Journal Home > Volume 17 , Issue 2

The remarkable functionality of biological systems in detecting and adapting to various environmental conditions has inspired the design of the latest electronics and robots with advanced features. This review focuses on intelligent bio-inspired strategies for developing soft bioelectronics and robotics that can accommodate nanocomposite adhesives and integrate them into biological surfaces. The underlying principles of the material and structural design of nanocomposite adhesives were investigated for practical applications with excellent functionalities, such as soft skin-attachable health care sensors, highly stretchable adhesive electrodes, switchable adhesion, and untethered soft robotics. In addition, we have discussed recent progress in the development of effective fabrication methods for micro/nanostructures for integration into devices, presenting the current challenges and prospects.


menu
Abstract
Full text
Outline
About this article

Intelligent structured nanocomposite adhesive for bioelectronics and soft robots

Show Author's information Yeon Soo Lee1Min-Seok Kim2Da Wan Kim3( )Changhyun Pang1,4( )
School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
Mechanical Metrology Group, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
Department of Electronic Engineering, Korea National University of Transportation, Chungbuk 27469, Republic of Korea
Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

Abstract

The remarkable functionality of biological systems in detecting and adapting to various environmental conditions has inspired the design of the latest electronics and robots with advanced features. This review focuses on intelligent bio-inspired strategies for developing soft bioelectronics and robotics that can accommodate nanocomposite adhesives and integrate them into biological surfaces. The underlying principles of the material and structural design of nanocomposite adhesives were investigated for practical applications with excellent functionalities, such as soft skin-attachable health care sensors, highly stretchable adhesive electrodes, switchable adhesion, and untethered soft robotics. In addition, we have discussed recent progress in the development of effective fabrication methods for micro/nanostructures for integration into devices, presenting the current challenges and prospects.

Keywords: nanocomposite, bioelectronics, biomimetics, bio-adhesive, switchable adhesion, soft robotics

References(116)

[1]

Autumn, K.; Liang, Y. A.; Hsieh, S. T.; Zesch, W.; Chan, W. P.; Kenny, T. W.; Fearing, R.; Full, R. J. Adhesive force of a single gecko foot-hair. Nature 2000, 405, 681–685.

[2]

Maderson, P. F. A. Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards. Nature 1964, 203, 780–781.

[3]

Autumn, K.; Sitti, M.; Liang, Y. A.; Peattie, A. M.; Hansen, W. R.; Sponberg, S.; Kenny, T. W.; Fearing, R.; Israelachvili, J. N.; Full, R. J. Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 2002, 99, 12252–12256.

[4]

Pennisi, E. Geckos climb by the hairs of their toes. Science 2000, 288, 1717–1718.

[5]

Federle, W.; Riehle, M.; Curtis, A. S. G.; Full, R. J. An integrative study of insect adhesion: Mechanics and wet adhesion of pretarsal pads in ants. Integr. Comp. Biol. 2002, 42, 1100–1106.

[6]

Gorb, S. N.; Beutel, R. G.; Gorb, E. V.; Jiao, Y. K.; Kastner, V.; Niederegger, S.; Popov, V. L.; Scherge, M.; Schwarz, U.; Vötsch, W. Structural design and biomechanics of friction-based releasable attachment devices in insects. Integr. Comp. Biol. 2002, 42, 1127–1139.

[7]

Drechsler, P.; Federle, W. Biomechanics of smooth adhesive pads in insects: Influence of tarsal secretion on attachment performance. J. Comp. Physiol. A 2006, 192, 1213–1222.

[8]

Eisner, T.; Aneshansley, D. J. Defense by foot adhesion in a beetle (Hemisphaerota cyanea). Proc. Natl. Acad. Sci. USA 2000, 97, 6568–6573.

[9]

Emde, S.; Rueckert, S.; Palm, H. W.; Klimpel, S. Invasive Ponto–Caspian amphipods and fish increase the distribution range of the acanthocephalan Pomphorhynchus tereticollis in the river Rhine. PLoS One 2012, 7, e53218.

[10]

García-Varela, M.; Mendoza-Garfias, B.; Choudhury, A.; De León, G. P. P. Morphological and molecular data for a new species of Pomphorhynchus Monticelli, 1905 (Acanthocephala: Pomphorhynchidae) in the Mexican redhorse Moxostoma austrinum Bean (Cypriniformes: Catostomidae) in central Mexico. Syst. Parasitol. 2017, 94, 989–1006.

[11]

Kier, W. M.; Smith, A. M. The morphology and mechanics of octopus suckers. The Biol Bull. 1990, 178, 126–136.

[12]

Kier, W. M.; Smith, A. M. The structure and adhesive mechanism of octopus suckers. Integr. Comp. Biol. 2002, 42, 1146–1153.

[13]

Tramacere, F.; Pugno, N. M.; Kuba, M. J.; Mazzolai, B. Unveiling the morphology of the acetabulum in octopus suckers and its role in attachment. Interface Focus 2015, 5, 20140050.

[14]

Baik, S.; Kim, J.; Lee, H. J.; Lee, T. H.; Pang, C. Highly adaptable and biocompatible octopus-like adhesive patches with meniscus-controlled unfoldable 3D microtips for underwater surface and hairy skin. Adv. Sci. 2018, 5, 1800100.

[15]
Smith, A. M. The biochemistry and mechanics of gastropod adhesive gels. In Biological Adhesives; Smith, A. M., Ed.; Springer: Cham, 2016; pp 177–192.
DOI
[16]

Graham, L. D.; Glattauer, V.; Li, D. M.; Tyler, M. J.; Ramshaw, J. A. M. The adhesive skin exudate of Notaden bennetti frogs (Anura: Limnodynastidae) has similarities to the prey capture glue of Euperipatoides sp. velvet worms (Onychophora:Peripatopsidae). Comp. Biochem. Physiol. Part B Biochem Mol. Biol. 2013, 165, 250–259.

[17]

Smith, A. M.; Robinson, T. M.; Salt, M. D.; Hamilton, K. S.; Silvia, B. E.; Blasiak, R. Robust cross-links in molluscan adhesive gels: Testing for contributions from hydrophobic and electrostatic interactions. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2009, 152, 110–117.

[18]

Lai, J. H.; Del Alamo, J. C.; Rodríguez-Rodríguez, J.; Lasheras, J. C. The mechanics of the adhesive locomotion of terrestrial gastropods. J. Exp. Biol. 2010, 213, 3920–3933.

[19]

Tramacere, F.; Appel, E.; Mazzolai, B.; Gorb, S. N. Hairy suckers: The surface microstructure and its possible functional significance in the Octopus vulgaris sucker. Beilstein J Nanotechnol. 2014, 5, 561–565.

[20]

Baik, S.; Kim, D. W.; Park, Y.; Lee, T. J.; Ho Bhang, S.; Pang, C. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 2017, 546, 396–400.

[21]

Scholz, I.; Barnes, W. J. P.; Smith, J. M.; Baumgartner, W. Ultrastructure and physical properties of an adhesive surface, the toe pad epithelium of the tree frog, Litoria caerulea White. J. Exp. Biol. 2009, 212, 155–162.

[22]

Ditsche, P.; Michels, J.; Kovalev, A.; Koop, J.; Gorb, S. More than just slippery: The impact of biofilm on the attachment of non-sessile freshwater mayfly larvae. J. Roy. Soc. Interface 2014, 11, 20130989.

[23]

Ditsche-Kuru, P.; Koop, J. H. E.; Gorb, S. N. Underwater attachment in current: The role of setose attachment structures on the gills of the mayfly larvae Epeorus assimilis (Ephemeroptera, Heptageniidae). J. Exp. Biol. 2010, 213, 1950–1959.

[24]

Chen, Y.; Shih, M. C.; Wu, M. H.; Yang, E. C.; Chi, K. J. Underwater attachment using hairs: The functioning of spatula and sucker setae from male diving beetles. J. Roy. Soc. Interface 2014, 11, 20140273.

[25]

Murphy, M. P.; Kim, S.; Sitti, M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Appl. Mater. Interfaces 2009, 1, 849–855.

[26]

Spolenak, R.; Gorb, S.; Arzt, E. Adhesion design maps for bio-inspired attachment systems. Acta Biomater. 2005, 1, 5–13.

[27]

Kwak, M. K.; Pang, C.; Jeong, H. E.; Kim, H. N.; Yoon, H.; Jung, H. S.; Suh, K. Y. Towards the next level of bioinspired dry adhesives: New designs and applications. Adv. Funct. Mater. 2011, 21, 3606–3616.

[28]

Del Campo, A.; Greiner, C.; Álvarez, I.; Arzt, E. Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices. Adv. Mater. 2007, 19, 1973–1977.

[29]

Mengüç, Y.; Yang, S. Y.; Kim, S.; Rogers, J. A.; Sitti, M. Gecko-inspired controllable adhesive structures applied to micromanipulation. Adv. Funct. Mater. 2012, 22, 1246–1254.

[30]

Park, J. K.; Eisenhaure, J. D.; Kim, S. Reversible underwater dry adhesion of a shape memory polymer. Adv. Mater. Interfaces 2019, 6, 1801542.

[31]

Bullock, J. M.; Federle, W. Beetle adhesive hairs differ in stiffness and stickiness: In vivo adhesion measurements on individual setae. Naturwissenschaften 2011, 98, 381–387.

[32]

Huber, G.; Mantz, H.; Spolenak, R.; Mecke, K.; Jacobs, K.; Gorb, S. N.; Arzt, E. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. USA 2005, 102, 16293–16296.

[33]

Xue, L. J.; Sanz, B.; Luo, A. Y.; Turner, K. T.; Wang, X.; Tan, D.; Zhang, R.; Du, H.; Steinhart, M.; Mijangos, C. et al. Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog. ACS Nano 2017, 11, 9711–9719.

[34]

Zhang, L. W.; Chen, H. W.; Guo, Y. R.; Wang, Y.; Jiang, Y. G.; Zhang, D. Y.; Ma, L. R.; Luo, J. B.; Jiang, L. Micro-Nano hierarchical structure enhanced strong wet friction surface inspired by tree frogs. Adv. Sci. 2020, 7, 2001125.

[35]

Kim, D. W.; Baik, S.; Min, H.; Chun, S.; Lee, H. J.; Kim, K. H.; Lee, J. Y.; Pang, C. Highly permeable skin patch with conductive hierarchical architectures inspired by amphibians and octopi for omnidirectionally enhanced wet adhesion. Adv. Funct. Mater. 2019, 29, 1807614.

[36]

Meng, F. D.; Liu, Q.; Shi, Z. K.; Tan, D.; Yang, B. S.; Wang, X.; Shi, K.; Kappl, M.; Lei, Y. F.; Liu, S. et al. Tree frog-inspired structured hydrogel adhesive with regulated liquid. Adv. Mater. Interfaces 2021, 8, 2100528.

[37]

Liu, Q.; Meng, F. D.; Wang, X.; Yang, B. S.; Tan, D.; Li, Q.; Shi, Z. K.; Shi, K.; Chen, W. H.; Liu, S. et al. Tree frog-inspired micropillar arrays with nanopits on the surface for enhanced adhesion under wet conditions. ACS Appl. Mater. Interfaces 2020, 12, 19116–19122.

[38]

England, M. W.; Sato, T.; Yagihashi, M.; Hozumi, A.; Gorb, S. N.; Gorb, E. V. Surface roughness rather than surface chemistry essentially affects insect adhesion. Beilstein J. Nanotechnol. 2016, 7, 1471–1479.

[39]

Song, J. H.; Baik, S.; Kim, D. W.; Yang, T. H.; Pang, C. Wet soft bio-adhesion of insect-inspired polymeric oil-loadable perforated microcylinders. Chem. Eng. J. 2021, 423, 130194.

[40]

Pang, C.; Kwak, M. K.; Lee, C.; Jeong, H. E.; Bae, W. G.; Suh, K. Y. Nano meets beetles from wing to tiptoe: Versatile tools for smart and reversible adhesions. Nano Today 2012, 7, 496–513.

[41]

Xue, L. J.; Kovalev, A.; Eichler-Volf, A.; Steinhart, M.; Gorb, S. N. Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads. Nat. Commun. 2015, 6, 6621.

[42]

Dawood, A.; Marti, B. M.; Sauret-Jackson, V.; Darwood, A. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529.

[43]

Xia, Y. N.; Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184.

[44]

Whitesides, G. M.; Ostuni, E.; Takayama, S.; Jiang, X. Y.; Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 2001, 3, 335–373.

[45]

Rogers, J. A.; Nuzzo, R. G. Recent progress in soft lithography. Mater. Today 2005, 8, 50–56.

[46]

Luo, H. Y.; Lu, Y. Y.; Xu, Y. H.; Yang, G.; Cui, S. Y.; Han, D.; Zhou, Q. T.; Ouyang, X. P.; Yang, H. Y. et al. A fully soft, self-powered vibration sensor by laser direct writing. Nano Energy 2022, 103, 107803.

[47]

Yu, J.; Wu, J. G.; Yang, H.; Li, P.; Liu, J.; Wang, M.; Pang, J. H.; Li, C. B.; Yang, C.; Xu, K. C. Extremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic/-philic microporous platform. ACS Appl. Mater. Interfaces 2022, 14, 43877–43885.

[48]

Xu, K. C.; Fujita, Y.; Lu, Y. Y.; Honda, S.; Shiomi, M.; Arie, T.; Akita, S.; Takei, K. A wearable body condition sensor system with wireless feedback alarm functions. Adv. Mater. 2021, 33, 2008701.

[49]

Bachtiar, E. O.; Erol, O.; Millrod, M.; Tao, R. H.; Gracias, D. H.; Romer, L. H.; Kang, S. H. 3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications. J. Mech. Behav. Biomed. Mater. 2020, 104, 103649.

[50]

Wang, L. L.; Jackman, J. A.; Ng, W. B.; Cho, N. J. Flexible, graphene-coated biocomposite for highly sensitive, real-time molecular detection. Adv. Funct. Mater. 2016, 26, 8623–8630.

[51]

Lou, Z.; Chen, S.; Wang, L. L.; Jiang, K.; Shen, G. Z. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 2016, 23, 7–14.

[52]

Wei, T.; Martin, O.; Chen, M. Q.; Yang, S. F.; Hauke, F.; Hirsch, A. Covalent inter-carbon-allotrope architectures consisting of the endohedral fullerene Sc3N@C80 and single-walled carbon nanotubes. Angew. Chem., Int. Ed. 2019, 58, 8058–8062.

[53]

Kim, S. S.; Kim, Y. R.; Chung, T. D.; Sohn, B. H. Tunable decoration of reduced graphene oxide with Au nanoparticles for the oxygen reduction reaction. Adv. Funct. Mater. 2014, 24, 2764–2771.

[54]

Senapati, S.; Mahanta, A. K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018, 3, 7.

[55]

Oh, J. Y.; Kim, S.; Baik, H. K.; Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater. 2016, 28, 4455–4461.

[56]

Choi, S.; Han, S. I.; Kim, D.; Hyeon, T.; Kim, D. H. High-performance stretchable conductive nanocomposites: Materials, processes, and device applications. Chem. Soc. Rev. 2019, 48, 1566–1595.

[57]

Pan, C. F.; Markvicka, E. J.; Malakooti, M. H.; Yan, J. J.; Hu, L. M.; Matyjaszewski, K.; Majidi, C. A liquid-metal-elastomer nanocomposite for stretchable dielectric materials. Adv. Mater. 2019, 31, 1900663.

[58]

Park, M.; Park, J.; Jeong, U. Design of conductive composite elastomers for stretchable electronics. Nano Today 2014, 9, 244–260.

[59]

Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M. B.; Jeon, S.; Chung, D. Y. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803–809.

[60]

Singh, S.; Nalwa, H. S. Nanotechnology and health safety-toxicity and risk assessments of nanostructured materials on human health. J. Nanosci. Nanotechnol. 2007, 7, 3048–3070.

[61]

Drotlef, D. M.; Amjadi, M.; Yunusa, M.; Sitti, M. Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 2017, 29, 1701353.

[62]

Su, B.; Wu, Y. C.; Jiang, L. The art of aligning one-dimensional (1D) nanostructures. Chem. Soc. Rev. 2012, 41, 7832–7856.

[63]

Li, Y. J.; Liu, T. F.; Liu, H. B.; Tian, M. Z.; Li, Y. L. Self-assembly of intramolecular charge-transfer compounds into functional molecular systems. Acc. Chem. Res. 2014, 47, 1186–1198.

[64]

Cao, Q. M.; Yu, Q. M.; Connell, D. W.; Yu, G. Titania/carbon nanotube composite (TiO2/CNT) and its application for removal of organic pollutants. Clean Technol. Environ. Policy 2013, 15, 871–880.

[65]

Belytschko, T.; Xiao, S. P.; Schatz, G. C.; Ruoff, R. S. Atomistic simulations of nanotube fracture. Phys. Rev. B 2002, 65, 235430.

[66]

Dumitrica, T.; Hua, M.; Yakobson, B. I. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc. Natl. Acad. Sci. USA 2006, 103, 6105–6109.

[67]
Wang, Y.; Weng, G. J. Electrical conductivity of carbon nanotube-and graphene-based nanocomposites. In Micromechanics and Nanomechanics of Composite Solids; Meguid, S. A.; Weng, G. J., Eds.; Springer: Cham, 2018; pp 123–156.
DOI
[68]

Chen, S. S.; Moore, A. L.; Cai, W. W.; Suk, J. W.; An, J.; Mishra, C.; Amos, C.; Magnuson, C. W.; Kang, J. Y.; Shi, L. et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 2011, 5, 321–328.

[69]

Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

[70]

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

[71]

Robertson, C. G.; Bogoslovov, R.; Roland, C. M. Effect of structural arrest on Poisson’s ratio in nanoreinforced elastomers. Phys. Rev. E 2007, 75, 051403.

[72]

Min, H.; Baik, S.; Kim, J.; Lee, J.; Bok, B. G.; Song, J. H.; Kim, M. S.; Pang, C. Tough carbon nanotube-implanted bioinspired three-dimensional electrical adhesive for isotropically stretchable water-repellent bioelectronics. Adv. Funct. Mater. 2022, 32, 2107285.

[73]

Federle, W.; Labonte, D. Dynamic biological adhesion: Mechanisms for controlling attachment during locomotion. Philosoph. Trans. Roy. Soc. B Biol. Sci. 2019, 374, 20190199.

[74]

Kendall, K. Thin-film peeling-the elastic term. J. Phys. D Appl. Phys. 1975, 8, 1449–1452.

[75]

Kwak, M. K.; Jeong, H. E.; Bae, W. G.; Jung, H. S.; Suh, K. Y. Anisotropic adhesion properties of triangular-tip-shaped micropillars. Small 2011, 7, 2296–2300.

[76]

Min, H.; Baik, S.; Lee, J.; Kim, D. W.; Song, J. H.; Kim, K. H.; Kim, M. S.; Pang, C. Enhanced biocompatibility and multidirectional wet adhesion of insect-like synergistic wrinkled pillars with microcavities. Chem. Eng. J. 2022, 429, 132467.

[77]

Lee, Y. S.; Kim, D. W.; Song, J. H.; Kim, J.; Jeon, S. H.; Hwang, G. W.; Pang, C. A biodegradable bioinspired oil-coated adhesive film for enhanced wet adhesion. Surf. Interfaces 2022, 35, 102415.

[78]

Shim, H. J.; Sunwoo, S. H.; Kim, Y.; Koo, J. H.; Kim, D. H. Functionalized elastomers for intrinsically soft and biointegrated electronics. Adv. Healthc. Mater. 2021, 10, 2002105.

[79]

Chun, S.; Kim, D. W.; Baik, S.; Lee, H. J.; Lee, J. H.; Bhang, S. H.; Pang, C. Conductive and stretchable adhesive electronics with miniaturized octopus-like suckers against dry/wet skin for biosignal monitoring. Adv. Funct. Mater. 2018, 28, 1805224.

[80]

Liu, M. J.; Wang, J. X.; He, M.; Wang, L. B.; Li, F. Y.; Jiang, L.; Song, Y. L. Inkjet printing controllable footprint lines by regulating the dynamic wettability of coalescing ink droplets. ACS Appl. Mater. Interfaces 2014, 6, 13344–13348.

[81]

Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123–2126.

[82]

Choi, C.; Choi, M. K.; Hyeon, T.; Kim, D. H. Nanomaterial-based soft electronics for healthcare applications. ChemNanoMat 2016, 2, 1006–1017.

[83]

Kim, S.; Wu, J.; Carlson, A.; Jin, S. H.; Kovalsky, A.; Glass, P.; Liu, Z. J.; Ahmed, N.; Elgan, S. L.; Chen, W. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc. Natl. Acad. Sci. USA 2010, 107, 17095–17100.

[84]

Jeong, H. E.; Suh, K. Y. Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives. Nano Today 2009, 4, 335–346.

[85]

Wang, X.; Tan, D.; Zhang, X. Y.; Lei, Y. F.; Xue, L. J. Effective elastic modulus of structured adhesives: From biology to biomimetics. Biomimetics (Basel) 2017, 2, 10.

[86]

Kim, T.; Park, J.; Sohn, J.; Cho, D.; Jeon, S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 2016, 10, 4770–4778.

[87]

Zhao, P. C.; Li, Y. G. Correlation between the normal position of a particle on a rough surface and the van der Waals force. Colloids Surf. Physicochem. Eng. Aspects 2020, 585, 124096.

[88]

Lee, H.; Lee, B. P.; Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448, 338–341.

[89]

Glass, P.; Chung, H.; Washburn, N. R.; Sitti, M. Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions. Langmuir 2009, 25, 6607–6612.

[90]

Luo, X. H.; Dong, X. X.; Hou, Y. G.; Zhang, L. F.; Zhang, P. H.; Cai, J. Y.; Zhao, M.; Ramos, M. A.; Hu, T. S.; Zhao, H. et al. Photo-detachable self-cleaning surfaces inspired by gecko toepads. Langmuir 2021, 37, 8410–8416.

[91]

Dayan, C. B.; Chun, S.; Krishna-Subbaiah, N.; Drotlef, D. M.; Akolpoglu, M. B.; Sitti, M. 3D printing of elastomeric bioinspired complex adhesive microstructures. Adv. Mater. 2021, 33, 2103826.

[92]

Zhu, B.; Cao, H.; Chen, Z. X.; Wang, W. T.; Shi, Z. K.; Xiao, K. J.; Lei, Y. F.; Liu, S.; Song, Y.; Xue, L. J. Bioinspired micropillar array with micropit for robust and strong adhesion. Chem. Eng. J. 2023, 454, 140227.

[93]

Choi, M. K.; Park, O. K.; Choi, C.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, D. J.; Kim, M.; Hyun, W.; Kim, S. J. et al. Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv. Healthc. Mater. 2016, 5, 80–87.

[94]

Hwang, G. W.; Lee, H. J.; Kim, D. W.; Yang, T. H.; Pang, C. Soft microdenticles on artificial octopus sucker enable extraordinary adaptability and wet adhesion on diverse nonflat surfaces. Adv. Sci. (Weinh. ) 2022, 9, 2202978.

[95]

Kwak, M. K.; Jeong, H. E.; Suh, K. Y. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Adv. Mater. 2011, 23, 3949–3953.

[96]

Eberlein-König, B.; Schäfer, T.; Huss-Marp, J.; Darsow, U.; Möhrenschlager, M.; Herbert, O.; Abeck, D.; Krämer, U.; Behrendt, H.; Ring, J. Skin Surface pH, stratum Corneum hydration, trans-epidermal water loss and skin roughness related to atopic eczema and skin dryness in a population of primary school children: Clinical report. Acta Derm. Venereol. 2000, 80, 188–191.

[97]

Baik, S.; Lee, H. J.; Kim, D. W.; Min, H.; Pang, C. Capillarity-enhanced organ-attachable adhesive with highly drainable wrinkled octopus-inspired architectures. ACS Appl. Mater. Interfaces 2019, 11, 25674–25681.

[98]

Baik, S.; Lee, J.; Jeon, E. J.; Park, B. Y.; Kim, D. W.; Song, J. H.; Lee, H. J.; Han, S. Y.; Cho, S. W.; Pang, C. Diving beetle-like miniaturized plungers with reversible, rapid biofluid capturing for machine learning-based care of skin disease. Sci. Adv. 2021, 7, eabf5695.

[99]

Kim, D. W.; Song, K. I.; Seong, D.; Lee, Y. S.; Baik, S.; Song, J. H.; Lee, H. J.; Son, D.; Pang, C. Electrostatic-mechanical synergistic in situ multiscale tissue adhesion for sustainable residue-free bioelectronics interfaces. Adv. Mater. 2022, 34, 2105338.

[100]

Min, H.; Jang, S.; Kim, D. W.; Kim, J.; Baik, S.; Chun, S.; Pang, C. Highly air/water-permeable hierarchical mesh architectures for stretchable underwater electronic skin patches. ACS Appl. Mater. Interfaces 2020, 12, 14425–14432.

[101]

Kamišalić, A.; Fister, I.; Turkanović, M.; Karakatič, S. Sensors and functionalities of non-invasive wrist-wearable devices: A review. Sensors 2018, 18, 1714.

[102]

Kochan, K.; Marzec, K. M.; Chruszcz-Lipska, K.; Jasztal, A.; Maslak, E.; Musiolik, H.; Chłopicki, S.; Baranska, M. Pathological changes in the biochemical profile of the liver in atherosclerosis and diabetes assessed by Raman spectroscopy. Analyst 2013, 138, 3885–3890.

[103]

Bozkurt, O.; Severcan, F.; Bayari, S. H.; Severcan, M.; Krafft, C.; Popp, J. Structural alterations in rat liver proteins due to streptozotocin-induced diabetes and the recovery effect of selenium: Fourier transform infrared microspectroscopy and neural network study. J. Biomed. Opt. 2012, 17, 076023.

[104]

Stahl, S. E.; An, H. S.; Dinkel, D. M.; Noble, J. M.; Lee, J. M. How accurate are the wrist-based heart rate monitors during walking and running activities. Are they accurate enough? BMJ Open Sport Exerc. Med. 2016, 2, e000106.

[105]

Kim, Y. J.; Kim, K. D.; Kim, S. H.; Lee, S.; Lee, H. S. Golf swing analysis system with a dual band and motion analysis algorithm. IEEE Trans. Consumer Electron. 2017, 63, 309–317.

[106]
He, T. Y.; Luo, Q. Energy consumption assessment of college tennis players based on Actigraph GT9X accelerometer. In Proceedings of the 1st International Conference on Human Interaction and Emerging Technologies, Nice, France, 2020, pp 549–555.
DOI
[107]
Romero, I.; Berset, T.; Buxi, D.; Brown, L.; Penders, J.; Kim, S.; Van Helleputte, N.; Kim, H.; Van Hoof, C.; Yazicioglu, F. Motion artifact reduction in ambulatory ECG monitoring: An integrated system approach. In Proceedings of the 2nd Conference on Wireless Health, 2011, pp 1–8.
DOI
[108]

Li, S.; Tian, H. M.; Shao, J. Y.; Liu, H. R.; Wang, D. R.; Zhang, W. T. Switchable adhesion for nonflat surfaces mimicking geckos’ adhesive structures and toe muscles. ACS Appl. Mater. Interfaces 2020, 12, 39745–39755.

[109]

Baik, S.; Hwang, G. W.; Jang, S.; Jeong, S.; Kim, K. H.; Yang, T. H.; Pang, C. Bioinspired microsphere-embedded adhesive architectures for an electrothermally actuating transport device of dry/wet pliable surfaces. ACS Appl. Mater. Interfaces 2021, 13, 6930–6940.

[110]

Lee, H. J.; Baik, S.; Hwang, G. W.; Song, J. H.; Kim, D. W.; Park, B. Y.; Min, H.; Kim, J. K.; Koh, J. S.; Yang, T. H. et al. An electronically perceptive bioinspired soft wet-adhesion actuator with carbon nanotube-based strain sensors. ACS Nano 2021, 15, 14137–14148.

[111]

Tian, H. M.; Liu, H. R.; Shao, J. Y.; Li, S.; Li, X. M.; Chen, X. M. An electrically active gecko-effect soft gripper under a low voltage by mimicking gecko’s adhesive structures and toe muscles. Soft Matter 2020, 16, 5599–5608.

[112]

Wang, Y. P.; Yang, X. B.; Chen, Y. F.; Wainwright, D. K.; Kenaley, C. P.; Gong, Z. Y.; Liu, Z. M.; Liu, H.; Guan, J.; Wang, T. M. et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Sci. Robot. 2017, 2, eaan8072.

[113]

Yi, H.; Lee, S. H.; Seong, M.; Kwak, M. K.; Jeong, H. E. Bioinspired reversible hydrogel adhesives for wet and underwater surfaces. J. Mater. Chem. B 2018, 6, 8064–8070.

[114]

Guo, B. L.; Ma, P. X. Synthetic biodegradable functional polymers for tissue engineering: A brief review. Sci. China Chem. 2014, 57, 490–500.

[115]

Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 2011, 6, 13–22.

[116]

Cai, C.; Chen, Z.; Chen, Y. J.; Li, H.; Yang, Z.; Liu, H. Z. Mechanisms and applications of bioinspired underwater/wet adhesives. J. Polym. Sci. 2021, 59, 2911–2945.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 May 2023
Revised: 17 July 2023
Accepted: 18 July 2023
Published: 29 August 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This study was supported by the R&D program of the Ministry of Trade, Industry & Energy (No. 20016252, Development of a hybrid-type high-performance multimodal electronic skin sensor and a scalable module for robot manipulation). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT, MSIT) (No. RS-2023-00214236), the National Research Council of Science & Technology (NST) grant by the Korea government (MSIT) (No. CRC230231-000), and the Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korean government (MOTIE, No. RS-2022-00154781, Development of large-area wafer-level flexible/stretchable hybrid sensor platform technology for form factor-free highly integrated convergence sensors).

Return