM (M = Nb, Mo and Ta) trimetallene for high C1 selectivity in alkaline ethanol oxidation reaction. Adv. Sci. 2022, 9, 2103722.

[42]

Li, M.; Cullen, D. A.; Sasaki, K.; Marinkovic, N. S.; More, K.; Adzic, R. R. Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: Making Ir capable of splitting C–C bond. J. Am. Chem. Soc. 2013, 135, 132–141.

[43]

Peng, H. C.; Ren, J.; Wang, Y. C.; Xiong, Y.; Wang, Q. C.; Li, Q.; Zhao, X.; Zhan, L. S.; Zheng, L. R.; Tang, Y. G. et al. One-stone, two birds: Alloying effect and surface defects induced by Pt on Cu2−xSe nanowires to boost C–C bond cleavage for electrocatalytic ethanol oxidation. Nano Energy 2021, 88, 106307.

[44]

Shen, C.; Chen, H. M.; Qiu, M. Y.; Shi, Y. Q.; Yan, W.; Jiang, Q. R.; Jiang, Y. Q.; Xie, Z. X. Introducing oxophilic metal and interstitial hydrogen into the Pd lattice to boost electrochemical performance for alkaline ethanol oxidation. J. Mater. Chem. A 2022, 10, 1735–1741.

[45]

Jiang, Z.; Zhang, Q.; Liang, Z. X.; Chen, J. G. Pt-modified TaC as an efficient electrocatalyst for ethanol oxidation in acid and alkaline electrolytes. Appl. Catal. B: Environ. 2018, 234, 329–336.

[46]

Li, M. G.; Zhao, Z. L.; Zhang, W. Y.; Luo, M. C.; Tao, L.; Sun, Y. J.; Xia, Z. H.; Chao, Y. G.; Yin, K.; Zhang, Q. H. et al. Sub-monolayer YOx/MoOx on ultrathin Pt nanowires boosts alcohol oxidation electrocatalysis. Adv. Mater. 2021, 33, 2103762.

[47]

Lan, B.; Wang, Q. L.; Ma, Z. X.; Wu, Y. J.; Jiang, X. L.; Jia, W. S.; Zhou, C. X.; Yang, Y. Y. Efficient electrochemical ethanol-to-CO2 conversion at rhodium and bismuth hydroxide interfaces. Appl. Catal. B: Environ. 2022, 300, 120728.

[48]

Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 2018, 4, 60–67.

[49]

Li, S.; Guan, A. X.; Wang, H. N.; Yan, Y. Q.; Huang, H. L.; Jing, C.; Zhang, L. J.; Zhang, L. J.; Zheng, G. F. Hybrid palladium nanoparticles and nickel single atom catalysts for efficient electrocatalytic ethanol oxidation. J. Mater. Chem. A 2022, 10, 6129–6133.

[50]

Han, S. H.; Liu, H. M.; Chen, P.; Jiang, J. X.; Chen, Y. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation. Adv. Energy Mater. 2018, 8, 1801326.

File
12274_2023_6043_MOESM1_ESM.pdf (5.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 June 2023
Revised: 21 July 2023
Accepted: 26 July 2023
Published: 23 August 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22001143, 21971132, and 52072197), Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (No. 2019KJC004), Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), Taishan Scholar Young Talent Program (Nos. tsqn201909114 and tsqn201909123), Natural Science Foundation of Shandong Province (Nos. ZR2020YQ34 and ZR2019MB042), Major Scientific and Technological Innovation Project (No. 2019JZZY020405), Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2020ZD09), and the National Natural Science Foundation of China (No. 22002083).

Return