AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Realization of flexible in-memory computing in a van der Waals ferroelectric heterostructure tri-gate transistor

Xinzhu Gao1,2Quan Chen1,2Qinggang Qin3Liang Li3Meizhuang Liu1,2Derek Hao4Junjie Li5,6( )Jingbo Li7Zhongchang Wang8Zuxin Chen1,2( )
School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou 510631, China
Institute of Solid State Physics Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230601, China
School of Science, STEM College, RMIT University, Melbourne 3000, Australia
CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga s/n, Braga 4715-330, Portugal
Show Author Information

Graphical Abstract

To solve the bottleneck problem of computing energy efficiency of devices, the design of a two-dimensional ferroelectric van der Waals heterojunction device based on CuInP2S6 and WS2 is developed. By co-regulating the input signals across tri-gate, this device can achieve non-volatile storage, “AND” logic operations, and multi-valued states of data, while achieving a high current switching ratio of 107 and an ultra-low subthreshold swing of 53.9 mV/dec.

Abstract

Combining logical function and memory characteristics of transistors is an ideal strategy for enhancing computational efficiency of transistor devices. Here, we rationally design a tri-gate two-dimensional (2D) ferroelectric van der Waals heterostructures device based on copper indium thiophosphate (CuInP2S6) and few layers tungsten disulfide (WS2), and demonstrate its multi-functional applications in multi-valued state of data, non-volatile storage, and logic operation. By co-regulating the input signals across the tri-gate, we show that the device can switch functions flexibly at a low supply voltage of 6 V, giving rise to an ultra-high current switching ratio of 107 and a low subthreshold swing of 53.9 mV/dec. These findings offer perspectives in designing smart 2D devices with excellent functions based on ferroelectric van der Waals heterostructures.

Electronic Supplementary Material

Download File(s)
12274_2023_5964_MOESM1_ESM.pdf (2.8 MB)

References

[1]

Chen, C. F.; Yang, S. H.; Lin, C. Y.; Lee, M. P.; Tsai, M. Y.; Yang, F. S.; Chang, Y. M.; Li, M. J.; Lee, K. C.; Ueno, K. et al. Reversible charge-polarity control for multioperation-mode transistors based on van der Waals heterostructures. Adv. Sci. 2022, 9, 2106016.

[2]

Jin, T. Y.; Mao, J. Y.; Gao, J.; Han, C.; Loh, K. P.; Wee, A. T. S.; Chen, W. Ferroelectrics-integrated two-dimensional devices toward next-generation electronics. ACS Nano 2022, 16, 13595–13611.

[3]

Wu, E. X.; Xie, Y.; Wang, S. J.; Zhang, D. H.; Hu, X. D.; Liu, J. Non-volatile programmable homogeneous lateral MoTe2 junction for multi-bit flash memory and high-performance optoelectronics. Nano Res. 2020, 13, 3445–3451.

[4]

Sebastian, A.; Pendurthi, R.; Choudhury, T. H.; Redwing, J. M.; Das, S. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 2021, 12, 693.

[5]

Li, H.; Li, X. M.; Park, J. H.; Tao, L.; Kim, K. K.; Lee, Y. H.; Xu, J. B. Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors. Nano Energy 2019, 57, 214–221.

[6]

Cheng, R. Q.; Wang, F.; Yin, L.; Wang, Z. X.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron. 2018, 1, 356–361.

[7]

Chen, Y. F.; Wang, Y.; Wang, Z.; Gu, Y.; Ye, Y.; Chai, X. L.; Ye, J. F.; Chen, Y.; Xie, R. Z.; Zhou, Y. et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 2021, 4, 357–363.

[8]

Qi, L.; Ruan, S. C.; Zeng, Y. J. Review on recent developments in 2D ferroelectrics: Theories and applications. Adv. Mater. 2021, 33, 2005098.

[9]

Zhang, D. W.; Schoenherr, P.; Sharma, P.; Seidel, J. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 2023, 8, 25–40.

[10]

Li, W. Y.; Guo, Y. M.; Luo, Z. P.; Wu, S. H.; Han, B.; Hu, W. J.; You, L.; Watanabe, K.; Taniguchi, T.; Alava, T. et al. A gate programmable van der Waals metal-ferroelectric-semiconductor vertical heterojunction memory. Adv. Mater. 2023, 35, 2208266.

[11]

Huang, Y. T.; Chen, N. K.; Li, Z. Z.; Wang, X. P.; Sun, H. B.; Zhang, S. B.; Li, X. B. Two-dimensional In2Se3: A rising advanced material for ferroelectric data storage. InfoMat 2022, 4, e12341.

[12]

Mao, X. Y.; Fu, J.; Chen, C.; Li, Y.; Liu, H.; Gong, M.; Zeng, H. L. Nonvolatile electric control of exciton complexes in monolayer MoSe2 with two-dimensional ferroelectric CuInP2S6. ACS Appl. Mater. Interfaces 2021, 13, 24250–24257.

[13]

Guo, F.; Song, M. L.; Wong, M. C.; Ding, R.; Io, W. F.; Pang, S. Y.; Jie, W. J.; Hao, J. H. Multifunctional optoelectronic synapse based on ferroelectric van der Waals heterostructure for emulating the entire human visual system. Adv. Funct. Mater. 2022, 32, 2108014.

[14]

Xue, F.; He, X.; Wang, Z. Y.; Retamal, J. R. D.; Chai, Z.; Jing, L. L.; Zhang, C. H.; Fang, H.; Chai, Y.; Jiang, T. et al. Giant ferroelectric resistance switching controlled by a modulatory terminal for low-power neuromorphic in-memory computing. Adv. Mater. 2021, 33, 2008709.

[15]

Xiong, X.; Kang, J. Y.; Liu, S. Y.; Tong, A. Y.; Fu, T. Y.; Li, X. F.; Huang, R.; Wu, Y. Q. Nonvolatile logic and ternary content-addressable memory based on complementary black phosphorus and rhenium disulfide transistors. Adv. Mater. 2022, 34, 2106321.

[16]

Dai, M. J.; Li, K.; Wang, F. K.; Hu, Y. X.; Zhang, J.; Zhai, T. Y.; Yang, B.; Fu, Y. Q.; Cao, W. W.; Jia, D. C. et al. Intrinsic dipole coupling in 2D van der Waals ferroelectrics for gate-controlled switchable rectifier. Adv. Electron. Mater. 2020, 6, 1900975.

[17]

Wang, S.; Pan, X.; Lyu, L. Y.; Wang, C. Y.; Wang, P. F.; Pan, C.; Yang, Y. K.; Wang, C.; Shi, J. W.; Cheng, B. et al. Nonvolatile van der Waals heterostructure phototransistor for encrypted optoelectronic logic circuit. ACS Nano 2022, 16, 4528–4535.

[18]

Pan, C.; Wang, C. Y.; Liang, S. J.; Wang, Y.; Cao, T. J.; Wang, P. F.; Wang, C.; Wang, S.; Cheng, B.; Gao, A. Y. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 2020, 3, 383–390.

[19]

Sun, X. X.; Zhu, C. G.; Yi, J. L.; Xiang, L.; Ma, C.; Liu, H. W.; Zheng, B. Y.; Liu, Y.; You, W. X.; Zhang, W. J. et al. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron. 2022, 5, 752–760.

[20]

Luo, Z. D.; Zhang, S. Q.; Liu, Y.; Zhang, D. W.; Gan, X. T.; Seidel, J.; Liu, Y.; Han, G. Q.; Alexe, M.; Hao, Y. Dual-ferroelectric-coupling-engineered two-dimensional transistors for multifunctional in-memory computing. ACS Nano 2022, 16, 3362–3372.

[21]

Huang, W. H.; Wang, F.; Yin, L.; Cheng, R. Q.; Wang, Z. X.; Sendeku, M. G.; Wang, J. J.; Li, N. N.; Yao, Y. Y.; He, J. Gate-coupling-enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater. 2020, 32, 1908040.

[22]

Jin, J. Y.; Wang, Z. P.; Peng, Z. S.; Liu, H.; Peng, K.; Wei, H. N.; Wang, Y.; Xu, Y. S.; Wei, H.; Chu, W. G. et al. Multifunctional dual gated coupling device using van der Waals ferroelectric heterostructure. Adv. Electron. Mater. 2022, 8, 2200210.

[23]

Wang, X. W.; Zhu, C.; Deng, Y.; Duan, R. H.; Chen, J. Q.; Zeng, Q. S.; Zhou, J. D.; Fu, Q. D.; You, L.; Liu, S. et al. Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 2021, 12, 1109.

[24]

Wang, Z. W.; Liu, X. C.; Zhou, X. F.; Yuan, Y. H.; Zhou, K. C.; Zhang, D.; Luo, H.; Sun, J. Reconfigurable quasi-nonvolatile memory/subthermionic FET functions in ferroelectric-2D semiconductor vdW architectures. Adv. Mater. 2022, 34, 2200032.

[25]

Luo, L.; Wang, L. N.; Chen, J. B.; Zhou, J. Z.; Yang, Z. H.; Pan, S. L.; Li, J. J. AIB3IIC3IIIQ8VI: A new family for the design of infrared nonlinear optical materials by coupling octahedra and tetrahedra Units. J. Am. Chem. Soc. 2022, 144, 21916–21925.

[26]

Zhou, J. Z.; Fan, Z. X.; Zhang, K. W.; Yang, Z. H.; Pan, S. L.; Li, J. J. Rb2CdSi4S10: Novel [Si4S10] T2-supertetrahedra-contained infrared nonlinear optical material with large band gap. Mater. Horiz. 2023, 10, 619–624.

[27]

Wang, P.; Chu, Y.; Tudi, A.; Xie, C. W.; Yang, Z. H.; Pan, S. L.; Li, J. J. The combination of structure prediction and experiment for the exploration of alkali-earth metal-contained chalcopyrite-like IR nonlinear optical material. Adv. Sci. 2022, 9, 2106120.

[28]

Bi, L.; Yao, Y. X.; Jiang, Q. M.; Huang, S.; Wang, X. H.; Jin, H.; Dai, X. Y.; Xu, Z. Y.; Fan, J.; Yin, H. B. et al. Instability of parasitic capacitance in T-shape-gate enhancement-mode AlGaN/GaN MIS-HEMTs. J. Semicond. 2022, 43, 032801.

[29]

Lv, L.; Zhuge, F. W.; Xie, F. J.; Xiong, X. J.; Zhang, Q. F.; Zhang, N.; Huang, Y.; Zhai, T. Y. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat. Commun. 2019, 10, 3331.

[30]

Gao, W.; Zhang, S.; Zhang, F.; Wen, P. T.; Zhang, L.; Sun, Y. M.; Chen, H. Y.; Zheng, Z. Q.; Yang, M. M.; Luo, D. X. et al. 2D WS2 based asymmetric schottky photodetector with high performance. Adv. Electron Mater. 2021, 7, 2000964.

[31]

Chen, J. G.; Zhu, C.; Cao, G. M.; Liu, H. S.; Bian, R. J.; Wang, J. Y.; Li, C. C.; Chen, J. Q.; Fu, Q. D.; Liu, Q. et al. Mimicking neuroplasticity via ion migration in van der Waals layered copper indium thiophosphate. Adv. Mater. 2022, 34, 2104676.

[32]

Tang, W. H.; Zhang, X. K.; Yu, H. H.; Gao, L.; Zhang, Q. H.; Wei, X. F.; Hong, M. Y.; Gu, L.; Liao, Q. L.; Kang, Z. et al. A van der Waals ferroelectric tunnel junction for ultrahigh-temperature operation memory. Small Methods 2022, 6, 2101583.

[33]

Li, J. J.; Deepak, F. L. In situ kinetic observations on crystal nucleation and growth. Chem. Rev. 2022, 122, 16911–16982.

[34]

Chen, Z. X.; Chen, Q.; Chai, Z. B.; Wei, B.; Wang, J.; Liu, Y. P.; Shi, Y. M.; Wang, Z. C.; Li, J. B. Ultrafast growth of high-quality large-sized GaSe crystals by liquid metal promoter. Nano Res. 2022, 15, 4677–4681.

[35]

Liu, L.; Wang, H.; Wu, Q. L.; Wu, K.; Tian, Y.; Yang, H. T.; Shen, C. M.; Bao, L. H.; Qin, Z. H.; Gao, H. J. Ferroelectric-gated ReS2 field-effect transistors for nonvolatile memory. Nano Res. 2022, 15, 5443–5449.

[36]

Jie, W. J.; Hui, Y. Y.; Chan, N. Y.; Zhang, Y.; Lau, S. P.; Hao, J. H. Ferroelectric polarization effects on the transport properties of Graphene/PMN-PT field effect transistors. J. Phys. Chem. C 2013, 117, 13747–13752.

[37]

Zhao, Z. J.; Rakheja, S.; Zhu, W. J. Nonvolatile reconfigurable 2D schottky barrier transistors. Nano Lett. 2021, 21, 9318–9324.

[38]

Liu, L.; Hou, X.; Zhang, H.; Wang, J. L.; Zhou, P. Ferroelectric field-effect transistors for logic and in-situ memory applications. Nanotechnology 2020, 31, 424007.

[39]

Jiang, Y. R.; Zhang, L. L.; Wang, R.; Li, H. Z.; Li, L.; Zhang, S. C.; Li, X. P.; Su, J.; Song, X. H.; Xia, C. X. Asymmetric ferroelectric-gated two-dimensional transistor integrating self-rectifying photoelectric memory and artificial synapse. ACS Nano 2022, 16, 11218–11226.

[40]

Hayakawa, R.; Honma, K.; Nakaharai, S.; Kanai, K.; Wakayama, Y. Electrically reconfigurable organic logic gates: A promising perspective on a dual-gate antiambipolar transistor. Adv. Mater. 2022, 34, 2109491.

[41]

Singh, P.; Baek, S.; Yoo, H. H.; Niu, J. J.; Park, J. H.; Lee, S. Two-dimensional CIPS-InSe van der Waal heterostructure ferroelectric field effect transistor for nonvolatile memory applications. ACS Nano 2022, 16, 5418–5426.

[42]

Alam, M.; Crispin, X. The past, present, and future of piezoelectric fluoropolymers: Towards efficient and robust wearable nanogenerators. Nano Res. Energy 2023, 2, e9120076.

[43]

Chen, L.; Wang, L.; Peng, Y.; Feng, X. W.; Sarkar, S.; Li, S. F.; Li, B. C.; Liu, L.; Han, K. Z.; Gong, X. et al. A van der Waals synaptic transistor based on ferroelectric Hf0.5Zr0.5O2 and 2D tungsten disulfide. Adv. Electron. Mater. 2020, 6, 2000057.

[44]

Guo, X. H.; He, J. W.; Zheng, Y.; Wu, J. P.; Pan, C. F.; Zi, Y. L.; Cui, H. Z.; Li, X. Y. High-performance triboelectric nanogenerator based on theoretical analysis and ferroelectric nanocomposites and its high-voltage applications. Nano Res. Energy, 2023, 2, e9120074.

[45]

Chen, Z. X.; Chu, S.; Chen, J. P.; Chen, H.; Zhang, J. T.; Ma, X. Z.; Li, Q. G.; Chen, X. C. Epitaxially grown semi-vertical and aligned GaTe two dimensional sheets on ZnO substrate for energy harvesting applications. Nano Energy 2019, 56, 294–299.

[46]

Si, M. W.; Liao, P. Y.; Qiu, G.; Duan, Y. Q.; Ye, P. D. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano 2018, 12, 6700–6705.

[47]

Yang, K.; Wang, S. L.; Han, T.; Liu, H. X. Low-power OR logic ferroelectric in-situ transistor based on a CuInP2S6/MoS2 van der Waals heterojunction. Nanomaterials 2021, 11, 1971.

[48]

Cao, Q.; Lü, W. M.; Wang, X. R.; Guan, X. W.; Wang, L.; Yan, S. S.; Wu, T.; Wang, X. L. Nonvolatile multistates memories for high-density data storage. ACS Appl. Mater. Interfaces 2020, 12, 42449–42471.

Nano Research
Pages 1886-1892
Cite this article:
Gao X, Chen Q, Qin Q, et al. Realization of flexible in-memory computing in a van der Waals ferroelectric heterostructure tri-gate transistor. Nano Research, 2024, 17(3): 1886-1892. https://doi.org/10.1007/s12274-023-5964-8
Topics:

1116

Views

19

Crossref

23

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 16 May 2023
Revised: 16 June 2023
Accepted: 27 June 2023
Published: 01 August 2023
© Tsinghua University Press 2023
Return