Journal Home > Volume 17 , Issue 3

Vapor deposition and three-dimensional (3D) printing technology are considered to be conventional methods to achieve patterned metal film preparation through the assistance of masks and high temperature. Therefore, there are still some challenges in fabricating metal films in template-free and normal temperature environment. In this work, we report a flexible and rapid laser metal transfer (LMT) technique for fabricating the various metal films (Cu, Ni, Sn, Al, Fe, and Ag) with different patterns without templates on arbitrary substrates (glass, polyimide (PI) films, and aluminum nitride (AlN) ceramic). Especially, the obtained transparent conductive glass displays high transmittance (more than 90%) and adjustable resistances (≈ 5 Ω). According to the Joule effect, the interface resistance between Cu particles and copper oxide coating produces the high temperature approximately 280 °C at 2 V in a short time (≈ 60 s) and remains stable at 120 °C over 12 h. At last, the multifunctional glass with Cu patterns also shows excellent bactericidal activity (≈ 95%). This work demonstrates that laser metal transfer is an exceeding effective means of fabricating the micro/nano structures with potential applications in functional devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabrication of patterned transparent conductive glass via laser metal transfer for efficient electrical heating and antibacteria

Show Author's information Xiaoyan Liu1,§Ting Zhang1,2,§Mengchen Xu3Yang Li4Haiqing Wang1Yuke Chen1Xuzihan Zhang2Zenan Wang5Xiaoyan Li3( )Weijia Zhou1( )Hong Liu1( )
Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
School of Physics and Technology, University of Jinan, Jinan 250024, China
Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
School of Information Science and Engineering, University of Jinan, Jinan 250022, China
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

§ Xiaoyan Liu and Ting Zhang contributed equally to this work.

Abstract

Vapor deposition and three-dimensional (3D) printing technology are considered to be conventional methods to achieve patterned metal film preparation through the assistance of masks and high temperature. Therefore, there are still some challenges in fabricating metal films in template-free and normal temperature environment. In this work, we report a flexible and rapid laser metal transfer (LMT) technique for fabricating the various metal films (Cu, Ni, Sn, Al, Fe, and Ag) with different patterns without templates on arbitrary substrates (glass, polyimide (PI) films, and aluminum nitride (AlN) ceramic). Especially, the obtained transparent conductive glass displays high transmittance (more than 90%) and adjustable resistances (≈ 5 Ω). According to the Joule effect, the interface resistance between Cu particles and copper oxide coating produces the high temperature approximately 280 °C at 2 V in a short time (≈ 60 s) and remains stable at 120 °C over 12 h. At last, the multifunctional glass with Cu patterns also shows excellent bactericidal activity (≈ 95%). This work demonstrates that laser metal transfer is an exceeding effective means of fabricating the micro/nano structures with potential applications in functional devices.

Keywords: antibacterial, transparent conductive glass, electrical heating, copper pattern, laser metal transfer (LMT)

References(41)

[1]

Seo, S. Y.; Park, J.; Park, J.; Song, K.; Cha, S.; Sim, S.; Choi, S. Y.; Yeom, H. W.; Choi, H.; Jo, M. H. Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe. Nat. Electron. 2018, 1, 512–517.

[2]

Lin, H.; Sturmberg, B. C. P.; Lin, K. T.; Yang, Y. Y.; Zheng, X. R.; Chong, T. K.; de Sterke, C. M.; Jia, B. H. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 2019, 13, 270–276.

[3]

Chen, C. C.; Lin, Y. S.; Sang, C. H.; Sheu, J. T. Localized Joule heating as a mask-free technique for the local synthesis of ZnO nanowires on silicon nanodevices. Nano Lett. 2011, 11, 4736–4741.

[4]

Cheng, L.; Wu, F. X.; Tian, Y.; Lv, X. L.; Li, F. H.; Xu, G. B.; Hsu, H. Y.; Zhang, Y. J.; Niu, W. X. Gap engineering of sandwich plasmonic gap nanostructures for boosting plasmon-enhanced electrocatalysis. Nano Res. 2023, 16, 8961–8969.

[5]

Zhu, X. Y.; Xu, Q.; Li, H. K.; Liu, M. Y.; Li, Z. H.; Yang, K.; Zhao, J. W.; Qian, L.; Peng, Z. L.; Zhang, G. M. et al. Fabrication of high-performance silver mesh for transparent glass heaters via electric-field-driven microscale 3D printing and UV-assisted microtransfer. Adv. Mater. 2019, 31, e1902479.

[6]

Gao, B.; Hu, J.; Tang, S.; Xiao, X. Y.; Chen, H.; Zuo, Z.; Qi, Q.; Peng, Z. Y.; Wen, J. C.; Zou, D. C. Organic-inorganic perovskite films and efficient planar heterojunction solar cells by magnetron sputtering. Adv. Sci. 2021, 8, e2102081.

[7]

Cheng, C. J.; Zhang, X. F.; Haché, M. J. R.; Zou, Y. Magnetron co-sputtering synthesis and nanoindentation studies of nanocrystalline (TiZrHf)x(NbTa)1−x high-entropy alloy thin films. Nano Res. 2022, 15, 4873–4879.

[8]

Zhou, X. Y.; Zhang, L. C.; Huang, Y.; Zhou, Z. Y.; Xing, W. Q.; Zhang, J.; Zhou, F. W.; Zhang, D. Y.; Zhao, F. Z. Enhanced responsivity of CsCu2I3 based UV detector with CuI buffer-layer grown by vacuum thermal evaporation. Adv. Opt. Mater. 2021, 9, 2100889.

[9]

Poh, S. M.; Tan, S. J. R.; Zhao, X. X.; Chen, Z. X.; Abdelwahab, I.; Fu, D. Y.; Xu, H.; Bao, Y.; Zhou, W.; Loh, K. P. Large area synthesis of 1D-MoSe2 using molecular beam epitaxy. Adv. Mater. 2017, 29, 1605641.

[10]

Li, P. G.; Wang, C.; Zhang, J. H.; Chen, S. W.; Guo, D. H.; Ji, W.; Zhong, D. Y. Single-layer CrI3 grown by molecular beam epitaxy. Sci. Bull. 2020, 65, 1064–1071.

[11]

Graniel, O.; Weber, M.; Balme, S.; Miele, P.; Bechelany, M. Atomic layer deposition for biosensing applications. Biosens. Bioelectron. 2018, 122, 147–159.

[12]

Song, S. K.; Saare, H.; Parsons, G. N. Integrated isothermal atomic layer deposition/atomic layer etching supercycles for area-selective deposition of TiO2. Chem. Mater. 2019, 31, 4793–4804.

[13]
Mooraj, S.; Qi, Z.; Zhu, C.; Ren, J.; Peng, S. Y.; Liu, L.; Zhang, S. B.; Feng, S.; Kong, F. Y.; Liu, Y. F. et al. 3D printing of metal-based materials for renewable energy applications. Nano Res. 2021, 14, 2105–2132.
DOI
[14]

Todd, I. No more tears for metal 3D printing. Nature 2017, 549, 342–343.

[15]

Luo, H. Y.; Wang, C. J.; Linghu, C. H.; Yu, K. X.; Wang, C.; Song, J. Z. Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp. Natl. Sci. Rev. 2020, 7, 296–304.

[16]

Wei, Q. H.; Li, H. J.; Liu, G. G.; He, Y. L.; Wang, Y.; Tan, Y. E.; Wang, D.; Peng, X. B.; Yang, G. H.; Tsubaki, N. Metal 3D printing technology for functional integration of catalytic system. Nat. Commun. 2020, 11, 4098.

[17]

Liu, G. S.; Huang, Z. X.; Yan, C.; Li, S. S.; Xu, C.; Song, L. P.; Kuang, D. F. Insights into the generation of laser-induced assembly of MoSe2 nanospheres. Nano Res. 2022, 15, 6686–6694.

[18]

Palneedi, H.; Park, J. H.; Maurya, D.; Peddigari, M.; Hwang, G. T.; Annapureddy, V.; Kim, J. W.; Choi, J. J.; Hahn, B. D.; Priya, S. et al. Laser irradiation of metal oxide films and nanostructures: Applications and advances. Adv. Mater. 2018, 30, e1705148.

[19]

Zhang, B.; Deschamps, M.; Ammar, M. R.; Raymundo-Piñero, E.; Hennet, L.; Batuk, D.; Tarascon, J. M. Laser synthesis of hard carbon for anodes in Na-ion battery. Adv. Mater. Technol. 2017, 2, 1600227.

[20]

Zhang, F.; Alhajji, E.; Lei, Y. J.; Kurra, N.; Alshareef, H. N. Highly doped 3D graphene Na-ion battery anode by laser scribing polyimide films in nitrogen ambient. Adv. Energy Mater. 2018, 8, 1800353.

[21]

Tao, L. Q.; Tian, H.; Liu, Y.; Ju, Z. Y.; Pang, Y.; Chen, Y. Q.; Wang, D. Y.; Tian, X. G.; Yan, J. C.; Deng, N. Q. et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 2017, 8, 14579.

[22]

Deka, B. K.; Hazarika, A.; Kim, J.; Jeong, H. E.; Park, Y. B.; Park, H. W. Fabrication of the piezoresistive sensor using the continuous laser-induced nanostructure growth for structural health monitoring. Carbon 2019, 152, 376–387.

[23]

Johny, J.; Li, Y.; Kamp, M.; Prymak, O.; Liang, S. X.; Krekeler, T.; Ritter, M.; Kienle, L.; Rehbock, C.; Barcikowski, S. et al. Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts. Nano Res. 2022, 15, 4807–4819.

[24]

Li, L.; Zhang, J. Y.; Wang, Y. Y.; Zaman, F. U.; Zhang, Y. M.; Hou, L. R.; Yuan, C. Z. Laser irradiation construction of nanomaterials toward electrochemical energy storage and conversion: Ongoing progresses and challenges. InfoMat 2021, 3, 1393–1421.

[25]

Yuan, H. F.; Liu, F.; Xue, G. B.; Liu, H.; Wang, Y. J.; Zhao, Y. W.; Liu, X. Y.; Zhang, X. L.; Zhao, L. L.; Liu, Z. et al. Laser patterned and bifunctional Ni@N-doped carbon nanotubes as electrocatalyst and photothermal conversion layer for water splitting driven by thermoelectric device. Appl. Catal. B Environ. 2021, 283, 119647.

[26]

Chen, Y. K.; Wang, Y. J.; Yu, J. Y.; Xiong, G. W.; Niu, H. S.; Li, Y.; Sun, D. H.; Zhang, X. L.; Liu, H.; Zhou, W. J. Underfocus laser induced Ni nanoparticles embedded metallic MoN microrods as patterned electrode for efficient overall water splitting. Adv. Sci. 2022, 9, e2105869.

[27]

Hayashi, S.; Tsunemitsu, K.; Terakawa, M. Laser direct writing of graphene quantum dots inside a transparent polymer. Nano Lett. 2022, 22, 775–782.

[28]

Huang, X. J.; Guo, Q. Y.; Kang, S. L.; Ouyang, T. C.; Chen, Q. P.; Liu, X. F.; Xia, Z. G.; Yang, Z. M.; Zhang, Q. Y.; Qiu, J. R. et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano 2020, 14, 3150–3158.

[29]

Sun, K.; Tan, D. Z.; Fang, X. Y.; Xia, X. T.; Lin, D. J.; Song, J.; Lin, Y. H.; Liu, Z. J.; Gu, M.; Yue, Y. Z. et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 2022, 375, 307–310.

[30]

Wang, Y. J.; Chen, Y. K.; Zhao, Y. W.; Yu, J. Y.; Liu, Z.; Shi, Y. J.; Liu, H.; Li, X.; Zhou, W. J. Laser-fabricated channeled Cu6Sn5/Sn as electrocatalyst and gas diffusion electrode for efficient CO2 electroreduction to formate. Appl. Catal. B Environ. 2022, 307, 120991.

[31]

Penilla, E. H.; Devia-Cruz, L. F.; Wieg, A. T.; Martinez-Torres, P.; Cuando-Espitia, N.; Sellappan, P.; Kodera, Y.; Aguilar, G.; Garay, J. E. Ultrafast laser welding of ceramics. Science 2019, 365, 803–808.

[32]

Sergeev, A. A.; Pavlov, D. V.; Kuchmizhak, A. A.; Lapine, M. V.; Yiu, W. K.; Dong, Y.; Ke, N.; Juodkazis, S.; Zhao, N.; Kershaw, S. V. et al. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays. Light Sci. Appl. 2020, 9, 16.

[33]
Li, H. K.; Li, Z. H.; Li, N.; Zhu, X. Y.; Zhang, Y. F.; Sun, L. F.; Wang, R.; Zhang, J. B.; Yang, Z. M.; Yi, H. et al. 3D printed high performance silver mesh for transparent glass heaters through liquid sacrificial substrate electric-field-driven jet (Small 17/2022). Small 2022, 18, 2270083.
DOI
[34]

Cheong, W. S.; Kim, Y. H.; Lee, J. M.; Hong, C. H.; Choi, H. Y.; Kwak, Y. J.; Kim, Y. J.; Kim, Y. S. High-performance transparent electrodes for automobile windshield heaters prepared by combining metal grids and oxide/metal/oxide transparent electrodes. Adv. Mater. Technol. 2019, 4, 1800550.

[35]

Huang, X. Z.; Zhang, F. H.; Leng, J. S. Metal mesh embedded in colorless shape memory polyimide for flexible transparent electric-heater and actuators. Appl. Mater. Today 2020, 21, 100797.

[36]

Han, M. S.; Kim, B.; Lim, H.; Jang, H.; Kim, E. Transparent photothermal heaters from a soluble NIR-absorbing diimmonium salt. Adv. Mater. 2020, 32, e1905096.

[37]

Wang, Y. L.; Wang, Y. B.; Li, X. Y.; Li, J. Q.; Su, L.; Zhang, X. J.; Du, X. Dendritic silica particles with well-dispersed Ag nanoparticles for robust antireflective and antibacterial nanocoatings on polymeric glass. ACS Sustainable Chem. Eng. 2018, 6, 14071–14081.

[38]

Perelshtein, I.; Lipovsky, A.; Perkas, N.; Gedanken, A.; Moschini, E.; Mantecca, P. The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Res. 2015, 8, 695–707.

[39]

Zhou, J. L.; Xiang, H. X.; Zabihi, F.; Yu, S. L.; Sun, B.; Zhu, M. F. Intriguing anti-superbug Cu2O@ZrP hybrid nanosheet with enhanced antibacterial performance and weak cytotoxicity. Nano Res. 2019, 12, 1453–1460.

[40]

Ren, G. Y.; Huang, L. L.; Hu, K. L.; Li, T. X.; Lu, Y. P.; Qiao, D. X.; Zhang, H. T.; Xu, D. K.; Wang, T. M.; Li, T. J. et al. Enhanced antibacterial behavior of a novel Cu-bearing high-entropy alloy. J. Mater. Sci. Technol. 2022, 117, 158–166.

[41]

Zhou, Y. W.; Lei, H. Z.; Wang, M.; Shi, Y. B.; Wang, Z. H. Potent intrinsic bactericidal activity of novel copper telluride nano-grape clusters with facile preparation. Biomater. Sci. 2023, 11, 1828–1839.

Video
12274_2023_5954_MOESM1_ESM.mp4
File
12274_2023_5954_MOESM2_ESM.pdf (313.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 April 2023
Revised: 14 June 2023
Accepted: 23 June 2023
Published: 31 July 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Taishan Scholar Project of Shandong Province (No. tsqn201812083), the Natural Science Foundation of Shandong Province (Nos. ZR2021JQ15, ZR2020QE071, ZR2020LLZ006, and ZR2020MH191), the Innovative Team Project of Jinan (No. 2021GXRC019) and the National Natural Science Foundation of China (Nos. 52022037, 52102171, and 62174068).

Return