Journal Home > Volume 16 , Issue 8

The rapid improvement in the running speed, transmission efficiency, and power density of miniaturized devices means that multifunctional flexible composites with excellent thermal management capability and high electromagnetic interference (EMI) shielding performance are urgently required. Here, inspired by the fibrous pathways of the human nervous system, a “core–sheath” fibers structured strategy was proposed to prepare thermoplastic polyurethane/polydopamine/carbon nanotube (TPU/PDA/CNT) composites film with thermal management capability and EMI shielding performance. Firstly, TPU@PDA@CNT fibers with CNT shell were prepared by a facile polydopamine-assisted coating on electrospun TPU fibers. Subsequently, TPU/PDA/CNT composites with three-dimensional (3D) fibrous CNT “tracks” are obtained by a hot-pressing process, where CNTs distributed on adjacent fibers are compactly contacted. The fabricated TPU/PDA/CNT composites exhibit a high in-plane thermal conductivity (TC) of 9.6 W/(m·K) at low CNT loading of 7.6 wt.%. In addition, it also presents excellent mechanical properties and excellent EMI shielding effectiveness of 48.3 dB as well as multi-source driven thermal management capabilities. Hence, this study provides a simple yet scalable technique to prepare composites with advanced thermal management and EMI shielding performance to develop new-generation wireless communication technologies and portable intelligent electronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polymer composites designed with 3D fibrous CNT “tracks” achieving excellent thermal conductivity and electromagnetic interference shielding efficiency

Show Author's information Gui YangLiangchun ZhouMingjie WangTiantian XiangDuo PanJingzhan ZhuFengmei Su( )Youxin JiChuntai Liu( )Changyu Shen
National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Material Processing and Mold of Ministry of Education, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China

Abstract

The rapid improvement in the running speed, transmission efficiency, and power density of miniaturized devices means that multifunctional flexible composites with excellent thermal management capability and high electromagnetic interference (EMI) shielding performance are urgently required. Here, inspired by the fibrous pathways of the human nervous system, a “core–sheath” fibers structured strategy was proposed to prepare thermoplastic polyurethane/polydopamine/carbon nanotube (TPU/PDA/CNT) composites film with thermal management capability and EMI shielding performance. Firstly, TPU@PDA@CNT fibers with CNT shell were prepared by a facile polydopamine-assisted coating on electrospun TPU fibers. Subsequently, TPU/PDA/CNT composites with three-dimensional (3D) fibrous CNT “tracks” are obtained by a hot-pressing process, where CNTs distributed on adjacent fibers are compactly contacted. The fabricated TPU/PDA/CNT composites exhibit a high in-plane thermal conductivity (TC) of 9.6 W/(m·K) at low CNT loading of 7.6 wt.%. In addition, it also presents excellent mechanical properties and excellent EMI shielding effectiveness of 48.3 dB as well as multi-source driven thermal management capabilities. Hence, this study provides a simple yet scalable technique to prepare composites with advanced thermal management and EMI shielding performance to develop new-generation wireless communication technologies and portable intelligent electronic devices.

Keywords: composites, electromagnetic interference (EMI) shielding, multi-source driven thermal management, three-dimensional (3D) fibrous carbon nanotube (CNT) “tracks”, in-plane thermal conductivity (TC)

References(44)

[1]

Chen, X.; Wu, K.; Zhang, Y. Z.; Liu, D. Y.; Li, R. L.; Fu, Q. Tropocollagen-inspired hierarchical spiral structure of organic fibers in epoxy bulk for 3D high thermal conductivity. Adv. Mater. 2022, 34, 2206088.

[2]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[3]

Liao, S. Y.; Wang, X. Y.; Huang, H. P.; Shi, Y. Y.; Wang, Q. F.; Hu, Y. G.; Zhu, P. L.; Sun, R.; Wong, C. P.; Wan, Y. J. Intelligent shielding material based on VO2 with tunable near-field and far-field electromagnetic response. Chem. Eng. J. 2023, 464, 142596.

[4]

Zhou, B.; Song, J. Z.; Wang, B.; Feng, Y. Z.; Liu, C. T.; Shen, C. Y. Robust double-layered ANF/MXene-PEDOT: PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties. Nano Res. 2022, 15, 9520–9530.

[5]

Wu, Z. Q.; Dong, J.; Li, X. T.; Zhao, X.; Ji, C. C.; Zhang, Q. H. Interlayer decoration of expanded graphite by polyimide resins for preparing highly thermally conductive composites with superior electromagnetic shielding performance. Carbon 2022, 198, 1–10.

[6]

Dong, A. W.; Mu, Z. J.; Meng, X. J.; Li, S.; Li, J. N.; Dai, L.; Lv, J. N.; Li, P. F.; Wang, B. Fine-tuning the electromagnetic parameters of 2D conjugated metal-organic framework semiconductors for anti-electromagnetic interference in the Ku band. Chem. Eng. J. 2022, 444, 136574.

[7]

Xie, Z. L.; Dou, Z. L.; Wu, D.; Zeng, X. T.; Feng, Y.; Tian, Y. F.; Fu, Q.; Wu, K. Joint-inspired liquid and thermal conductive interface for designing thermal interface materials with high solid filling yet excellent thixotropy. Adv. Funct. Mater. 2023, 33, 2214071.

[8]

Lei, C. X.; Xie, Z. L.; Wu, K.; Fu, Q. Controlled vertically aligned structures in polymer composites: Natural inspiration, structural processing, and functional application. Adv. Mater. 2021, 33, 2103495.

[9]

Yang, G.; Wang, M, J.; Dong, J, W.; Su, F. M.; Ji, Y. X.; Liu, C. T.; Shen, C. Y. Fibers-induced segregated-like structure for polymer composites achieving excellent thermal conductivity and electromagnetic interference shielding efficiency. Compos. Part B: Eng. 2022, 246, 110253.

[10]

Dong, J. C.; Tang, X. W.; Peng Y. D.; Fan, C. H.; L, L.; Zhang, C.; Lai, F.L.; He, G. J.; Ma, P.M.; Wang, Z. C.; Wei, Q. F.; Yan, X. P.; Qian, H. L.; Huang, Y. P.; Liu, T. X. Highly permeable and ultrastretchable E-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy 2023, 108, 108194.

[11]

Wan, Y. J.; Zhu, P. L.; Yu, S. H.; Sun, R.; Wong, C. P.; Liao, W. H. Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 2018, 14, 1800534.

[12]

Jia, J.; Peng, Y.; Zha, X. J.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Janus and heteromodulus elastomeric fiber mats feature regulable stress redistribution for boosted strain sensing performance. ACS Nano 2022, 16, 16806–16815.

[13]

Liu, J. H.; Li, W. D.; Jia, J.; Tang, C. Y.; Wang, S.; Yu, P.; Zhang, Z. M.; Ke, K.; Bao, R. Y.; Liu, Z. Y. et al. Structure-regenerated silk fibroin with boosted piezoelectricity for disposable and biodegradable oral healthcare device. Nano Energy 2022, 103, 107787.

[14]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

[15]

Chen, Q.; Ma, Z. W.; Wang, M. C.; Wang, Z. Z.; Feng, J. B.; Chevali, V.; Song, P. A. Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites. Nano Res. 2023, 16, 1362–1386.

[16]
Wang, H.; He, D. Y.; Qiu, J.; Ma, Y. Y.; Wang, J.; Li, Y. X.; Chen, J. Y.; Wang, C. PAN/W18O49/Ag nanofibrous membrane for high-efficient and multi-band electromagnetic-interference shielding with broad temperature tolerance and good thermal isolating capacity. Compos. Part B: Eng. 2022, 236, 109793.
[17]

Zha, X. J.; Yang, J.; Pu, J. H.; Feng, C. P.; Bai, L.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Enhanced thermal conductivity and balanced mechanical performance of PP/BN composites with 1 vol.% finely dispersed MWCNTs assisted by OBC. Adv. Mater. Interfaces 2019, 6, 1900081.

[18]

Zhuang, Q. N.; Ma, Z. J.; Gao, Y.; Zhang, Y. K.; Wang, S. C.; Lu, X.; Hu, H.; Cheung, C.; Huang, Q. Y.; Zheng, Z. J. Liquid-metal-superlyophilic and conductivity-strain-enhancing scaffold for permeable superelastic conductors. Adv. Funct. Mater. 2021, 31, 2105587.

[19]

Ruan, K. P.; Gu, J. W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 2022, 55, 4134–4145.

[20]
Yi, S. Q.; Sun, H.; Jin, Y. F.; Zou, K. K.; Li, J.; Jia, L. C.; Yan, D. X.; Li, Z. M. CNT-assisted design of stable liquid metal droplets for flexible multifunctional composites. Compos. Part B: Eng. 2022, 239, 109961.
[21]

Wan, Y. J.; Wang, X. Y.; Li, X. M.; Liao, S. Y.; Lin, Z. Q.; Hu, Y. G.; Zhao, T.; Zeng, X. L.; Li, C. H.; Yu, S. H. et al. Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 2020, 14, 14134–14145.

[22]

Yang, G.; Zhang, X. D.; Shang, Y.; Xu, P. H.; Pan, D.; Su, F. M.; Ji, Y. X.; Feng, Y. Z.; Liu, Y. Z.; Liu, C. T. Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets. Compos. Sci. Technol. 2021, 201, 108521.

[23]

Wan, Y. J.; Rajavel, K.; Li, X. M.; Wang, X. Y.; Liao, S. Y.; Lin, Z. Q.; Zhu, P. L.; Sun, R.; Wong, C. P. Electromagnetic interference shielding of Ti3C2Tx MXene modified by ionic liquid for high chemical stability and excellent mechanical strength. Chem. Eng. J. 2021, 408, 127303.

[24]

Xu, Y. D.; Lin, Z. Q.; Yang, Y. Q.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Hu, Y. E.; Sun, R.; Wong, C. P. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 2022, 9, 708–719.

[25]
Wei, Y.; Zhou, H. J.; Deng, H.; Ji, W. J.; Tian, K.; Ma, Z. Y.; Zhang, K. Y.; Fu, Q. “Toolbox” for the processing of functional polymer composites. Nano-Micro Lett. 2021, 14, 35.
DOI
[26]

Shen, Z. M.; Feng, J. C. Preparation of thermally conductive polymer composites with good electromagnetic interference shielding efficiency based on natural wood-derived carbon scaffolds. ACS Sustainable Chem. Eng. 2019, 7, 6259–6266.

[27]

Tan, X.; Liu, T. H.; Zhou, W. J.; Yuan, Q. L.; Ying, J. F.; Yan, Q. W.; Lv, L.; Chen, L.; Wang, X. Z.; Du, S. Y. et al. Enhanced electromagnetic shielding and thermal conductive properties of polyolefin composites with a Ti3C2Tx MXene/graphene framework connected by a hydrogen-bonded interface. ACS Nano 2022, 16, 9254–9266.

[28]

Yang, G.; Zhang, X. D.; Pan, D.; Zhang, W.; Shang, Y.; Su, F. M.; Ji, Y. X.; Liu, C. T.; Shen, C. Y. Highly thermal conductive poly(vinyl alcohol) composites with oriented hybrid networks: Silver nanowire bridged boron nitride nanoplatelets. ACS Appl. Mater. Interfaces 2021, 13, 32286–32294.

[29]

Li, J. H.; Ma, Q. Q.; Gao, S.; Liang, T.; Pang, Y. S.; Zeng, X. L.; Li, Y. Y.; Zeng, X. L.; Sun, R.; Ren, L. L. Liquid bridge: Liquid metal bridging spherical BN largely enhances the thermal conductivity and mechanical properties of thermal interface materials. J. Mater. Chem. C 2022, 10, 6736–6743.

[30]

Wang, X. Y.; Liao, S. Y.; Huang, H. P.; Wang, Q. F.; Shi, Y. Y.; Zhu, P. L.; Hu, Y. G.; Sun, R.; Wan, Y. J. Enhancing the chemical stability of MXene through synergy of hydrogen bond and coordination bond in aqueous solution. Small Methods 2023, 7, 2201694.

[31]

Yang, W.; Bai, H. X.; Jiang, B.; Wang, C. N.; Ye, W. M.; Li, Z. X.; Xu, C.; Wang, X. B.; Li, Y. F. Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res. 2022, 15, 9926–9935.

[32]

Wang, X. W.; Wu, P. Y. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation. ACS Appl. Mater. Interfaces 2018, 10, 34311–34321.

[33]

Hong, H.; Jung, Y. H.; Lee, J. S.; Jeong, C.; Kim, J. U.; Lee, S.; Ryu, H.; Kim, H.; Ma, Z. Q.; Kim, T. I. Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1902575.

[34]

Su, Z.; Wang, H.; Ye, X. Z.; Tian, K. H.; Huang, W. Q.; He, J.; Guo, Y. L.; Tian, X. Y. Anisotropic thermally conductive flexible polymer composites filled with hexagonal born nitride (h-BN) platelets and ammine carbon nanotubes (CNT-NH2): Effects of the filler distribution and orientation. Compos. Part A:Appl. Sci. Manuf. 2018, 109, 402–412.

[35]

Luo, F. H.; Zhang, M.; Chen, S. L.; Xu, J. F.; Ma, C.; Chen, G. H. Sandwich-structured PVA/rGO films from self-construction with high thermal conductivity and electrical insulation. Compos. Sci. Technol. 2021, 207, 108707.

[36]

Liang, J. C.; Luo, J. W.; Zhang, J. X.; Xiong, Y. Q.; Tan, S. Z. Constructing a high-density thermally conductive network through electrospinning-hot-pressing of BN@PDA/GO/PVDF composites. ACS Appl. Polym. Mater. 2022, 4, 2414–2422.

[37]

Bai, L.; Zhang, Z. M.; Pu, J. H.; Feng, C. P.; Zhao, X.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Highly thermally conductive electrospun stereocomplex polylactide fibrous film dip-coated with silver nanowires. Polymer 2020, 194, 122390.

[38]

Ying, J. F.; Tan, X.; Lv, L.; Wang, X. Z.; Gao, J. Y.; Yan, Q. W.; Ma, H. B.; Nishimura, K.; Li, H.; Yu, J. H. et al. Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 2021, 15, 12922–12934.

[39]

Liao, S. Y.; Li, G.; Wang, X. Y.; Wan, Y. J.; Zhu, P. L.; Hu, Y. G.; Zhao, T.; Sun, R.; Wong, C. P. Metallized skeleton of polymer foam based on metal-organic decomposition for high-performance EMI shielding. ACS Appl. Mater. Interfaces 2022, 14, 3302–3314.

[40]

Pan, J. K.; Xu, Y.; Bao, J. J. Epoxy composite foams with excellent electromagnetic interference shielding and heat-resistance performance. J. Appl. Polym. Sci. 2018, 135, 46013.

[41]

Yan, D. X.; Ren, P. G.; Pang, H.; Fu, Q.; Yang, M. B.; Li, Z. M. Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 2012, 22, 18772–18774.

[42]

Ling, J. Q.; Zhai, W. T.; Feng, W. W.; Shen, B.; Zhang, J. F.; Zheng, W. G. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677–2684.

[43]

Zhang, H. B.; Yan, Q.; Zheng, W. G.; He, Z. X.; Yu, Z. Z. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924.

[44]

Li, J. T.; Zhang, G. C.; Ma, Z. L.; Fan, X. L.; Fan, X.; Qin, J. B.; Shi, X. T. Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams. Compos. Sci. Technol. 2016, 129, 70–78.

File
12274_2023_5884_MOESM1_ESM.pdf (279.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 April 2023
Revised: 28 May 2023
Accepted: 29 May 2023
Published: 15 July 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21704096, 51703217, and 12072325) and the Natural Science Foundation of Henan Province (No. 20A430028).

Return