Journal Home > Volume 17 , Issue 2

Liquid-like polymer lubricating surfaces (LPLSs) are solid substrates with highly flexible polymer chains grafted via covalent bonds. This unique modification enables ultralow contact-angle hysteresis, repellency of various liquids and bulk ice, and stability. The distinctive wettability and universality of LPLSs have potential applications in liquid motion, biological detection, and environmental protection. In this review, we summarize the mechanisms, preparation, and applications of LPLSs. We discuss the wettability and lubrication mechanisms of liquid droplets on LPLSs. We then categorize LPLS fabrication into “grafted onto” and “grafted from” groups, depending on the type of polymer. We highlight representative applications with recent developments in anti-complex liquid, anti-icing, anti-biological adhesions, biosensing, and photocatalytic activity. Finally, we discuss future challenges and outlooks for LPLSs.


menu
Abstract
Full text
Outline
About this article

Liquid-like polymer lubricating surfaces: Mechanism and applications

Show Author's information Dagui Wang1Jinglong Yang2Junchang Guo2Zhijuan Duan3Deihui Wang1,2( )Fan Xia3( )Fei Deng4,5( )Xu Deng6( )
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China
Department of Nephrology, Sichuan Provincial People’s Hospital Jinniu Hospital, Chengdu Jinniu District People’s Hospital, Chengdu 610054, China
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China

Abstract

Liquid-like polymer lubricating surfaces (LPLSs) are solid substrates with highly flexible polymer chains grafted via covalent bonds. This unique modification enables ultralow contact-angle hysteresis, repellency of various liquids and bulk ice, and stability. The distinctive wettability and universality of LPLSs have potential applications in liquid motion, biological detection, and environmental protection. In this review, we summarize the mechanisms, preparation, and applications of LPLSs. We discuss the wettability and lubrication mechanisms of liquid droplets on LPLSs. We then categorize LPLS fabrication into “grafted onto” and “grafted from” groups, depending on the type of polymer. We highlight representative applications with recent developments in anti-complex liquid, anti-icing, anti-biological adhesions, biosensing, and photocatalytic activity. Finally, we discuss future challenges and outlooks for LPLSs.

Keywords: wettability, liquid-like, lubricating, polymer surface

References(161)

[1]

Chen, H. W.; Ran, T.; Gan, Y.; Zhou, J. J.; Zhang, Y.; Zhang, L. W.; Zhang, D. Y.; Jiang, L. Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 2018, 17, 935–942.

[2]

Feng, S. L.; Zhu, P. G.; Zheng, H. X.; Zhan, H. Y.; Chen, C.; Li, J. Q.; Wang, L. Q.; Yao, X.; Liu, Y. H.; Wang, Z. K. Three-dimensional capillary ratchet-induced liquid directional steering. Science 2021, 373, 1344–1348.

[3]

Varnosfaderani, M. V.; Keith, A. N.; Cong, Y. D.; Liang, H. Y.; Rosenthal, M.; Sztucki, M.; Clair, C.; Magonov, S.; Ivanov, D. A.; Dobrynin, A. V. et al. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 2018, 359, 1509–1513.

[4]

Kim, M.; Yoo, S.; Jeong, H. E.; Kwak, M. K. Fabrication of salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clustering. Nat. Commun. 2022, 13, 5181.

[5]

Finbloom, J. A.; Huynh, C.; Huang, X.; Desai, T. A. Bioinspired nanotopographical design of drug delivery systems. Nat. Rev. Bioeng. 2023, 1, 139–152.

[6]

Geng, H. M.; Zhang, P. Y.; Peng, Q. Y.; Cui, J. W.; Hao, J. C.; Zeng, H. B. Principles of cation–π interactions for engineering mussel-inspired functional materials. Acc. Chem. Res. 2022, 55, 1171–1182.

[7]

Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110.

[8]

Zhang, J. H.; Wang, J. M.; Zhao, Y.; Xu, L.; Gao, X. F.; Zheng, Y. M.; Jiang, L. How does the leaf margin make the lotus surface dry as the lotus leaf floats on water. Soft Matter 2008, 4, 2232–2237.

[9]

Feng, L.; Zhang, Y. A.; Xi, J. N.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Petal effect: A superhydrophobic state with high adhesive force. Langmuir 2008, 24, 4114–4119.

[10]

Liu, C. C.; Ju, J.; Zheng, Y. M.; Jiang. L. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings. ACS Nano 2014, 8, 1321–1329.

[11]

Wang, Q. B.; Yao, X.; Liu, H.; Quéré, D.; Jiang, L. Self-removal of condensed water on the legs of water striders. Proc. Natl. Acad. Sci. USA 2015, 112, 9247–9252.

[12]

Mukhopadhyay, R. D.; Vedhanarayanan, B.; Ajayaghosh, A. Creation of “rose petal” and “lotus leaf” effects on alumina by surface functionalization and metal-ion coordination. Angew. Chem., Int. Ed. 2017, 56, 16018–16022.

[13]

Wang, S.; Jiang, L. Definition of superhydrophobic states. Adv. Mater. 2007, 19, 3423–3424.

[14]

Liu, Y. J.; Guo, Y. J.; Zhang, X. Q.; Gao, G. Q.; Shi, C. Q.; Huang, G. Z.; Li, P. L.; Kang, Q.; Huang, X. Y.; Wu, G. N. Self-cleaning of superhydrophobic nanostructured surfaces at low humidity enhanced by vertical electric field. Nano Res. 2022, 15, 4732–4738.

[15]

Do, V. T.; Tran, N. G.; Chun, D. M. Fabrication of robust superhydrophobic micro-nano hierarchical surface structure using compression molding with carbon soot nanoparticles and thermoplastic polymer. Polymer 2022, 251, 124893.

[16]

Wang, D. H.; Sun, Q. Q.; Hokkanen, M. J.; Zhang, C. L.; Lin, F. Y.; Liu, Q.; Zhu, S. P.; Zhou, T. F.; Chang, Q.; He, B. et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59.

[17]

Wang, L.; Gong, Q. H.; Zhan, S. H.; Jiang, L.; Zheng, Y. M. Robust anti-icing performance of a flexible superhydrophobic surface. Adv. Mater. 2016, 28, 7729–7735.

[18]

Lecointre, P.; Laney, S.; Michalska, M.; Li, T.; Tanguy, A.; Papakonstantinou, I.; Quéré, D. Unique and universal dew-repellency of nanocones. Nat. Commun. 2021, 12, 3458.

[19]

Luo, J.; Yu, H. L.; Lu, B. Y.; Wang, D. H.; Deng, X. Superhydrophobic biological fluid-repellent surfaces: Mechanisms and applications. Small Methods. 2022, 6, 2201106.

[20]

Tian, Y.; Jiang, L. Intrinsically robust hydrophobicity. Nat. Mater. 2013, 12, 291–292.

[21]

Li, Z.; Cao, M. Y.; Li, P.; Zhao, Y. Y.; Bai, H. Y.; Wu, Y. C.; Jiang, L. Surface-embedding of functional micro-/nanoparticles for achieving versatile superhydrophobic interfaces. Matter 2019, 1, 661–673.

[22]

Schellenberger, F.; Encinas, N.; Vollmer, D.; Butt, H. J. How water advances on superhydrophobic surfaces. Phys. Rev. Lett. 2016, 116, 096101.

[23]

Challita, E. J.; Sehgal, P.; Krugner, R.; Bhamla, M. S. Droplet superpropulsion in an energetically constrained insect. Nat. Commun. 2023, 14, 860.

[24]

Peng, C. Y.; Chen, Z. Y.; Tiwari, M. K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance. Nat. Mater. 2018, 17, 355–360.

[25]

Wong, T. S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447.

[26]

Park, K. C.; Kim, P.; Grinthal, A.; He, N.; Fox, D.; Weaver, J. C.; Aizenberg, J. Condensation on slippery asymmetric bumps. Nature 2016, 531, 78–82.

[27]

Li, J. S.; Kleintschek, T.; Rieder, A.; Cheng, Y.; Baumbach, T.; Obst, U.; Schwartz, T.; Levkin, P. A. Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications. ACS Appl. Mater. Interfaces 2013, 5, 6704–6711.

[28]

Cheng, Y.; Yang, Q.; Fang, Y.; Yong, J. L.; Chen, F.; Hou, X. Underwater anisotropic 3D superoleophobic tracks applied for the directional movement of oil droplets and the microdroplets reaction. Adv. Mater. Interfaces 2019, 6, 1900067.

[29]

Kratochvil, M. J.; Welsh, M. A.; Manna, U.; Ortiz, B. J.; Blackwell, H. E.; Lynn, D. M. Slippery liquid-infused porous surfaces that prevent bacterial surface fouling and inhibit virulence phenotypes in surrounding planktonic cells. ACS Infect. Dis. 2016, 2, 509–517.

[30]

Tian, D. L.; He, L. L.; Zhang, N.; Zheng, X.; Dou, Y. H.; Zhang, X. F.; Guo, Z. Y.; Jiang, L. Electric field and gradient microstructure for cooperative driving of directional motion of underwater oil droplets. Adv. Funct. Mater. 2016, 26, 7986–7992.

[31]

Lu, Y.; Sathasivam, S.; Song, J. L.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135.

[32]

Zhao, H. X.; Sun, Q. Q.; Deng, X.; Cui, J. X. Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces. Adv. Mater. 2018, 30, 1802141.

[33]

Zhang, X. X.; Sun, L. Y.; Wang, Y.; Bian, F. K.; Wang, Y. T.; Zhao, Y. J. Multibioinspired slippery surfaces with wettable bump arrays for droplets pumping. Proc. Natl. Acad. Sci. USA 2019, 116, 20863–20868.

[34]

Dong, Z. Q.; Schumann, M. F.; Hokkanen, M. J.; Chang, B.; Welle, A.; Zhou, Q.; Ras, R. H. A.; Xu, Z. L.; Wegener, M.; Levkin, P. A. Superoleophobic slippery lubricant-infused surfaces: Combining two extremes in the same surface. Adv. Mater. 2018, 30, 1803890.

[35]

Ware, C. S.; Smith-Palmer, T.; Peppou-Chapman, S.; Scarratt, L. R. J.; Humphries, E. M.; Balzer, D.; Neto, C. Marine antifouling behavior of lubricant-infused nanowrinkled polymeric surfaces. ACS Appl. Mater. Interfaces 2018, 10, 4173–4182.

[36]

Wang, W. D.; Timonen, J. V. I.; Carlson, A.; Drotlef, D. M.; Zhang, C. T.; Kolle, S.; Grintha, A.; Wong, T. S.; Hatton, B.; Kang, S. H. et al. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 2018, 559, 77–82.

[37]

Chen, H. W.; Zhang, P. F.; Zhang, L. W.; Liu, H. L.; Jiang, Y.; Zhang, D. Y.; Han, Z. W.; Jiang, L. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 2016, 532, 85–89.

[38]

Tesler, A. B.; Kim, P.; Kolle, S.; Howell, C.; Ahanotu, O.; Aizenberg, J. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nat. Commun. 2015, 6, 8649.

[39]

Leslie, D. C.; Waterhouse, A.; Berthet, J. B.; Valentin, T. M.; Watters, A. L.; Jain, A.; Kim, P.; Hatton, B. D.; Nedder, A.; Donovan, K. et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat. Biotechnol. 2014, 32, 1134–1140.

[40]

Wang, F.; Liu, M. J.; Liu, C.; Zhao, Q. L.; Wang, T.; Wang, Z. K.; Du, X. M. Light-induced charged slippery surfaces. Sci. Adv. 2022, 8, eabp9369.

[41]

Wang, L. M.; McCarthy, T. J. Covalently attached liquids: Instant omniphobic surfaces with unprecedented repellency. Angew. Chem. 2016, 128, 252–256.

[42]

Rabnawaz, M.; Liu, G. J. Graft-copolymer-based approach to clear, durable, and anti-smudge polyurethane coatings. Angew. Chem., Int. Ed. 2015, 54, 6516–6520.

[43]

Suh, H. S.; Kim, D. H.; Moni, P.; Xiong, S. S.; Ocola, L. E.; Zaluzec, N. J.; Gleason, K. K.; Nealey, P. F. Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat. Nat. Nanotechnol. 2017, 12, 575–581.

[44]

Ritsema van Eck, G. C.; Chiappisi, L.; De Beer, S. Fundamentals and applications of polymer brushes in air. ACS Appl. Polym. Mater. 2022, 4, 3062–3087.

[45]

Cheng, D. F.; Urata, C.; Yagihashi, M.; Hozumi, A. A statically oleophilic but dynamically oleophobic smooth nonperfluorinated surface. Angew. Chem. 2012, 124, 3010–3013.

[46]

Buddingh, J. V.; Hozumi, A.; Liu, G. J. Liquid and liquid-like surfaces/coatings that readily slide fluids. Prog. Polym. Sci. 2021, 123, 101468.

[47]

Wang, J.; Wang, L.; Sun, N.; Tierney, R.; Li, H.; Corsetti, M.; Williams, L.; Wong, P. K.; Wong, T. S. Viscoelastic solid-repellent coatings for extreme water saving and global sanitation. Nat. Sustain. 2019, 2, 1097–1105.

[48]

Chen, Z. X.; Lu, Y.; Rojas, O. J.; Yang, F.; Zhang, Z. Q.; Liu, Q. X. Chlorotrimethylsilane treatment affords long-lasting contaminant-proof and transparent slippery covalently attached liquids surfaces. Appl. Surf. Sci. 2022, 602, 154308.

[49]

Wang, D. G.; Ye, C. X.; Duan, Z. J. A lubricant polymer surface with biological navigation and aggregation. Mater. Lett. 2023, 341, 134227.

[50]

Wang, D. G.; Chen, Y. J.; Huang, Y.; Bai, H.; Tan, Y.; Gao, P. C.; Deng, X.; Xia, F.; Jiang, L. Universal and stable slippery coatings: Chemical combination induced adhesive-lubricant cooperation. Small 2022, 18, 2203057.

[51]

Daniel, D.; Timonen, J. V. I.; Li, R. P.; Velling, S. J.; Kreder, M. J.; Tetreault, A.; Aizenberg, J. Origins of extreme liquid repellency on structured, flat, and lubricated hydrophobic surfaces. Phys. Rev. Lett. 2018, 120, 244503.

[52]

Howell, C.; Vu, T. L.; Johnson, C. P.; Hou, X.; Ahanotu, O.; Alvarenga, J.; Leslie, D. C.; Uzun, O.; Waterhouse, A.; Kim, P. et al. Stability of surface-immobilized lubricant interfaces under flow. Chem. Mater. 2015, 27, 1792–1800.

[53]

Manna, U.; Broderick, A. H.; Lynn, D. M. Chemical patterning and physical refinement of reactive superhydrophobic surfaces. Adv. Mater. 2012, 24, 4291–4295.

[54]

Li, J. S.; Li, L. X.; Du, X.; Feng, W. Q.; Welle, A.; Trapp, O.; Grunze, M.; Hirtz, M.; Levkin, P. A. Reactive superhydrophobic surface and its photoinduced disulfide-ene and thiol-ene (bio)functionalization. Nano Lett. 2015, 15, 675–681.

[55]

Zhu, Y. F.; McHale, G.; Dawson, J.; Armstrong, S.; Wells, G.; Han, R.; Liu, H. Z.; Vollmer, W.; Stoodley, P.; Jakubovics, N. et al. Slippery liquid-like solid surfaces with promising antibiofilm performance under both static and flow conditions. ACS Appl. Mater. Interfaces 2022, 14, 6307–6319.

[56]

Yu, M. N.; Zhang, J. C.; Wu, Y. L.; Fu, S. H. Respiratory mucosa-inspired “sticky-slippery coating” with transparency and structure adaptation based on comb-polymer nanogel. Chem. Eng. J. 2023, 452, 139478.

[57]

Khatir, B.; Shabanian, S.; Golovin, K. Design and high-resolution characterization of silicon wafer-like omniphobic liquid layers applicable to any substrate. ACS Appl. Mater. Interfaces 2020, 12, 31933–31939.

[58]

Lee, S. J.; Kim, H. N.; Choi, W.; Yoon, G. Y.; Seo, E. A nature-inspired lubricant-infused surface for sustainable drag reduction. Soft Matter 2019, 15, 8459–8467.

[59]

Fang, L. Y.; Zhang, J. H.; Chen, Y. X.; Liu, S. L.; Chen, Q. Y.; Ke, A.; Duan, L. T.; Huang, S. L.; Tian, X. L.; Xie, Z. High-resolution patterned functionalization of slippery “liquid-like” brush surfaces via microdroplet-confined growth of multifunctional polydopamine arrays. Adv. Funct. Mater. 2021, 31, 2100447.

[60]

Wooh, S.; Butt, H. J. A photocatalytically active lubricant-impregnated surface. Angew. Chem. 2017, 129, 5047–5051.

[61]

Yong, J. L.; Chen, F.; Yang, Q.; Huo, J. L.; Hou, X. Superoleophobic surfaces. Chem. Soc. Rev. 2017, 46, 4168–4217.

[62]

Xu, T. L.; Xu, L. P.; Zhang, X. J.; Wang, S. T. Bioinspired superwettable micropatterns for biosensing. Chem. Soc. Rev. 2019, 48, 3153–3165.

[63]

Zheng, Z. J.; Guo, Z. G.; Liu, W. M.; Luo, J. B. Low friction of superslippery and superlubricity: A review. Friction 2023, 11, 1121–1137.

[64]

Shome, A.; Das, A.; Borbora, A.; Dhar, M.; Manna, U. Role of chemistry in bio-inspired liquid wettability. Chem. Soc. Rev. 2022, 51, 5452–5497.

[65]

Li, J. S.; Ueda, E.; Paulssen, D.; Levkin, P. A. Slippery lubricant-infused surfaces: Properties and emerging applications. Adv. Funct. Mater. 2019, 29, 1802317.

[66]

Lou, X. D.; Huang, Y.; Yang, X.; Zhu, H.; Heng, L. P.; Xia, F. External stimuli responsive liquid-infused surfaces switching between slippery and nonslippery states: Fabrications and applications. Adv. Funct. Mater. 2020, 30, 1901130.

[67]

Zhang, W. L.; Wang, D. H.; Sun, Z. N.; Song, J. N.; Deng, X. Robust superhydrophobicity: Mechanisms and strategies. Chem. Soc. Rev. 2021, 50, 4031–4061.

[68]

Zhou, S.; Jiang, L.; Dong, Z. C. Overflow control for sustainable development by superwetting surface with biomimetic structure. Chem. Rev. 2023, 123, 2276–2310.

[69]

Howell, C.; Grinthal, A.; Sunny, S.; Aizenberg, M.; Aizenberg, J. Designing liquid-infused surfaces for medical applications: A review. Adv. Mater. 2018, 30, 1802724.

[70]

Chen, Y. X.; Yu, X. D.; Chen, L. W.; Liu, S. L.; Xu, X. F.; Zhao, S. L.; Huang, S. L.; Tian, X. L. Dynamic poly(dimethylsiloxane) brush coating shows even better antiscaling capability than the low-surface-energy fluorocarbon counterpart. Environ. Sci. Technol. 2021, 55, 8839–8847.

[71]

Wooh, S.; Encinas, N.; Vollmer, D.; Butt, H. J. Stable hydrophobic metal-oxide photocatalysts via grafting polydimethylsiloxane brush. Adv. Mater. 2017, 29, 1604637.

[72]

Liu, P.; He, W. Q.; Lu, G.; Zhang, H. D.; Wang, Z. Y.; Yao, X. Condensation-assisted micro-patterning of low-surface-tension liquids on reactive oil-repellent surfaces. J. Mater. Chem. A 2017, 5, 16344–16351.

[73]

Huang, S. L.; Li, J.; Liu, L.; Zhou, L. D.; Tian, X. L. Lossless fast drop self-transport on anisotropic omniphobic surfaces: Origin and elimination of microscopic liquid residue. Adv. Mater. 2019, 31, 1901417.

[74]

Zhang, L.; Guo, Z. Q.; Sarma, J.; Dai, X. M. Passive removal of highly wetting liquids and ice on quasi-liquid surfaces. ACS Appl. Mater. Interfaces 2020, 12, 20084–20095.

[75]

Wu, Q. N.; Yang, C. D.; Su, C.; Zhong, L. Y.; Zhou, L. F.; Hang, T.; Lin, H. T.; Chen, W. R.; Li, L. X.; Xie, X. Slippery liquid-attached surface for robust biofouling resistance. ACS Biomater. Sci. Eng. 2020, 6, 358–366.

[76]

Young, T. III. An essay on the cohesion of fluids. Phil. Trans. 1805, 95, 65–87.

[77]

Ishihara, K.; Yanokuchi, S.; Fukazawa, K.; Inoue, Y. Photoinduced self-initiated graft polymerization of methacrylate monomers on poly(ether ether ketone) substrates and surface parameters for controlling cell adhesion. Polym. J. 2020, 52, 731–741.

[78]

Melde, B. J.; Malanoski, A. P.; Moore, M. H.; Johnson, B. J. Covalently attached liquids as protective coatings. Polym. Int. 2021, 70, 701–709.

[79]

Krumpfer, J. W.; McCarthy, T. J. Rediscovering silicones: “Unreactive” silicones react with inorganic surfaces. Langmuir 2011, 27, 11514–11519.

[80]

Bartell, F. E.; Shepard, J. W. The effect of surface roughness on apparent contact angles and on contact angle hysteresis. I. The system paraffin-water-air. J. Phys. Chem. 1953, 57, 211–215.

[81]

Zhang, J. Q.; Wang, X. J.; Wang, Z. Y.; Pan, S. F.; Yi, B.; Ai, L. Q.; Gao, J.; Mugele, F.; Yao, X. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat. Commun. 2021, 12, 7136.

[82]

Zhang, P. C.; Liu, H. L.; Meng, J. X.; Yang, G.; Liu, X. L.; Wang, S. T.; Jiang, L. Grooved organogel surfaces towards anisotropic sliding of water droplets. Adv. Mater. 2014, 26, 3131–3135.

[83]

Tourkine, P.; Le Merrer, M.; Quéré, D. Delayed freezing on water repellent materials. Langmuir 2009, 25, 7214–7216.

[84]

Golovin, K.; Dhyani, A.; Thouless, M. D.; Tuteja, A. Low-interfacial toughness materials for effective large-scale deicing. Science 2019, 364, 371–375.

[85]

McHale, G.; Gao, N.; Wells, G. G.; Barrio-Zhang, H.; Ledesma-Aguilar, R. Friction coefficients for droplets on solids: The liquid–solid Amontons’ laws. Langmuir 2022, 38, 4425–4433.

[86]

Bresme, F.; Kornyshev, A. A.; Perkin, S.; Urbakh, M. Electrotunable friction with ionic liquid lubricants. Nat. Mater. 2022, 21, 848–858.

[87]

Barrio-Zhang, H.; Ruiz-Gutiérrez, É.; Armstrong, S.; McHale, G.; Wells, G. G.; Ledesma-Aguilar, R. Contact-angle hysteresis and contact-line friction on slippery liquid-like surfaces. Langmuir 2020, 36, 15094–15101.

[88]

Dawson, J.; Coaster, S.; Han, R.; Gausden, J.; Liu, H. Z.; McHale, G.; Chen, J. J. Dynamics of droplets impacting on aerogel, liquid infused, and liquid-like solid surfaces. ACS Appl. Mater. Interfaces 2023, 15, 2301–2312.

[89]

Wang, Y. L.; Du, X.; Wang, X.; Yan, T. X.; Yuan, M. Q.; Yang, Y. M.; Jurado-Sánchez, B.; Escarpa, A.; Xu, L. P. Patterned liquid-infused nanocoating integrating a sensitive bacterial sensing ability to an antibacterial surface. ACS Appl. Mater. Interfaces 2022, 14, 23129–23138.

[90]

Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

[91]

Krumpfer, J. W.; McCarthy, T. J. Contact angle hysteresis: A different view and a trivial recipe for low hysteresis hydrophobic surfaces. Faraday Discuss. 2010, 146, 103–111.

[92]

Ma, S. H.; Zhang, X. Q.; Yu, B.; Zhou, F. Brushing up functional materials. NPG Asia Mater. 2019, 11, 24.

[93]

Idriss, H.; Guselnikova, O.; Postnikov, P.; Kolská, Z.; Haušild, P.; Lyutakov, O.; Švorčík, V. Polymer icephobic surface by graphite coating and chemical grafting with diazonium salts. Surf. Interfaces 2021, 25, 101226.

[94]

Gao, L. C.; McCarthy, T. J. Contact angle hysteresis explained. Langmuir 2006, 22, 6234–6237.

[95]

Hozumi, A.; McCarthy, T. J. Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis. Langmuir 2010, 26, 2567–2573.

[96]

Klonos, P. A. Crystallization, glass transition, and molecular dynamics in PDMS of low molecular weights: A calorimetric and dielectric study. Polymer 2018, 159, 169–180.

[97]

Donaldson, S. H. Jr.; Das, S.; Gebbie, M. A.; Rapp, M.; Jones, L. C.; Roiter, Y.; Koenig, P. H.; Gizaw, Y.; Israelachvili, J. N. Asymmetric electrostatic and hydrophobic–hydrophilic interaction forces between mica surfaces and silicone polymer thin films. ACS Nano 2013, 7, 10094–10104.

[98]

Cheng, D. F.; Masheder, B.; Urata, C. Hozumi, A. Smooth perfluorinated surfaces with different chemical and physical natures: Their unusual dynamic dewetting behavior toward polar and nonpolar liquids. Langmuir 2013, 29, 11322–11329.

[99]

Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Öner, D.; Youngblood, J.; McCarthy, T. J. Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples. Langmuir 1999, 15, 3395–3399.

[100]

Zhou, C. P.; Zhao, X.; Zhao, X. Y.; Li, H.; Zhang, S. X.; Feng, W.; Zhang, Y. M. Low ice adhesion surfaces based on flexible fluorinated polymers with a polynorbornene backbone. ACS Appl. Mater. Interfaces 2020, 12, 53494–53502.

[101]

Wang, Y.; Xu, Y. H.; Zhai, W. J.; Zhang, Z. N.; Liu, Y. H.; Cheng, S. J.; Zhang, H. Y. In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention. Nat. Commun. 2022, 13, 5056.

[102]

Sakurai, S.; Watanabe, H.; Takahara, A. Preparation and characterization of looped polydimethylsiloxane brushes. Polym. J. 2014, 46, 117–122.

[103]

Zhang, Y. L.; Zhao, W. Y.; Ma, S. H.; Liu, H.; Wang, X. W.; Zhao, X. D.; Yu, B.; Cai, M. R.; Zhou, F. Modulus adaptive lubricating prototype inspired by instant muscle hardening mechanism of catfish skin. Nat. Commun. 2022, 13, 377.

[104]

Liu, P.; Zhang, H. D.; He, W. Q.; Li, H. L.; Jiang, J. K.; Liu, M. J.; Sun, H. Y.; He, M. L.; Cui, J. X.; Jiang, L. et al. Development of “liquid-like” copolymer nanocoatings for reactive oil-repellent surface. ACS Nano 2017, 11, 2248–2256.

[105]

Urata, C.; Masheder, B.; Cheng, D. F.; Miranda, D. F.; Dunderdale, G. J.; Miyamae, T.; Hozumi, A. Why can organic liquids move easily on smooth alkyl-terminated surfaces. Langmuir 2014, 30, 4049–4055.

[106]

Zhang, Q.; Archer, L. A. Interfacial friction and adhesion of cross-linked polymer thin films swollen with linear chains. Langmuir 2007, 23, 7562–7570.

[107]

Flagg, D. H.; McCarthy, T. J. Rapid and clean covalent attachment of methylsiloxane polymers and oligomers to silica using B(C6F5)3 catalysis. Langmuir 2017, 33, 8129–8139.

[108]

Wu, C. F. Free surface-induced glass-transition temperature suppression of simulated polymer chains. J. Phys. Chem. C 2019, 123, 9237–9246.

[109]

Hamada, T. Rotational isomeric state study of molecular dimensions and elasticity of perfluoropolyethers: Differences between Demnum-, Fomblin-, and Krytox-type main chains. Phys. Chem. Chem. Phys. 2000, 2, 115–122.

[110]

Armstrong, S.; McHale, G.; Ledesma-Aguilar, R.; Wells, G. G. Pinning-free evaporation of sessile droplets of water from solid surfaces. Langmuir 2019, 35, 2989–2996.

[111]

Fadeev, A. Y.; McCarthy, T. J. Self-assembly is not the only reaction possible between alkyltrichlorosilanes and surfaces: Monomolecular and oligomeric covalently attached layers of dichloro- and trichloroalkylsilanes on silicon. Langmuir 2000, 16, 7268–7274.

[112]

Samaha, M. A.; Gad-el-Hak, M. Polymeric slippery coatings: Nature and applications. Polymers 2014, 6, 1266–1311.

[113]

Mocny, P.; Klok, H. A. Tribology of surface-grafted polymer brushes. Mol. Syst. Des. Eng. 2016, 1, 141–154.

[114]

Yang, C. D.; Wu, Q. N.; Zhong, L. Y.; Lyu, C.; He, G.; Yang, C.; Li, X. L.; Huang, X. S.; Hu, N.; Chen, M. W. et al. Liquid-like polymer-based self-cleaning coating for effective prevention of liquid foods contaminations. J. Colloid Interf. Sci. 2021, 589, 327–335.

[115]

Nagase, K.; Umemoto, Y.; Kanazawa, H. Effect of pore diameter on the elution behavior of analytes from thermoresponsive polymer grafted beads packed columns. Sci. Rep. 2021, 11, 9976.

[116]

Barbey, R.; Lavanant, L.; Paripovic, D.; Schuwer, N.; Sugnaux, C.; Tugulu, S.; Klok, H. A. Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications. Chem. Rev. 2009, 109, 5437–5527.

[117]

Klein, J.; Kumacheva, E.; Mahalu, D.; Perahia, D.; Fetters, L. J. Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 1994, 370, 634–636.

[118]

Zhao, X. X.; Khandoker, A. R.; Golovin, K. Non-fluorinated omniphobic paper with ultralow contact angle hysteresis. ACS Appl. Mater. Interfaces 2020, 12, 15748–15756.

[119]

Hong, X. M.; Lv, L. Z.; Hu, H. F.; Jiang, X.; Fu, H. Q. Bio-based coatings with liquid repellency for various applications. Chem. Eng. J. 2020, 382, 123042.

[120]

Huang, S. S.; Liu, G. J.; Hu, H.; Wang, J. D.; Zhang, K. K.; Buddingh, J. Water-based anti-smudge NP-GLIDE polyurethane coatings. Chem. Eng. J. 2018, 351, 210–220.

[121]

Ma, J. C.; Porath, L. E.; Haque, F.; Sett, S.; Rabbi, K. F.; Nam, S. W.; Miljkovic, N.; Evans, C. M. Ultra-thin self-healing vitrimer coatings for durable hydrophobicity. Nat. Commun. 2021, 12, 5210.

[122]

Zhang, K. K.; Huang, S. S.; Wang, J. D.; Liu, G. J. Transparent omniphobic coating with glass-like wear resistance and polymer-like bendability. Angew. Chem., Int. Ed., 2019, 58, 12004–12009.

[123]

Zheng, W. W.; Huang, J. Y.; Zang, X. R.; Xu, X. F.; Cai, W. L.; Lin, Z. Q.; Lai, Y. K. Judicious design and rapid manufacturing of a flexible, mechanically resistant liquid-like coating with strong bonding and antifouling abilities. Adv. Mater. 2022, 34, 2204581.

[124]

Šrámková, P.; Zahoranová, A.; Kelar, J.; Kelar Tučeková, Z.; Stupavská, M.; Krumpolec, R.; Jurmanová, J.; Kováčik, D.; Černák, M. Cold atmospheric pressure plasma: Simple and efficient strategy for preparation of poly(2-oxazoline)-based coatings designed for biomedical applications. Sci. Rep. 2020, 10, 9478.

[125]

Li, J. L.; Tian, J. H.; Gao, Y. T.; Qin, R. R.; Pi, H. M.; Li, M. J.; Yang, P. All-natural superhydrophobic coating for packaging and blood-repelling materials. Chem. Eng. J. 2021, 410, 128347.

[126]

Kim, S.; Cho, H.; Hwang, W. Simple fabrication method of flexible and translucent high-aspect ratio superhydrophobic polymer tube using a repeatable replication and nondestructive detachment process. Chem. Eng. J. 2019, 361, 975–981.

[127]

Han, K.; Park, T. Y.; Yong, K.; Cha, H. J. Combinational biomimicking of lotus leaf, mussel, and sandcastle worm for robust superhydrophobic surfaces with biomedical multifunctionality: Antithrombotic, antibiofouling, and tissue closure capabilities. ACS Appl. Mater. Interfaces 2019, 11, 9777–9785.

[128]

Zhan, X. P.; Wang, Y. J.; Su, Y.; Li, M. T.; Zang, H. W.; Xia, H.; Xu, H. L.; Liu, B.; Sun, H. B. Micro-nano-texturing inner surfaces of small-caliber high aspect ratio and superhydrophobic artificial vessels using femtosecond laser filamenting pulses. Adv. Mater. Interfaces 2018, 5, 1801148.

[129]

Lv, F. Y.; Zhao, F.; Cheng, D. L.; Dong, Z. G.; Jia, H. W.; Xiao, X.; Orejon, D. Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport. Adv. Colloid Interf. Sci. 2022, 299, 102564.

[130]

Maeda, Y.; Lv, F. Y.; Zhang, P.; Takata, Y.; Orejon, D. Condensate droplet size distribution and heat transfer on hierarchical slippery lubricant infused porous surfaces. Appl. Therm. Eng. 2020, 176, 115386.

[131]

Liu, M. M.; Hou, Y. Y.; Li, J.; Tie, L.; Guo, Z. G. Transparent slippery liquid-infused nanoparticulate coatings. Chem. Eng. J. 2018, 337, 462–470.

[132]

Xu, X.; Huang, X. M.; Chang, Y. X.; Yu, Y.; Zhao, J. C.; Isahak, N.; Teng, J. S.; Qiao, R. R.; Peng, H.; Zhao, C. X. et al. Antifouling surfaces enabled by surface grafting of highly hydrophilic sulfoxide polymer brushes. Biomacromolecules 2021, 22, 330–339.

[133]

Hou, S. H.; Wang, X. J.; Dong, X.; Zheng, J. F.; Li, S. H. Renewable antibacterial and antifouling polysulfone membranes incorporating a PEO-grafted amphiphilic polymer and N-chloramine functional groups. J. Colloid Interf. Sci. 2019, 554, 658–667.

[134]

Wang, Z. Y.; Yi, B.; Wu, M. D.; Lv, D.; He, M. L.; Liu, M. J.; Yao, X. Bioinspired supramolecular slippery organogels for controlling pathogen spread by respiratory droplets. Adv. Funct. Mater. 2021, 31, 2102888.

[135]

Sempionatto, J. R.; Lasalde-Ramírez, J. A.; Mahato, K.; Wang, J.; Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 2022, 6, 899–915.

[136]

Geyer, F.; D’Acunzi, M.; Yang, C. Y.; Müller, M.; Baumli, P.; Kaltbeitzel, A.; Mailänder, V.; Encinas, N.; Vollmer, D.; Butt, H. J. How to coat the inside of narrow and long tubes with a super-liquid-repellent layer—A promising candidate for antibacterial catheters. Adv. Mater. 2019, 31, 1801324.

[137]

Gao, Z. F.; Liu, R.; Wang, J. H.; Dai, J.; Huang, W. H.; Liu, M. J.; Wang, S. T.; Xia, F.; Jiang, L. Controlling droplet motion on an organogel surface by tuning the chain length of DNA and its biosensing application. Chem 2018, 4, 2929–2943.

[138]

Nakamura, S.; Luna, J. A.; Hozumi, A. Recent progress in research on “liquid-like” surfaces showing low contact angle hysteresis and excellent liquid sliding behavior. J. Photopolym. Sci. Technol. 2021, 34, 639–650.

[139]

Hang, T.; Xiao, S.; Yang, C.; Li, X. L.; Guo, C.; He, G.; Li, B. H.; Yang, C. D.; Chen, H. J.; Liu, F. M. et al. Hierarchical graphene/nanorods-based H2O2 electrochemical sensor with self-cleaning and anti-biofouling properties. Sensor. Actuat. B: Chem. 2019, 289, 15–23.

[140]

Chen, L. W.; Feng, Q. X.; Huang, S. L.; Lin, Z. Q.; Li, J.; Tian, X. L. A grafted-liquid lubrication strategy to enhance membrane permeability in viscous liquid separation. J. Membr. Sci. 2020, 610, 118240.

[141]

Liu, J.; Sun, Y. L.; Zhou, X. T.; Li, X. M.; Kappl, M.; Steffen, W.; Butt, H. J. One-step synthesis of a durable and liquid-repellent poly(dimethylsiloxane) coating. Adv. Mater. 2021, 33, 2100237.

[142]

Chen, F. Z.; Wang, Y. Q.; Tian, Y. L.; Zhang, D. W.; Song, J. L.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P.; Lu, Y. Robust and durable liquid-repellent surfaces. Chem. Soc. Rev. 2022, 51, 8476–8583.

[143]

Li, Q.; Guo, Z. G. Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces. J. Mater. Chem. A 2018, 6, 13549–13581.

[144]

Chen, D. Y.; Gelenter, M. D.; Hong, M.; Cohen, R. E.; McKinley, G. H. Icephobic surfaces induced by interfacial nonfrozen water. ACS Appl. Mater. Interfaces 2017, 9, 4202–4214.

[145]

Meuler, A. J.; Smith, J. D.; Varanasi, K. K.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E. Relationships between water wettability and ice adhesion. ACS Appl. Mater. Interfaces 2010, 2, 3100–3110.

[146]

Zhao, X. X.; Khatir, B.; Mirshahidi, K.; Yu, K.; Kizhakkedathu, J. N.; Golovin, K. Macroscopic evidence of the liquidlike nature of nanoscale polydimethylsiloxane brushes. ACS Nano 2021, 15, 13559–13567.

[147]

Sun, L. Y.; Bian, F. K.; Wang, Y.; Wang, Y. T.; Zhang, X. X.; Zhao, Y. J. Bioinspired programmable wettability arrays for droplets manipulation. Proc. Natl. Acad. Sci. USA 2020, 117, 4527–4532.

[148]

Wang, X.; Wang, Z. B.; Heng, L. P.; Jiang, L. Stable omniphobic anisotropic covalently grafted slippery surfaces for directional transportation of drops and bubbles. Adv. Funct. Mater. 2020, 30, 1902686.

[149]

Yu, M. N.; Liu, M. M.; Zhang, D. D.; Fu, S. H. Lubricant-grafted omniphobic surfaces with anti-biofouling and drag-reduction performances constructed by reactive organic–inorganic hybrid microspheres. Chem. Eng. J. 2021, 422, 130113.

[150]

Salimi, E. Omniphobic surfaces: State-of-the-art and future perspectives. J. Adhes. Sci. Technol. 2019, 33, 1369–1379.

[151]

Yang, C. D.; Yang, C.; Li, X. L.; Zhang, A. H.; He, G.; Wu, Q. N.; Liu, X. X.; Huang, S.; Huang, X. S.; Cui, G. F. et al. Liquid-like polymer coating as a promising candidate for reducing electrode contamination and noise in complex biofluids. ACS Appl. Mater. Interfaces 2021, 13, 4450–4462.

[152]

Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature 1997, 388, 431–432.

[153]

Lai, Y. K.; Huang, J. Y.; Cui, Z. Q.; Ge, M. Z.; Zhang, K. Q.; Chen, Z.; Chi, L. F. Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion. Small 2016, 12, 2203–2224.

[154]

Dong, W. R.; Li, B. C.; Wei, J. F.; Tian, N.; Liang, W. D.; Zhang, J. P. Environmentally friendly, durable, and transparent anti-fouling coatings applicable onto various substrates. J Colloid Interf. Sci. 2021, 591, 429–439.

[155]

Dong, W. R.; Li, B. C.; Wei, J. F.; Liang, W. D.; Zhang, J. P. Durable and transparent super anti-wetting coatings with excellent liquid repellency and anti-fouling performance based on fluorinated polysiloxane. New J. Chem. 2022, 46, 6646–6656.

[156]

Chen, L. W.; Huang, S. L.; Ras, R. H. A.; Tian, X. L. Omniphobic liquid-like surfaces. Nat. Rev. Chem. 2023, 7, 123–137.

[157]

Lhermerout, R.; Davitt, K. Contact angle dynamics on pseudo-brushes: Effects of polymer chain length and wetting liquid. Colloids Surf. A 2019, 566, 148–155.

[158]

Gao, P.; Wang, Y. L.; Wang, H.; Wang, J.; Men, X. H.; Zhang, Z. Z.; Lu, Y. Liquid-like transparent and flexible coatings for anti-graffiti applications. Prog. Org. Coat. 2021, 161, 106476.

[159]

Baidya, A.; Das, S. K.; Pradeep, T. An aqueous composition for lubricant-free, robust, slippery, transparent coatings on diverse substrates. Glob. Chall. 2018, 2, 1700097.

[160]

Lai, Z. R.; Liu, G. J. Facile preparation of a transparent and rollable omniphobic coating with exceptional hardness and wear resistance. ACS Appl. Mater. Interfaces 2022, 14, 35138–35147.

[161]

Lin, S. J.; Li, B.; Xu, Y.; Mehrizi, A. A.; Chen, L. Q. Effective strategies for droplet transport on solid surfaces. Adv. Mater. Interfaces 2021, 8, 2001441.

Publication history
Copyright
Acknowledgements

Publication history

Received: 13 April 2023
Revised: 05 May 2023
Accepted: 12 May 2023
Published: 24 July 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Fundamental Research Funds for the China Postdoctoral Science Foundation (No. 2022M710611), the S&T Special Program of Huzhou (Nos. 2021GZ10 and 2021GZ51), the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province (No. 2021ZYD0046), the Chengdu Science and Technology Bureau (No. 2021-GH02-00105-HZ), the Sichuan Outstanding Young Scholars Foundation (No. 2021JDJQ0013), the Sichuan Science and Technology Program Foundation (Nos. 2021JDRC0016 and 2023JDRC0082), the “Medical and Industrial Cross Foundation” of University of Electronic Science and Technology of China and Sichuan Provincial People’s Hospital (No. ZYGX2021YGLH207), and the “Oncology Medical Engineering Innovation Foundation” project of University of Electronic Science and Technology of China and Sichuan Cancer Hospital (No. ZYGX2021YGCX009).

Return