Journal Home > Volume 17 , Issue 3

The weak van der Waals gap endows two dimensional transition metal dichalcogenides (2D TMDs) with the potential to realize guest intercalation and host exfoliation. Intriguingly, the liquid intercalation and exfoliation is a facile, low-cost, versatile and scalable strategy to modulate the structure and physiochemical property of TMDs via introducing foreign species into interlayer. In this review, firstly, we briefly introduce the resultant hybrid superlattice and disperse nanosheets with tailored properties fabricated via liquid intercalation and exfoliation. Subsequently, we systematically analyze the intercalation phenomenon and limitations of various intercalants in chemical or electrochemical methods. Afterwards, we intensely discuss diverse functionalities of resultant materials, focusing on their potential applications in energy conversion, energy storage, water purification, electronics, thermoelectrics and superconductor. Finally, we highlight the challenges and outlooks for precise and mass production of 2D TMDs-based materials via liquid intercalation and exfoliation. This review enriches the overview of liquid intercalation and exfoliation strategy, and paves the path for relevant high-performance devices.


menu
Abstract
Full text
Outline
About this article

Recent advances on liquid intercalation and exfoliation of transition metal dichalcogenides: From fundamentals to applications

Show Author's information Yan Tu1Lingbin Xie1Mengyang Zhang2Shujuan Liu1( )Zhongzhong Luo2Longlu Wang2( )Qiang Zhao1,2( )
State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract

The weak van der Waals gap endows two dimensional transition metal dichalcogenides (2D TMDs) with the potential to realize guest intercalation and host exfoliation. Intriguingly, the liquid intercalation and exfoliation is a facile, low-cost, versatile and scalable strategy to modulate the structure and physiochemical property of TMDs via introducing foreign species into interlayer. In this review, firstly, we briefly introduce the resultant hybrid superlattice and disperse nanosheets with tailored properties fabricated via liquid intercalation and exfoliation. Subsequently, we systematically analyze the intercalation phenomenon and limitations of various intercalants in chemical or electrochemical methods. Afterwards, we intensely discuss diverse functionalities of resultant materials, focusing on their potential applications in energy conversion, energy storage, water purification, electronics, thermoelectrics and superconductor. Finally, we highlight the challenges and outlooks for precise and mass production of 2D TMDs-based materials via liquid intercalation and exfoliation. This review enriches the overview of liquid intercalation and exfoliation strategy, and paves the path for relevant high-performance devices.

Keywords: exfoliation, intercalation, two-dimensional transition metal dichalcogenides, hybrid superlattice

References(211)

[1]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[2]

Wilson, J. A.; Di Salvo, F. J.; Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 1975, 24, 117–201.

[3]

Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.

[4]

Tan, T.; Jiang, X. T.; Wang, C.; Yao, B. C.; Zhang, H. 2D material optoelectronics for information functional device applications: Status and challenges. Adv. Sci. 2020, 7, 2000058.

[5]

Zheng, L.; Wang, X. W.; Jiang, H. J.; Xu, M. Z.; Huang, W.; Liu, Z. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Res. 2022, 15, 2413–2432.

[6]

Nardekar, S. S.; Krishnamoorthy, K.; Manoharan, S.; Pazhamalai, P.; Kim, S. J. Two faces under a hood: Unravelling the energy harnessing and storage properties of 1T-MoS2 quantum sheets for next-generation stand-alone energy systems. ACS Nano 2022, 16, 3723–3734.

[7]

Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197–6206.

[8]

Lin, L. X.; Sherrell, P.; Liu, Y. Q.; Lei, W.; Zhang, S. W.; Zhang, H. J.; Wallace, G. G.; Chen, J. Engineered 2D transition metal dichalcogenides—A vision of viable hydrogen evolution reaction catalysis. Adv. Energy Mater. 2020, 10, 1903870.

[9]

Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater 2016, 28, 1917–1933.

[10]

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

[11]

Yang, L. S.; Chen, W. J.; Yu, Q. M.; Liu, B. L. Mass production of two-dimensional materials beyond graphene and their applications. Nano Res. 2021, 14, 1583–1597.

[12]

Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601.

[13]

Liu, L. N.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T' MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.

[14]

Lee, J. S.; Choi, S. H.; Yun, S. J.; Kim, Y. I.; Boandoh, S.; Park, J. H.; Shin, B. G.; Ko, H.; Lee, S. H.; Kim, Y. M. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 2018, 362, 817–821.

[15]

Choi, S. H.; Kim, H. J.; Song, B.; Kim, Y. I.; Han, G.; Nguyen, H. T. T.; Ko, H.; Boandoh, S.; Choi, J. H.; Oh, C. S. et al. Epitaxial single-crystal growth of transition metal dichalcogenide monolayers via the atomic sawtooth Au surface. Adv. Mater. 2021, 33, 2006601.

[16]

Liu, Z. Q.; Nie, K. K.; Qu, X. Y.; Li, X. H.; Li, B. J.; Yuan, Y. L.; Chong, S. K.; Liu, P.; Li, Y. G.; Yin, Z. Y. et al. General bottom-up colloidal synthesis of nano-monolayer transition-metal dichalcogenides with high 1T′-phase purity. J. Am. Chem. Soc. 2022, 144, 4863–4873.

[17]

Xu, X. M.; Guo, T. C.; Kim, H.; Hota, M. K.; Alsaadi, R. S.; Lanza, M.; Zhang, X. X.; Alshareef, H. N. Growth of 2D materials at the wafer scale. Adv. Mater. 2022, 34, 2108258.

[18]

Pei, Y. P.; Chen, R.; Xu, H.; He, D.; Jiang, C. Z.; Li, W. Q.; Xiao, X. H. Recent progress about 2D metal dichalcogenides: Synthesis and application in photodetectors. Nano Res. 2021, 14, 1819–1839.

[19]

Sun, L. Z.; Yuan, G. W.; Gao, L. B.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. F. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5.

[20]

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

[21]

Wang, Y.; Xiao, J.; Zhu, H. Y.; Li, Y.; Alsaid, Y.; Fong, K. Y.; Zhou, Y.; Wang, S. Q.; Shi, W.; Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 2017, 550, 487–491.

[22]

Zhang, J. S.; Yang, A. K.; Wu, X.; van de Groep, J.; Tang, P. Z.; Li, S. R.; Liu, B. F.; Shi, F. F.; Wan, J. Y.; Li, Q. T. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 2018, 9, 5289.

[23]

Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139–143.

[24]

Wu, F. L.; Liu, Z. T.; Hawthorne, N.; Chandross, M.; Moore, Q.; Argibay, N.; Curry, J. F.; Batteas, J. D. Formation of coherent 1H-1T heterostructures in single-layer MoS2 on Au(111). ACS Nano 2020, 14, 16939–16950.

[25]

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

[26]

Kim, J.; Kwon, S.; Cho, D. H.; Kang, B.; Kwon, H.; Kim, Y.; Park, S. O.; Jung, G. Y.; Shin, E.; Kim, W. G. et al. Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nat. Commun. 2015, 6, 8294.

[27]

Bang, G. S.; Nam, K. W.; Kim, J. Y.; Shin, J.; Choi, J. W.; Choi, S. Y. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 7084–7089.

[28]

Puglia, M. K.; Malhotra, M.; Chivukula, A.; Kumar, C. V. “Simple-stir” heterolayered MoS2/graphene nanosheets for Zn-air batteries. ACS Appl. Nano Mater. 2021, 4, 10389–10398.

[29]

Zhang, C.; Wang, L. D.; Zhou, Y. C.; Lu, H. J.; Wageh, S.; Al-Hartomy, O. A.; Al-Sehemi, A. G.; Wang, H. C.; Yu, C. T.; Zhang, H. et al. Two-dimensional alloyed Mo0.5W0.5S2 nanosheets for photoelectrochemical photodetection. ACS Appl. Nano Mater. 2022, 5, 14824–14832.

[30]

Huo, C. X.; Yan, Z.; Song, X. F.; Zeng, H. B. 2D materials via liquid exfoliation: A review on fabrication and applications. Sci. Bull. 2015, 60, 1994–2008.

[31]

Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O'Neill, A.; Duesberg, G. S.; Grunlan, J. C.; Moriarty, G. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 2011, 23, 3944–3948.

[32]

Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630.

[33]

Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.; Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N. Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 2012, 6, 3468–3480.

[34]

Backes, C.; Higgins, T. M.; Kelly, A.; Boland, C.; Harvey, A.; Hanlon, D.; Coleman, J. N. Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chem. Mater. 2017, 29, 243–255.

[35]

Wang, H. L.; Shi, J.; Zhang, J. Y.; Tao, Z. H.; Wang, H. G.; Yang, Q. Q.; van Aken, P. A.; Chen, R. F. Pectin-assisted one-pot synthesis of MoS2 nanocomposites for resistive switching memory application. Nanoscale 2022, 14, 12129–12135.

[36]

Yang, R. J.; Mei, L.; Zhang, Q. Y.; Fan, Y. Y.; Shin, H. S.; Voiry, D.; Zeng, Z. Y. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 2022, 17, 358–377.

[37]

Zhou, J. Y.; Lin, Z. Y.; Ren, H. Y.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Layered intercalation materials. Adv. Mater. 2021, 33, 2004557.

[38]

Rajapakse, M.; Karki, B.; Abu, U. O.; Pishgar, S.; Musa, R. K.; Riyadh, S. M. S.; Yu, M.; Sumanasekera, G.; Jasinski, J. B. Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. npj 2D Mater. Appl. 2021, 5, 30.

[39]

Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254–258.

[40]

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

[41]

Yang, S.; Lohe, M. R.; Müllen, K.; Feng, X. L. New-generation graphene from electrochemical approaches: Production and applications. Adv. Mater. 2016, 28, 6213–6221.

[42]

Yang, S.; Zhang, P. P.; Nia, A. S.; Feng, X. L. Emerging 2D materials produced via electrochemistry. Adv. Mater. 2020, 32, 1907857.

[43]

Abdelkader, A. M.; Cooper, A. J.; Dryfe, R. A. W.; Kinloch, I. A. How to get between the sheets: A review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale 2015, 7, 6944–6956.

[44]

Brisebois, P. P.; Siaj, M. Harvesting graphene oxide—years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C 2020, 8, 1517–1547.

[45]

Zhao, S. Y. F.; Elbaz, G. A.; Bediako, D. K.; Yu, C.; Efetov, D. K.; Guo, Y. S.; Ravichandran, J.; Min, K. A.; Hong, S.; Taniguchi, T. et al. Controlled electrochemical intercalation of graphene/h-BN van der Waals heterostructures. Nano Lett. 2018, 18, 460–466.

[46]

Erande, M. B.; Pawar, M. S.; Late, D. J. Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11548–11556.

[47]

Li, J.; Chen, C.; Liu, S. L.; Lu, J. P.; Goh, W. P.; Fang, H. Y.; Qiu, Z. Z.; Tian, B. B.; Chen, Z. X.; Yao, C. H. et al. Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene. Chem. Mater. 2018, 30, 2742–2749.

[48]

Jeon, Y.; Rhee, D.; Wu, B.; Mazanek, V.; Kim, I. S.; Son, D.; Sofer, Z.; Kang, J. Electrochemically exfoliated phosphorene nanosheet thin films for wafer-scale near-infrared phototransistor array. npj 2D Mater. Appl. 2022, 6, 82.

[49]

Wang, Y.; Sofer, Z.; Luxa, J.; Pumera, M. Lithium exfoliated vanadium dichalcogenides (VS2, VSe2, VTe2) exhibit dramatically different properties from their bulk counterparts. Adv. Mater. Interfaces 2016, 3, 1600433.

[50]

Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. 2011, 123, 11289–11293.

[51]

Rasamani, K. D.; Alimohammadi, F.; Sun, Y. G. Interlayer-expanded MoS2. Mater. Today 2017, 20, 83–91.

[52]

Lipatov, A.; Chaudhary, P.; Guan, Z.; Lu, H. D.; Li, G.; Crégut, O.; Dorkenoo, K. D.; Proksch, R.; Cherifi-Hertel, S.; Shao, D. F. et al. Direct observation of ferroelectricity in two-dimensional MoS2. npj 2D Mater. Appl. 2022, 6, 18.

[53]

Wang, M. J.; Kumar, A.; Dong, H.; Woods, J. M.; Pondick, J. V.; Xu, S. Y.; Hynek, D. J.; Guo, P. J.; Qiu, D. Y.; Cha, J. J. A gapped phase in semimetallic Td-WTe2 induced by lithium intercalation. Adv. Mater. 2022, 34, 2200861.

[54]

Wang, H. T.; Lu, Z. Y.; Kong, D. S.; Sun, J.; Hymel, T. M.; Cui, Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940–4947.

[55]

Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

[56]

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

[57]

Zak, A.; Feldman, Y.; Lyakhovitskaya, V.; Leitus, G.; Popovitz-Biro, R.; Wachtel, E.; Cohen, H.; Reich, S.; Tenne, R. Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 2002, 124, 4747–4758.

[58]

Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.

[59]

Py, M. A.; Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 1983, 61, 76–84.

[60]

Mulhern, P. J. Lithium intercalation in crystalline LixMoS2. Can. J. Phys. 1989, 67, 1049–1052.

[61]

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

[62]

Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

[63]

Wu, Y. C.; Li, D. F.; Wu, C. L.; Hwang, H. Y.; Cui, Y. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 2023, 8, 41–53.

[64]

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

[65]

Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121–14127.

[66]

Yin, Y.; Zhang, Y. M.; Gao, T. L.; Yao, T.; Zhang, X. H.; Han, J. C.; Wang, X. J.; Zhang, Z. H.; Xu, P.; Zhang, P. et al. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv. Mater. 2017, 29, 1700311.

[67]

Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 2014, 136, 6693–6697.

[68]

Cheng, Y. C.; Nie, A. M.; Zhang, Q. Y.; Gan, L. Y.; Shahbazian-Yassar, R.; Schwingenschlogl, U. Origin of the phase transition in lithiated molybdenum disulfide. ACS Nano 2014, 8, 11447–11453.

[69]

Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712.

[70]

Enyashin, A. N.; Yadgarov, L.; Houben, L.; Popov, I.; Weidenbach, M.; Tenne, R.; Bar-Sadan, M.; Seifert, G. New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 2011, 115, 24586–24591.

[71]

Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

[72]

Lu, T. L.; Wang, Y. N.; Cai, G. H.; Jia, H. X.; Liu, X. X.; Zhang, C.; Meng, S.; Liu, M. Synthesizability of transition-metal dichalcogenides: A systematic first-principles evaluation. Mater. Futures 2023, 2, 015001.

[73]

Nguyen, T. P.; Sohn, W.; Oh, J. H.; Jang, H. W.; Kim, S. Y. Size-dependent properties of two-dimensional MoS2 and WS2. J. Phys. Chem. C 2016, 120, 10078–10085.

[74]

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

[75]

Varma, S. J.; Kumar, J.; Liu, Y.; Layne, K.; Wu, J. J.; Liang, C. L.; Nakanishi, Y.; Aliyan, A.; Yang, W.; Ajayan, P. M. et al. 2D TiS2 layers:A superior nonlinear optical limiting material. Adv. Opt. Mater. 2017, 5, 1700713.

[76]

Wei, X.; Lin, C. C.; Wu, C. W.; Qaiser, N.; Cai, Y. C.; Lu, A. Y.; Qi, K.; Fu, J. H.; Chiang, Y. H.; Yang, Z. et al. Three-dimensional hierarchically porous MoS2 foam as high-rate and stable lithium-ion battery anode. Nat. Commun. 2022, 13, 6006.

[77]

Chen, Y. C.; Lu, A. Y.; Lu, P.; Yang, X. L.; Jiang, C. M.; Mariano, M.; Kaehr, B.; Lin, O.; Taylor, A.; Sharp, I. D. et al. Structurally deformed MoS2 for electrochemically stable, thermally resistant, and highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1703863.

[78]

Li, F. X.; Zou, J. L.; Cao, L. J.; Li, Z. Q.; Gu, S.; Liu, Y.; Zhang, J. Q.; Liu, H. T.; Lu, Z. G. In situ study of K+ electrochemical intercalating into MoS2 flakes. J. Phys. Chem. C 2019, 123, 5067–5072.

[79]

Lam, D.; Lebedev, D.; Kuo, L.; Sangwan, V. K.; Szydłowska, B. M.; Ferraresi, F.; Söll, A.; Sofer, Z.; Hersam, M. C. Liquid-phase exfoliation of magnetically and optoelectronically active ruthenium trichloride nanosheets. ACS Nano 2022, 16, 11315–11324.

[80]

Zhang, Q. C.; Xu, D. Y.; Liang, J. M.; Lin, Q. Q.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. Surfactant-free synthesis of ultrafine Pt nanoparticles on MoS2 nanosheets as bifunctional catalysts for the hydrodeoxygenation of bio-oil. Langmuir 2020, 36, 14710–14716.

[81]

Liu, X. C.; Zhao, S. Y.; Sun, X. P.; Deng, L. Z.; Zou, X. L.; Hu, Y. C.; Wang, Y. X.; Chu, C. W.; Li, J.; Wu, J. J. et al. Spontaneous self-intercalation of copper atoms into transition metal dichalcogenides. Sci. Adv. 2020, 6, eaay4092.

[82]

Li, Y.; Yan, H.; Xu, B.; Zhen, L.; Xu, C. Y. Electrochemical intercalation in atomically thin van der Waals materials for structural phase transition and device applications. Adv. Mater. 2021, 33, 2000581.

[83]

Joensen, P.; Frindt, R. F.; Morrison, S. R. Single-layer MoS2. Mater. Res. Bull. 1986, 21, 457–461.

[84]

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

[85]

Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; van de Groep, J.; Brongersma, M. L. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 2018, 13, 294–299.

[86]

Zhu, L.; Li, Q. Y.; Lv, Y. Y.; Li, S. C.; Zhu, X. Y.; Jia, Z. Y.; Chen, Y. B.; Wen, J. S.; Li, S. C. Superconductivity in potassium-intercalated Td-WTe2. Nano Lett. 2018, 18, 6585–6590.

[87]

Huang, H. H.; Cui, Y.; Li, Q.; Dun, C. C.; Zhou, W.; Huang, W. X.; Chen, L.; Hewitt, C. A.; Carroll, D. L. Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy 2016, 26, 172–179.

[88]

Ries, L.; Petit, E.; Michel, T.; Diogo, C. C.; Gervais, C.; Salameh, C.; Bechelany, M.; Balme, S.; Miele, P.; Onofrio, N. et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 2019, 18, 1112–1117.

[89]

Ambrosi, A.; Sofer, Z.; Pumera, M. Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. Small 2015, 11, 605–612.

[90]

Tan, C. L.; Luo, Z. M.; Chaturvedi, A.; Cai, Y. Q.; Du, Y. H.; Gong, Y.; Huang, Y.; Lai, Z. C.; Zhang, X.; Zheng, L. R. et al. Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1705509.

[91]

Koski, K. J.; Cha, J. J.; Reed, B. W.; Wessells, C. D.; Kong, D.; Cui, Y. High-density chemical intercalation of zero-valent copper into Bi2Se3 nanoribbons. J. Am. Chem. Soc. 2012, 134, 7584–7587.

[92]

Stern, C.; Twitto, A.; Snitkoff, R. Z.; Fleger, Y.; Saha, S.; Boddapati, L.; Jain, A.; Wang, M. J.; Koski, K. J.; Deepak, F. L. et al. Enhancing light-matter interactions in MoS2 by copper intercalation. Adv. Mater. 2021, 33, 2008779.

[93]

Wang, M. J.; Williams, D.; Lahti, G.; Teshima, S.; Aguilar, D. D.; Perry, R.; Koski, K. J. Chemical intercalation of heavy metal, semimetal, and semiconductor atoms into 2D layered chalcogenides. 2D Mater. 2018, 5, 045005.

[94]

Koski, K. J.; Wessells, C. D.; Reed, B. W.; Cha, J. J.; Kong, D.; Cui, Y. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 2012, 134, 13773–13779.

[95]

Zhang, R. Y.; Tsai, I. L.; Chapman, J.; Khestanova, E.; Waters, J.; Grigorieva, I. V. Superconductivity in potassium-doped metallic polymorphs of MoS2. Nano Lett. 2016, 16, 629–636.

[96]

Bruce, P. G.; Krok, F.; Nowinski, J.; Gibson, V. C.; Tavakkoli, K. Chemical intercalation of magnesium into solid hosts. J. Mater. Chem. 1991, 1, 705–706.

[97]

Tan, S. M.; Sofer, Z.; Luxa, J.; Pumera, M. Aromatic-exfoliated transition metal dichalcogenides: Implications for inherent electrochemistry and hydrogen evolution. ACS Catal. 2016, 6, 4594–4607.

[98]

Murphy, D. W.; Di Salvo, F. J.; Hull, G. W. Jr; Waszczak, J. V. Convenient preparation and physical properties of lithium intercalation compounds of Group 4B and 5B layered transition metal dichalcogenides. Inorg. Chem. 1976, 15, 17–21.

[99]

Zheng, J.; Zhang, H.; Dong, S. H.; Liu, Y. P.; Nai, C. T.; Shin, H. S.; Jeong, H. Y.; Liu, B.; Loh, K. P. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 2014, 5, 2995.

[100]

Zhu, X. L.; Su, Z. P.; Wu, C.; Cong, H. J.; Ai, X. P.; Yang, H. X.; Qian, J. F. Exfoliation of MoS2 nanosheets enabled by a redox-potential-matched chemical lithiation reaction. Nano Lett. 2022, 22, 2956–2963.

[101]

Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311–7317.

[102]

Eng, A. Y. S.; Ambrosi, A.; Sofer, Z.; Šimek, P.; Pumera, M. Electrochemistry of transition metal dichalcogenides: Strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 2014, 8, 12185–12198.

[103]

Mayorga-Martinez, C. C.; Ambrosi, A.; Eng, A. Y. S.; Sofer, Z.; Pumera, M. Transition metal dichalcogenides (MoS2, MoSe2, WS2 and WSe2) exfoliation technique has strong influence upon their capacitance. Electrochem. Commun. 2015, 56, 24–28.

[104]

Mayorga-Martinez, C. C.; Ambrosi, A.; Eng, A. Y. S.; Sofer, Z.; Pumera, M. Metallic 1T-WS2 for selective impedimetric vapor sensing. Adv. Funct. Mater. 2015, 25, 5611–5616.

[105]

Rahmanian, E.; Mayorga-Martinez, C. C.; Malekfar, R.; Luxa, J.; Sofer, Z.; Pumera, M. 1T-phase tungsten chalcogenides (WS2, WSe2, WTe2) decorated with TiO2 nanoplatelets with enhanced electron transfer activity for biosensing applications. ACS Appl. Nano Mater. 2018, 1, 7006–7015.

[106]

Xing, F.; Li, T.; Li, J. Y.; Zhu, H. R.; Wang, N.; Cao, X. Chemically exfoliated MoS2 for capacitive deionization of saline water. Nano Energy 2017, 31, 590–595.

[107]

Fan, X. B.; Xu, P. T.; Zhou, D. K.; Sun, Y. F.; Li, Y. C.; Nguyen, M. A. T.; Terrones, M.; Mallouk, T. E. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 2015, 15, 5956–5960.

[108]

Guo, Y. B.; Chen, Q.; Nie, A. M.; Yang, H.; Wang, W. B.; Su, J. W.; Wang, S. Z.; Liu, Y. W.; Wang, S.; Li, H. Q. et al. 2D hybrid superlattice-based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic activity. ACS Nano 2020, 14, 1635–1644.

[109]

Feng, N.; Meng, R. J.; Zu, L. H.; Feng, Y. T.; Peng, C. X.; Huang, J. M.; Liu, G. L.; Chen, B. J.; Yang, J. H. A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance. Nat. Commun. 2019, 10, 1372.

[110]

Samaras, I.; Saikh, S. I.; Julien, C.; Balkanski, M. Lithium insertion in layered materials as battery cathodes. Mater. Sci. Eng. B 1989, 3, 209–214.

[111]

Zeng, Z. Y.; Sun, T.; Zhu, J. X.; Huang, X.; Yin, Z. Y.; Lu, G.; Fan, Z. X.; Yan, Q. Y.; Hng, H. H.; Zhang, H. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem., Int. Ed. 2012, 51, 9052–9056.

[112]

Liu, Z.; Han, T.; Liu, M. Q.; Huang, S. T.; Zhang, Z. Y.; Long, M. S.; Hou, X. Y.; Shan, L. Protonation enhanced superconductivity in PdTe2. J. Phys. :Condens. Matter 2022, 34, 335603.

[113]

Zhu, G. H.; Liu, J.; Zheng, Q. Y.; Zhang, R. G.; Li, D. Y.; Banerjee, D.; Cahill, D. G. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation. Nat. Commun. 2016, 7, 13211.

[114]

Weng, C. C.; Luo, Y. Y.; Wang, B. F.; Shi, J. P.; Gao, L.; Cao, Z. Y.; Duan, G. T. Layer-dependent SERS enhancement of TiS2 prepared by simple electrochemical intercalation. J. Mater. Chem. C 2020, 8, 14138–14145.

[115]

Wang, L. L.; Liu, X.; Zhang, Q. F.; Zhou, G.; Pei, Y.; Chen, S. H.; Wang, J.; Rao, A. M.; Yang, H. G.; Lu, B. A. Quasi-one-dimensional Mo chains for efficient hydrogen evolution reaction. Nano Energy 2019, 61, 194–200.

[116]

García-Dalí, S.; Paredes, J. I.; Munuera, J. M.; Villar-Rodil, S.; Adawy, A.; Martínez-Alonso, A.; Tascón, J. M. D. Aqueous cathodic exfoliation strategy toward solution-processable and phase-preserved MoS2 nanosheets for energy storage and catalytic applications. ACS Appl. Mater. Interfaces 2019, 11, 36991–37003.

[117]

Zhang, P. P.; Yang, S.; Pineda-Gómez, R.; Ibarlucea, B.; Ma, J.; Lohe, M. R.; Akbar, T. F.; Baraban, L.; Cuniberti, G.; Feng, X. L. Electrochemically exfoliated high-quality 2H-MoS2 for multiflake thin film flexible biosensors. Small 2019, 15, 1901265.

[118]

Carey, T.; Cassidy, O.; Synnatschke, K.; Caffrey, E.; Garcia, J.; Liu, S. X.; Kaur, H.; Kelly, A. G.; Munuera, J.; Gabbett, C. et al. High-mobility flexible transistors with low-temperature solution-processed tungsten dichalcogenides. ACS Nano 2023, 17, 2912–2922.

[119]

Lu, Z. Y.; Jiang, K.; Chen, G. X.; Wang, H. T.; Cui, Y. Lithium electrochemical tuning for electrocatalysis. Adv. Mater. 2018, 30, 1800978.

[120]

Wang, X. F.; Shen, X.; Wang, Z. X.; Yu, R. C.; Chen, L. Q. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 2014, 8, 11394–11400.

[121]

Xiong, F.; Wang, H. T.; Liu, X. G.; Sun, J.; Brongersma, M.; Pop, E.; Cui, Y. Li intercalation in MoS2: In situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 2015, 15, 6777–6784.

[122]

Azhagurajan, M.; Kajita, T.; Itoh, T.; Kim, Y. G.; Itaya, K. In situ visualization of lithium ion intercalation into MoS2 single crystals using differential optical microscopy with atomic layer resolution. J. Am. Chem. Soc. 2016, 138, 3355–3361.

[123]

Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.

[124]

He, Q. Y.; Lin, Z. Y.; Ding, M. N.; Yin, A. X.; Halim, U.; Wang, C.; Liu, Y.; Cheng, H. C.; Huang, Y.; Duan, X. F. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 2019, 19, 6819–6826.

[125]

Qian, Q.; Ren, H. Y.; Zhou, J. Y.; Wan, Z.; Zhou, J. X.; Yan, X. X.; Cai, J.; Wang, P. Q.; Li, B. L.; Sofer, Z. et al. Chiral molecular intercalation superlattices. Nature 2022, 606, 902–908.

[126]

Wells, R. A.; Zhang, M.; Chen, T. H.; Boureau, V.; Caretti, M.; Liu, Y. P.; Yum, J. H.; Johnson, H.; Kinge, S.; Radenovic, A. et al. High performance semiconducting nanosheets via a scalable powder-based electrochemical exfoliation technique. ACS Nano 2022, 16, 5719–5730.

[127]

Kuo, L.; Sangwan, V. K.; Rangnekar, S. V.; Chu, T. C.; Lam, D.; Zhu, Z. H.; Richter, L. J.; Li, R. P.; Szydłowska, B. M.; Downing, J. R. et al. All-printed ultrahigh-responsivity MoS2 nanosheet photodetectors enabled by megasonic exfoliation. Adv. Mater. 2022, 34, 2203772.

[128]

Yu, W.; Li, J.; Herng, T. S.; Wang, Z. S.; Zhao, X. X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J. D. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.

[129]

Liu, N.; Kim, P.; Kim, J. H.; Ye, J. H.; Kim, S.; Lee, C. J. Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 2014, 8, 6902–6910.

[130]

You, X. Q.; Liu, N.; Lee, C. J.; Pak, J. J. An electrochemical route to MoS2 nanosheets for device applications. Mater. Lett. 2014, 121, 31–35.

[131]

Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

[132]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[133]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[134]

Liu, R. X.; Li, X. L.; Jia, Z. D.; Wang, Y. Y.; Peng, Y. L.; Tang, C. M.; Chen, Z.; Dong, L. Sulfur vacancy-rich MoS2-catalyzed hydrodeoxygenation of lactic acid to biopropionic acid. ACS Sustainable Chem. Eng. 2022, 10, 5463–5475.

[135]

Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–816.

[136]

Chou, S. S.; Sai, N.; Lu, P.; Coker, E. N.; Liu, S.; Artyushkova, K.; Luk, T. S.; Kaehr, B.; Brinker, C. J. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat. Commun. 2015, 6, 8311.

[137]

Chen, Z. X.; Leng, K.; Zhao, X. X.; Malkhandi, S.; Tang, W.; Tian, B. B.; Dong, L.; Zheng, L. R.; Lin, M.; Yeo, B. S. et al. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat. Commun. 2017, 8, 14548.

[138]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[139]

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

[140]

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

[141]

Chang, K.; Mei, Z. W.; Wang, T.; Kang, Q.; Ouyang, S. X.; Ye, J. H. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2014, 8, 7078–7087.

[142]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[143]

Ye, G. L.; Gong, Y. J.; Lin, J. H.; Li, B.; He, Y. M.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2016, 16, 1097–1103.

[144]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

[145]

Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro e Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003–1009.

[146]

Tsai, C.; Li, H.; Park, S.; Park, J.; Han, H. S.; Nørskov, J. K.; Zheng, X. L.; Abild-Pedersen, F. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun. 2017, 8, 15113.

[147]

Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J. X.; Dravid, V. P. Ligand conjugation of chemically exfoliated MoS2. J. Am. Chem. Soc. 2013, 135, 4584–4587.

[148]

Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

[149]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[150]

Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

[151]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[152]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[153]

Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991–1995.

[154]

Tsai, C.; Chan, K.; Nørskov, J. K.; Abild-Pedersen, F. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 2015, 640, 133–140.

[155]

Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

[156]

Sun, Z. M.; Lin, L.; Yuan, M. W.; Yao, H. Y.; Deng, Y. J.; Huang, B. B.; Li, H. F.; Sun, G. B.; Zhu, J. Mott-Schottky heterostructure induce the interfacial electron redistribution of MoS2 for boosting pH-universal hydrogen evolution with Pt-like activity. Nano Energy 2022, 101, 107563.

[157]

Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.

[158]

Wu, L. F.; Dzade, N. Y.; Yu, M.; Mezari, B.; van Hoof, A. J. F.; Friedrich, H.; de Leeuw, N. H.; Hensen, E. J. M.; Hofmann, J. P. Unraveling the role of lithium in enhancing the hydrogen evolution activity of MoS2: Intercalation versus adsorption. ACS Energy Lett. 2019, 4, 1733–1740.

[159]

Attanayake, N. H.; Thenuwara, A. C.; Patra, A.; Aulin, Y. V.; Tran, T. M.; Chakraborty, H.; Borguet, E.; Klein, M. L.; Perdew, J. P.; Strongin, D. R. Effect of intercalated metals on the electrocatalytic activity of 1T-MoS2 for the hydrogen evolution reaction. ACS Energy Lett. 2018, 3, 7–13.

[160]

Luo, Y. T.; Li, X.; Cai, X. K.; Zou, X. L.; Kang, F. Y.; Cheng, H. M.; Liu, B. L. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 2018, 12, 4565–4573.

[161]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[162]

Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.

[163]

Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

[164]

Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163.

[165]

Yun, Q. B.; Li, L. X.; Hu, Z. N.; Lu, Q. P.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826.

[166]

Huang, C. C.; Liu, Y. W.; Zheng, R. T.; Yang, Z. W.; Miao, Z. H.; Zhang, J. W.; Cai, X. H.; Yu, H. X.; Zhang, L. Y.; Shu, J. Interlayer gap widened TiS2 for highly efficient sodium-ion storage. J. Mater. Sci. Technol. 2022, 107, 64–69.

[167]

Chen, W. S.; Gu, J. J.; Liu, Q. L.; Yang, M. Z.; Zhan, C.; Zang, X. N.; Pham, T. A.; Liu, G. X.; Zhang, W.; Zhang, D. et al. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 2022, 17, 153–158.

[168]

Shuai, H. L.; Li, J. Y.; Jiang, F.; Zhang, X. N.; Xu, L. Q.; Hu, J. G.; Hou, H. S.; Zou, G. Q.; Sun, W.; Duan, H. G. et al. Electrochemically intercalated intermediate induced exfoliation of few-layer MoS2 from molybdenite for long-life sodium storage. Sci. China Mater. 2021, 64, 115–127.

[169]

Li, Z. N.; Sami, I.; Yang, J.; Li, J. T.; Kumar, R. V.; Chhowalla, M. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries. Nature Energy 2023, 8, 84–93.

[170]

Inta, H. R.; Biswas, T.; Ghosh, S.; Kumar, R.; Jana, S. K.; Mahalingam, V. Ionic liquid-intercalated metallic MoS2 as a superior electrode for energy storage applications. ChemNanoMat 2020, 6, 685–695.

[171]

Yao, Z. Y.; Zhang, W.; Ren, X. C.; Yin, Y. R.; Zhao, Y. X.; Ren, Z. G.; Sun, Y. H.; Lei, Q.; Wang, J.; Wang, L. H. et al. A volume self-regulation MoS2 superstructure cathode for stable and high mass-loaded Zn-ion storage. ACS Nano 2022, 16, 12095–12106.

[172]

Wang, L.; Zhang, X.; Xu, Y. N.; Li, C.; Liu, W. J.; Yi, S.; Wang, K.; Sun, X. Z.; Wu, Z. S.; Ma, Y. W. Tetrabutylammonium-intercalated 1T-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors. Adv. Funct. Mater. 2021, 31, 2104286.

[173]

Du, G. D.; Guo, Z. P.; Wang, S. Q.; Zeng, R.; Chen, Z. X.; Liu, H. K. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 2010, 46, 1106–1108.

[174]

Yoo, H. D.; Li, Y. F.; Liang, Y. L.; Lan, Y. C.; Wang, F.; Yao, Y. Intercalation pseudocapacitance of exfoliated molybdenum disulfide for ultrafast energy storage. ChemNanoMat 2016, 2, 688–691.

[175]

Li, S. W.; Huang, C.; Gao, L.; Shen, Q. Y.; Li, P.; Qu, X. H.; Jiao, L. F.; Liu, Y. C. Unveiling the “proton lubricant” chemistry in aqueous zinc-MoS2 batteries. Angew. Chem., Int. Ed. 2022, 61, e202211478.

[176]

Cheng, C.; Iyengar, S. A.; Karnik, R. Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes. Nat. Nanotechnol. 2021, 16, 989–995.

[177]

Chen, L.; Shi, G. S.; Shen, J.; Peng, B. Q.; Zhang, B. W.; Wang, Y. Z.; Bian, F. G.; Wang, J. J.; Li, D. Y.; Qian, Z. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017, 550, 380–383.

[178]

Yeh, C. N.; Raidongia, K.; Shao, J. J.; Yang, Q. H.; Huang, J. X. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 2015, 7, 166–170.

[179]

Heiranian, M.; Farimani, A. B.; Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 2015, 6, 8616.

[180]

Hirunpinyopas, W.; Prestat, E.; Worrall, S. D.; Haigh, S. J.; Dryfe, R. A. W.; Bissett, M. A. Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano 2017, 11, 11082–11090.

[181]

Wang, Z. Y.; Tu, Q. S.; Zheng, S. X.; Urban, J. J.; Li, S. F.; Mi, B. X. Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 2017, 17, 7289–7298.

[182]

Sun, L. W.; Huang, H. B.; Peng, X. S. Laminar MoS2 membranes for molecule separation. Chem. Commun. 2013, 49, 10718–10720.

[183]

Deng, M. M.; Kwac, K.; Li, M.; Jung, Y.; Park, H. G. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide. Nano Lett. 2017, 17, 2342–2348.

[184]

Mei, L.; Cao, Z. L.; Ying, T.; Yang, R. J.; Peng, H. R.; Wang, G.; Zheng, L.; Chen, Y.; Tang, C. Y.; Voiry, D. et al. Simultaneous electrochemical exfoliation and covalent functionalization of MoS2 membrane for ion sieving. Adv. Mater. 2022, 34, 2201416.

[185]

Wang, W. S.; Onofrio, N.; Petit, E.; Karamoko, B. A.; Wu, H. L.; Liu, J. F.; Li, J.; Qi, K.; Zhang, Y.; Gervais, C. et al. High-surface-area functionalized nanolaminated membranes for energy-efficient nanofiltration and desalination in forward osmosis. Nat. Water 2023, 1, 187–197.

[186]

Hoenig, E.; Strong, S. E.; Wang, M. Z.; Radhakrishnan, J. M.; Zaluzec, N. J.; Skinner, J. L.; Liu, C. Controlling the structure of MoS2 membranes via covalent functionalization with molecular spacers. Nano Lett. 2020, 20, 7844–7851.

[187]

Das, S.; Sebastian, A.; Pop, E.; McClellan, C. J.; Franklin, A. D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A. V.; Appenzeller, J. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021, 4, 786–799.

[188]

Luo, Z. Z.; Peng, B. Y.; Zeng, J. P.; Yu, Z. H.; Zhao, Y.; Xie, J.; Lan, R. F.; Ma, Z.; Pan, L. J.; Cao, K. et al. Sub-thermionic, ultra-high-gain organic transistors and circuits. Nat. Commun. 2021, 12, 1928.

[189]

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

[190]

Luo, Z. Z.; Song, X. X.; Liu, X. L.; Lu, X. Q.; Yao, Y.; Zeng, J. P.; Li, Y. T.; He, D. W.; Zhao, H. J.; Gao, L. et al. Revealing the key role of molecular packing on interface spin polarization at two-dimensional limit in spintronic devices. Sci. Adv. 2023, 9, eade9126.

[191]

Zhuo, F. L.; Wu, J.; Li, B. H.; Li, M. Y.; Tan, C. L.; Luo, Z. Z.; Sun, H. B.; Xu, Y.; Yu, Z. H. Modifying the power and performance of 2-dimensional MoS2 field effect transistors. Research 2023, 6, 0057.

[192]

Song, O.; Rhee, D.; Kim, J.; Jeon, Y.; Mazánek, V.; Söll, A.; Kwon, Y. A.; Cho, J. H.; Kim, Y. H.; Sofer, Z. et al. All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric. npj 2D Mater. Appl. 2022, 6, 64.

[193]

Diao, M. J.; Li, H.; Gao, X. Y.; Hou, R. P.; Cheng, Q.; Yu, Z. Y.; Huang, Z. P.; Zhang, C. Giant nonlinear optical absorption of ion-intercalated tin disulfide associated with abundant in-gap defects. Adv. Funct. Mater. 2021, 31, 2106930.

[194]

Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10, 270–276.

[195]

Kelly, A. G.; O’Suilleabhain, D.; Gabbett, C.; Coleman, J. N. The electrical conductivity of solution-processed nanosheet networks. Nat. Rev. Mater. 2022, 7, 217–234.

[196]

Wang, S. Z.; Yang, X.; Hou, L. X.; Cui, X. P.; Zheng, X. H.; Zheng, J. Organic covalent modification to improve thermoelectric properties of TaS2. Nat. Commun. 2022, 13, 4401.

[197]

Wan, C. L.; Gu, X. K.; Dang, F.; Itoh, T.; Wang, Y. F.; Sasaki, H.; Kondo, M.; Koga, K.; Yabuki, K.; Snyder, G. J. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 2015, 14, 622–627.

[198]

Wan, C. L.; Tian, R. M.; Kondou, M.; Yang, R. G.; Zong, P. A.; Koumoto, K. Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice. Nat. Commun. 2017, 8, 1024.

[199]

Li, J.; Song, P.; Zhao, J. P.; Vaklinova, K.; Zhao, X. X.; Li, Z. J.; Qiu, Z. Z.; Wang, Z. H.; Lin, L.; Zhao, M. et al. Printable two-dimensional superconducting monolayers. Nat. Mater. 2021, 20, 181–187.

[200]

Zhang, H. X.; Rousuli, A.; Zhang, K. N.; Luo, L. P.; Guo, C. G.; Cong, X.; Lin, Z. Z.; Bao, C. H.; Zhang, H. Y.; Xu, S. N. et al. Tailored Ising superconductivity in intercalated bulk NbSe2. Nat. Phys. 2022, 18, 1425–1430.

[201]

Fatemi, V.; Wu, S. F.; Cao, Y.; Bretheau, L.; Gibson, Q. D.; Watanabe, K.; Taniguchi, T.; Cava, R. J.; Jarillo-Herrero, P. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 2018, 362, 926–929.

[202]

Sajadi, E.; Palomaki, T.; Fei, Z. Y.; Zhao, W. J.; Bement, P.; Olsen, C.; Luescher, S.; Xu, X. D.; Folk, J. A.; Cobden, D. H. Gate-induced superconductivity in a monolayer topological insulator. Science 2018, 362, 922–925.

[203]

Qian, Q.; Wan, Z.; Duan, X. F. Boosting superconductivity in organic-inorganic superlattices. Sci. Bull. 2020, 65, 177–178.

[204]

Zhang, H. X.; Rousuli, A.; Shen, S. C.; Zhang, K. N.; Wang, C.; Luo, L. P.; Wang, J. Z.; Wu, Y.; Xu, Y.; Duan, W. H. et al. Enhancement of superconductivity in organic-inorganic hybrid topological materials. Sci. Bull. 2020, 65, 188–193.

[205]

Rousuli, A.; Zhang, H. X.; Zhang, K. N.; Zhong, H. Y.; Feng, R. F.; Wu, Y.; Yu, P.; Zhou, S. Y. Induced anisotropic superconductivity in ionic liquid cation intercalated 1T-SnSe2. 2D Mater. 2021, 8, 015024.

[206]

Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252.

[207]

Wu, J. J.; Peng, J.; Sun, H. F.; Guo, Y. Q.; Liu, H. F.; Wu, C. Z.; Xie, Y. Host–guest intercalation chemistry for the synthesis and modification of two-dimensional transition metal dichalcogenides. Adv. Mater. 2022, 34, 2200425.

[208]

Choi, S. H.; Yun, S. J.; Won, Y. S.; Oh, C. S.; Kim, S. M.; Kim, K. K.; Lee, Y. H. Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat. Commun. 2022, 13, 1484.

[209]

Ding, Y. J.; Chen, Y. P.; Zhang, X. L.; Chen, L.; Dong, Z. H.; Jiang, H. L.; Xu, H. X.; Zhou, H. C. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 2017, 139, 9136–9139.

[210]

Bediako, D. K.; Rezaee, M.; Yoo, H.; Larson, D. T.; Zhao, S. Y. F.; Taniguchi, T.; Watanabe, K.; Brower-Thomas, T. L.; Kaxiras, E.; Kim, P. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 2018, 558, 425–429.

[211]

Majed, A.; Kothakonda, M.; Wang, F.; Tseng, E. N.; Prenger, K.; Zhang, X. D.; Persson, P. O. Å.; Wei, J.; Sun, J. W.; Naguib, M. Transition metal carbo-chalcogenide “TMCC: ” A new family of 2D materials. Adv. Mater. 2022, 34, 2200574.

Publication history
Copyright
Acknowledgements

Publication history

Received: 22 May 2023
Revised: 12 June 2023
Accepted: 20 June 2023
Published: 14 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51902101, 61775101, 62288102, and 61804082), the Youth Natural Science Foundation of Hunan Province (No. 2021JJ40044), and the Natural Science Foundation of Jiangsu Province (No. BK20201381).

Return