Journal Home > Volume 16 , Issue 10

The layered transition metal dichalcogenides (TMDs) have raised considerable interest in the past decades for both fundamental physics and low-dimensional nanodevice applications. Recently, intriguing phenomena of Ising superconductivity and quantum metallic state have been reported in two-dimensional (2D) 4Ha-TaSe2 nanodevices. Here, we report the magnetic field induced superconductor–metal transition (SMT) in mechanical exfoliated 4Ha-TaSe2 nanodevices with thickness down to 2.5 nm. We observe the quantum Griffiths singularity (QGS) of SMT in thin 4Ha-TaSe2 nanodevices by performing ultralow temperature transport measurements and activated scaling analysis. With increasing the thickness of TaSe2 nanodevice to 10.6 nm, the signature of magnetoresistance crossing region can hardly be detected, revealing the thickness dependence of SMT. In this procedure, the disorder strength plays a dominant role. This work enriches the platform for studying QGS and may stimulate further investigations on the correlation between different novel quantum phenomena in the same 2D superconducting system.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Quantum Griffiths singularity in two-dimensional superconducting 4Ha-TaSe2 nanodevices

Show Author's information Ying Xing1,2,§( )Yiyu Liu1,§Pu Yang1,3,§Jun Ge2Longxin Pan4Junyan Wang1Shichao Qi2Yi Liu4( )Jian Wang2,5,6,7,8( )
State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
College of Chemistry, Beijing Normal University, Beijing 100875, China
Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Hefei National Laboratory, Hefei 230088, China
Beijing Academy of Quantum Information Sciences, Beijing 100193, China
CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

§ Ying Xing, Yiyu Liu, and Pu Yang contributed equally to this work.

Abstract

The layered transition metal dichalcogenides (TMDs) have raised considerable interest in the past decades for both fundamental physics and low-dimensional nanodevice applications. Recently, intriguing phenomena of Ising superconductivity and quantum metallic state have been reported in two-dimensional (2D) 4Ha-TaSe2 nanodevices. Here, we report the magnetic field induced superconductor–metal transition (SMT) in mechanical exfoliated 4Ha-TaSe2 nanodevices with thickness down to 2.5 nm. We observe the quantum Griffiths singularity (QGS) of SMT in thin 4Ha-TaSe2 nanodevices by performing ultralow temperature transport measurements and activated scaling analysis. With increasing the thickness of TaSe2 nanodevice to 10.6 nm, the signature of magnetoresistance crossing region can hardly be detected, revealing the thickness dependence of SMT. In this procedure, the disorder strength plays a dominant role. This work enriches the platform for studying QGS and may stimulate further investigations on the correlation between different novel quantum phenomena in the same 2D superconducting system.

Keywords: transition metal dichalcogenides, quantum phase transition, quantum Griffiths singularity, electrical transport property, two-dimensional superconductor

References(34)

[1]

Saito, Y.; Nojima, T.; Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2017, 2, 16094.

[2]

Lu, J. M.; Zheliuk, O.; Leermakers, I.; Yuan, N. F. Q.; Zeitler, U.; Law, K. T.; Ye, J. T. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 2015, 350, 1353–1357.

[3]

Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139–143.

[4]

Saito, Y.; Nakamura, Y.; Bahramy, M. S.; Kohama, Y.; Ye, J. T.; Kasahara, Y.; Nakagawa, Y.; Onga, M.; Tokunaga, M.; Nojima, T. et al. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys. 2016, 12, 144–149.

[5]

Liu, Y.; Xu, Y.; Sun, J.; Liu, C.; Liu, Y. Z.; Wang, C.; Zhang, Z. T.; Gu, K. Y.; Tang, Y.; Ding, C. et al. Type-II Ising superconductivity and anomalous metallic state in macro-size ambient-stable ultrathin crystalline films. Nano Lett. 2020, 20, 5728–5734.

[6]

Falson, J.; Xu, Y.; Liao, M. H.; Zang, Y. Y.; Zhu, K. J.; Wang, C.; Zhang, Z. T.; Liu, H. C.; Duan, W. H.; He, K. et al. Type-II Ising pairing in few-layer stanene. Science 2020, 367, 1454–1457.

[7]

Xing, Y.; Zhang, H. M.; Fu, H. L.; Liu, H. W.; Sun, Y.; Peng, J. P.; Wang, F.; Lin, X.; Ma, X. C.; Xue, Q. K. et al. Quantum Griffiths singularity of superconductor–metal transition in Ga thin films. Science 2015, 350, 542–545.

[8]

Kapitulnik, A.; Kivelson, S. A.; Spivak, B. Colloquium: Anomalous metals: Failed superconductors. Rev. Mod. Phys. 2019, 91, 011002.

[9]

Saito, Y.; Kasahara, Y.; Ye, J. T.; Iwasa, Y.; Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science 2015, 350, 409–413.

[10]

Yang, C.; Liu, Y.; Wang, Y.; Feng, L.; He, Q. M.; Sun, J.; Tang, Y.; Wu, C. C.; Xiong, J.; Zhang, W. L. et al. Intermediate bosonic metallic state in the superconductor–insulator transition. Science 2019, 366, 1505–1509.

[11]

Bai, H.; Wang, M. M.; Yang, X. H.; Li, Y. P.; Ma, J.; Sun, X. K.; Tao, Q.; Li, L. J.; Xu, Z. A. Superconductivity in tantalum self-intercalated 4Ha-Ta1.03Se2. J. Phys.: Condens. Matter 2018, 30, 095703.

[12]

Xing, Y.; Yang, P.; Ge, J.; Yan, J. J.; Luo, J. W.; Ji, H. R.; Yang, Z. Y.; Li, Y. J.; Wang, Z. J.; Liu, Y. Z. et al. Extrinsic and intrinsic anomalous metallic states in transition metal dichalcogenide Ising superconductors. Nano Lett. 2021, 21, 7486–7494.

[13]

Shen, S. C.; Xing, Y.; Wang, P. J.; Liu, H. W.; Fu, H. L.; Zhang, Y. W.; He, L.; Xie, X. C.; Lin, X.; Nie, J. C. et al. Observation of quantum Griffiths singularity and ferromagnetism at the superconducting LaAlO3/SrTiO3 interface. Phys. Rev. B 2016, 94, 144517.

[14]

Xing, Y.; Zhao, K.; Shan, P. J.; Zheng, F. P.; Zhang, Y. W.; Fu, H. L.; Liu, Y.; Tian, M. L.; Xi, C. Y.; Liu, H. W. et al. Ising superconductivity and quantum phase transition in macro-size monolayer NbSe2. Nano Lett. 2017, 17, 6802–6807.

[15]

Saito, Y.; Nojima, T.; Iwasa, Y. Quantum phase transitions in highly crystalline two-dimensional superconductors. Nat. Commun. 2018, 9, 778.

[16]

Lewellyn, N. A.; Percher, I. M.; Nelson, J. J.; Garcia-Barriocanal, J.; Volotsenko, I.; Frydman, A.; Vojta, T.; Goldman, A. M. Infinite-randomness fixed point of the quantum superconductor–metal transitions in amorphous thin films. Phys. Rev. B 2019, 99, 054515.

[17]

Liu, Y.; Wang, Z. Q.; Shan, P. J.; Tang, Y.; Liu, C. F.; Chen, C.; Xing, Y.; Wang, Q. Y.; Liu, H. W.; Lin, X. et al. Anomalous quantum Griffiths singularity in ultrathin crystalline lead films. Nat. Commun. 2019, 10, 3633.

[18]

Han, X. W.; Wu, Y. F.; Xiao, H.; Zhang, M.; Gao, M.; Liu, Y.; Wang, J.; Hu, T.; Xie, X. M.; Di, Z. F. Disorder-induced quantum Griffiths singularity revealed in an artificial 2D superconducting system. Adv. Sci. 2020, 7, 1902849.

[19]

Verzhbitskiy, I. A.; Voiry, D.; Chhowalla, M.; Eda, G. Disorder-driven two-dimensional quantum phase transitions in LixMoS2. 2D Mater. 2020, 7, 035013.

[20]

Liu, Y.; Qi, S. C.; Fang, J. C.; Sun, J.; Liu, C.; Liu, Y. Z.; Qi, J. J.; Xing, Y.; Liu, H. W.; Lin, X. et al. Observation of in-plane quantum Griffiths singularity in two-dimensional crystalline superconductors. Phys. Rev. Lett. 2021, 127, 137001.

[21]

Huang, C.; Zhang, E. Z.; Zhang, Y.; Zhang, J. L.; Xiu, F. X.; Liu, H. W.; Xie, X. Y.; Ai, L. F.; Yang, Y. K.; Zhao, M. H. et al. Observation of thickness-tuned universality class in superconducting β-W thin films. Sci. Bull. 2021, 66, 1830–1838.

[22]

Zhao, Y. C.; Su, Y. Q.; Guo, Y. Q.; Peng, J.; Zhao, J. Y.; Wang, C. Y.; Wang, L. J.; Wu, C. Z.; Xie, Y. Quantum Griffiths singularity in a layered superconducting organic–inorganic hybrid superlattice. ACS Mater. Lett. 2021, 3, 210–216.

[23]

Werthamer, N. R.; Helfand, E.; Hohenberg, P. C. Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects. Phys. Rev. 1966, 147, 295–302.

[24]

Goldman, A. M. Superconductor–insulator transitions. Int. J. Mod. Phys. B 2010, 24, 4081–4101.

[25]

Sondhi, S. L.; Girvin, S. M.; Carini, J. P.; Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 1997, 69, 315–333.

[26]
Sachdev, S. Quantum Phase Transitions, 2nd ed.; Cambridge University Press: Cambridge, 2011.
DOI
[27]

Fisher, M. P. A. Quantum phase transitions in disordered two-dimensional superconductors. Phys. Rev. Lett. 1990, 65, 923–926.

[28]

Fisher, D. S. Critical behavior of random transverse-field Ising spin chains. Phys. Rev. B 1995, 51, 6411–6461.

[29]

Vojta, T.; Farquhar, A.; Mast, J. Infinite-randomness critical point in the two-dimensional disordered contact process. Phys. Rev. E 2009, 79, 011111.

[30]

Motrunich, O.; Mau, S. C.; Huse, D. A.; Fisher, D. S. Infinite-randomness quantum Ising critical fixed points. Phys. Rev. B 2000, 61, 1160–1172.

[31]

Kovács, I. A.; Iglói, F. Renormalization group study of the two-dimensional random transverse-field Ising model. Phys. Rev. B 2010, 82, 054437.

[32]

Griffiths, R. B. Nonanalytic behavior above the critical point in a random Ising ferromagnet. Phys. Rev. Lett. 1969, 23, 17–19.

[33]

Vojta, T.; Kotabage, C.; Hoyos, J. A. Infinite-randomness quantum critical points induced by dissipation. Phys. Rev. B 2009, 79, 024401.

[34]

Del Maestro, A.; Rosenow, B.; Hoyos, J. A.; Vojta, T. Dynamical conductivity at the dirty superconductor–metal quantum phase transition. Phys. Rev. Lett. 2010, 105, 145702.

File
12274_2023_5901_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 February 2023
Revised: 25 May 2023
Accepted: 07 June 2023
Published: 24 July 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We greatly thank J. J. Yan and X. Lin for their assistance and support in the ultralow temperature transport measurements. We thank Z. J. Wang, Z. Y. Yang, J. W. Luo, P. F. Zhan, Z. H. Cui, and Y. L. Li for helpful discussions in revising the manuscript. This work was financially supported by the National Natural Science Foundation of China (Nos. 11888101, 11974430, and 12174442), the National Key R&D Program of China (Nos. 2018YFA0305600 and 2022YFA1403103), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB28000000), the Innovation Program for Quantum Science and Technology (No. 2021ZD0302400), Young Elite Scientists Sponsorship Program by BAST (No. BYESS2023452), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (No. 22XNKJ20).

Return