Journal Home > Volume 16 , Issue 8

Nano-infrared (nanoIR) probes play a crucial role as nano-mechanical sensors and antennas for light absorption and emission, and their testing performance is critically dependent on their optical properties and structural stability. Graphene-coated dielectric probes are highly attractive for enhancing light–matter interactions and integrating IR photonics, providing a broadband optical response and strong electromagnetic field. However, achieving continuous single-layer graphene growth on non-planar and non-single crystalline dielectrics is a significant challenge due to the low surface energy of the dielectric and the large difference in size between the probe tip, cantilever, and substrate. Herein, we present a novel method for the growth of high-quality and continuous graphene with good conductivity on non-planar and amorphous dielectric probe surfaces using manganese oxide powder-assisted short time heating chemical vapor deposition. The resulting graphene-coated dielectric probes exhibit an average IR reflectance of only 5% in the mid-IR band, significantly outperforming probes without continuous graphene coating. Such probes can not only effectively transduce the local photothermal sample expansion caused by the absorption of IR laser pulses, but also effectively scatter near-field light, which is 25 times stronger than the commercial metal-coated probes, and have advantages in the application of nanoIR sensing based on atomic force microscope-based infrared (AFM-IR) spectroscopy and infrared scattering scanning near field optical microscopy (IR s-SNOM) principles. Furthermore, our graphene growth method provides a solution for growing high-quality graphene on the surfaces of non-planar dielectric materials required for integrated circuits and other fields.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Graphene-coated conductive probes with enhanced sensitivity for nanoIR spectroscopy

Show Author's information Yu-Jiao Xia-HouXu-Cheng LiEn-Ming YouHong-Peng He( )Jun Yi( )Jun-Rong ZhengHai-Long WangHai-Xin Lin( )Zhong-Qun Tian
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China

Abstract

Nano-infrared (nanoIR) probes play a crucial role as nano-mechanical sensors and antennas for light absorption and emission, and their testing performance is critically dependent on their optical properties and structural stability. Graphene-coated dielectric probes are highly attractive for enhancing light–matter interactions and integrating IR photonics, providing a broadband optical response and strong electromagnetic field. However, achieving continuous single-layer graphene growth on non-planar and non-single crystalline dielectrics is a significant challenge due to the low surface energy of the dielectric and the large difference in size between the probe tip, cantilever, and substrate. Herein, we present a novel method for the growth of high-quality and continuous graphene with good conductivity on non-planar and amorphous dielectric probe surfaces using manganese oxide powder-assisted short time heating chemical vapor deposition. The resulting graphene-coated dielectric probes exhibit an average IR reflectance of only 5% in the mid-IR band, significantly outperforming probes without continuous graphene coating. Such probes can not only effectively transduce the local photothermal sample expansion caused by the absorption of IR laser pulses, but also effectively scatter near-field light, which is 25 times stronger than the commercial metal-coated probes, and have advantages in the application of nanoIR sensing based on atomic force microscope-based infrared (AFM-IR) spectroscopy and infrared scattering scanning near field optical microscopy (IR s-SNOM) principles. Furthermore, our graphene growth method provides a solution for growing high-quality graphene on the surfaces of non-planar dielectric materials required for integrated circuits and other fields.

Keywords: conductive probe, graphene-coated, nano-infrared (nanoIR) spectroscopy, atomic force microscope-based infrared (AFM-IR), infrared scattering scanning near field optical microscopy (IR s-SNOM)

References(34)

[1]

Dazzi, A.; Prater, C. B. AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 2017, 117, 5146–5173.

[2]

Wang, H. L.; You, E. M.; Panneerselvam, R.; Ding, S. Y.; Tian, Z. Q. Advances of surface-enhanced Raman and IR spectroscopies: From nano/microstructures to macro-optical design. Light Sci. Appl. 2021, 10, 161.

[3]

Rao, V. J.; Matthiesen, M.; Goetz, K. P.; Huck, C.; Yim, C.; Siris, R.; Han, J.; Hahn, S.; Bunz, U. H. F.; Dreuw, A.; et al. AFM-IR and IR-SNOM for the characterization of small molecule organic semiconductors. J. Phys. Chem. C 2020, 124, 5331–5344.

[4]

Mauser, N. and Hartschuh, A. Tip-enhanced near-field optical microscopy. Chem. Soc. Rev 2014, 43, 1248–1262.

[5]

Moore, S. L.; Ciccarino, C. J.; Halbertal, D.; McGilly, L. J.; Finney, N. R.; Yao, K.; Shao, Y.; Ni, G.; Sternbach, A.; Telford, E. J. et al. Nanoscale lattice dynamics in hexagonal boron nitride moiré superlattices. Nat. Commun. 2021, 12, 5741.

[6]

Qi, X. Q.; Lu, Z. H.; You, E. M.; He, Y.; Zhang, Q. E.; Yi, H. J.; Li, D. Y.; Ding, S. Y.; Jiang, Y.; Xiong, X. P. et al. Nanocombing effect leads to nanowire-based, in-plane, uniaxial thin films. ACS Nano 2018, 12, 12701–12712.

[7]

Qin, T. X.; You, E. M.; Zhang, M. X.; Zheng, P.; Huang, X. F.; Ding, S. Y.; Mao, B. W.; Tian, Z. Q. Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and kelvin probe force microscopy. Light Sci. Appl. 2021, 10, 84.

[8]

You, E. M.; Chen, Y. Q.; Yi, J.; Meng, Z. D.; Chen, Q.; Ding, S. Y.; Duan, H. G.; Moskovits, M.; Tian, Z. Q. Nanobridged rhombic antennas supporting both dipolar and high-order plasmonic modes with spatially superimposed hotspots in the mid-infrared. Opto-Electron. Adv. 2021, 4, 210076.

[9]

Schwartz, J. J.; Jakob, D. S.; Centrone, A. A guide to nanoscale IR spectroscopy: Resonance enhanced transduction in contact and tapping mode AFM-IR. Chem. Soc. Rev. 2022, 51, 5248–5267.

[10]

Guo, Q. S.; Li, C.; Deng, B. C.; Yuan, S. F.; Guinea, F.; Xia, F. N. Infrared nanophotonics based on graphene plasmonics. ACS Photonics 2017, 4, 2989–2999.

[11]

Low, T.; Chaves, A.; Caldwell, J. D.; Kumar, A.; Fang, N. X.; Avouris, P.; Heinz, T. F.; Guinea, F.; Martin-Moreno, L.; Koppens, F. Polaritons in layered two-dimensional materials. Nat. Mater. 2017, 16, 182–194.

[12]
Maier, S. A. Plasmonics: Fundamentals and Applications; Springer: New York, 2007.
[13]

Koppens, F. H. L.; Chang, D. E.; García De Abajo, F. J. Graphene plasmonics: A platform for strong light–matter interactions. Nano Lett. 2011, 11, 3370–3377.

[14]

Lu, W. B.; Zhu, W.; Xu, H. J.; Ni, Z. H.; Dong, Z. G.; Cui, T. J. Flexible transformation plasmonics using graphene. Opt. Express 2013, 21, 10475–10482.

[15]

Zhu, B. F.; Ren, G. B.; Gao, Y. X.; Yang, Y.; Lian, Y. D.; Jian, S. S. Graphene-coated tapered nanowire infrared probe: A comparison with metal-coated probes. Opt. Express 2014, 22, 24096–24103.

[16]

Hui, F.; Chen, S. C.; Liang, X. H.; Yuan, B.; Jing, X.; Shi, Y. Y.; Lanza, M. Graphene coated nanoprobes: A review. Crystals 2017, 7, 269.

[17]

Hui, F.; Vajha, P.; Shi, Y. Y.; Ji, Y. F.; Duan, H. L.; Padovani, A.; Larcher, L.; Li, X. R.; Xu, J. J.; Lanza, M. Moving graphene devices from lab to market: Advanced graphene-coated nanoprobes. Nanoscale 2016, 8, 8466–8473.

[18]

Lanza, M.; Bayerl, A.; Gao, T.; Porti, M.; Nafria, M.; Jing, G. Y.; Zhang, Y. F.; Liu, Z. F.; Duan, H. L. Graphene-coated atomic force microscope tips for reliable nanoscale electrical characterization. Adv. Mater. 2013, 25, 1440–1444.

[19]

Martin-Olmos, C.; Rasool, H. I.; Weiller, B. H.; Gimzewski, J. K. Graphene MEMS: AFM probe performance improvement. ACS Nano 2013, 7, 4164–4170.

[20]

Wang, Z. W.; Xue, Z. Y.; Zhang, M.; Wang, Y. Q.; Xie, X. M.; Chu, P. K.; Zhou, P.; Di, Z. F.; Wang, X. Germanium-assisted direct growth of graphene on arbitrary dielectric substrates for heating devices. Small 2017, 13, 1700929.

[21]

Khan, A.; Islam, S. M.; Ahmed, S.; Kumar, R. R.; Habib, M. R.; Huang, K.; Hu, M.; Yu, X. G.; Yang, D. R. Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv. Sci. 2018, 5, 1800050.

[22]

Chen, K.; Zhou, X.; Cheng, X.; Qiao, R. X.; Cheng, Y.; Liu, C.; Xie, Y. D.; Yu, W. T.; Yao, F. R.; Sun, Z. P. et al. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat. Photonics 2019, 13, 754–759.

[23]

Xia-Hou, Y. J.; Yu, Y.; Zheng, J. R.; Yi, J.; Zhou, J.; Qin, T. X.; You, E. M.; Chen, H. L.; Ding, S. Y.; Zhang, L. et al. Graphene coated dielectric hierarchical nanostructures for highly sensitive broadband infrared sensing. Small 2023, 19, 2206167.

[24]

Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.

[25]

Luong, D. X.; Bets, K. V.; Algozeeb, W. A.; Stanford, M. G.; Kittrell, C.; Chen, W. Y.; Salvatierra, R. V.; Ren, M. Q.; McHugh, E. A.; Advincula, P. A. et al. Gram-scale bottom-up flash graphene synthesis. Nature 2020, 577, 647–651.

[26]

Bachmatiuk, A.; Mendes, R. G.; Hirsch, C.; Jähne, C.; Lohe, M. R.; Grothe, J.; Kaskel, S.; Fu, L.; Klingeler, R.; Eckert, J. et al. Few-layer graphene shells and nonmagnetic encapsulates: A versatile and nontoxic carbon nanomaterial. ACS Nano 2013, 7, 10552–10562.

[27]

Rümmeli, M. H.; Kramberger, C.; Grüneis, A.; Ayala, P.; Gemming, T.; Büchner, B.; Pichler, T. On the graphitization nature of oxides for the formation of carbon nanostructures. Chem. Mater. 2007, 19, 4105–4107.

[28]

Zou, Z. Y.; Fu, L.; Song, X. J.; Zhang, Y. F.; Liu, Z. F. Carbide-forming groups IVB-VIB metals: A new territory in the periodic table for CVD growth of graphene. Nano Lett. 2014, 14, 3832–3839.

[29]

Chen, K.; Zhang, F.; Sun, J. Y.; Li, Z. Z.; Zhang, L.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Zhang, L. Y.; Rümmeli, M. H. et al. Growth of defect-engineered graphene on manganese oxides for Li-ion storage. Energy Storage Mater. 2018, 12, 110–118.

[30]

Cocker, T. L.; Jelic, V.; Hillenbrand, R.; Hegmann, F. A. Nanoscale terahertz scanning probe microscopy. Nat. Photonics 2021, 15, 558–569.

[31]

Li, Z. Q.; Lu, C. J.; Xia, Z. P.; Zhou, Y.; Luo, Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 2007, 45, 1686–1695.

[32]

Kumar, R.; Oh, J. H.; Kim, H. J.; Jung, J. H.; Jung, C. H.; Hong, W. G.; Kim, H. J.; Park, J. Y.; Oh, I. K. Nanohole-structured and palladium-embedded 3D porous graphene for ultrahigh hydrogen storage and CO oxidation multifunctionalities. ACS Nano 2015, 9, 7343–7351.

[33]

Yasuda, A. A new technique using FT-IR micro-reflectance spectroscopy for measurement of water concentrations in melt inclusions. Earth Planets Space 2014, 66, 34.

[34]

Azarfar, G.; Aboualizadeh, E.; Walter, N. M.; Ratti, S.; Olivieri, C.; Norici, A.; Nasse, M.; Kohler, A.; Giordano, M.; Hirschmugl, C. J. Estimating and correcting interference fringes in infrared spectra in infrared hyperspectral imaging. Analyst 2018, 143, 4674–4683.

File
12274_2023_5934_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 April 2023
Revised: 11 June 2023
Accepted: 14 June 2023
Published: 24 July 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22002127, 22275155, 22272140, 22202162, and 21904112), the Natural Science Foundation of Xiamen, China (No. 3502Z20227008), the Fundamental Research Funds for the Central Universities (No. 20720210016), the Ministry of Science and Technology of China, National Key Research and Development Program of China (No. 2021YFA1201502), the Fundamental Research Funds for the Central Universities (No. 20720220011), and China Postdoctoral Science Foundation (No. 2022M722648).

Return