AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Protein-based nanocarriers for efficient Etoposide delivery and cancer therapy

Bo Wang1,§Xiaoxiong Xu1,§Bo Li2Zheng Wei3,4Shuang Lu3Jingjing Li3Kai Liu2Hongjie Zhang2,3Fan Wang3( )Yang Yang1,5( )
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

§ Bo Wang and Xiaoxiong Xu contributed equally to this work.

Show Author Information

Graphical Abstract

A new type of biosynthetic and unfolded protein nanocarrier was designed and fabricated to load and deliver etoposide. The protein-based nanodrug showed prolonged half-life, higher biocompatibility, superior anti-tumor effect, and low immunogenicity when compared with the pristine drug.

Abstract

Etoposide, a DNA damage-inducing agent, is widely used for malignant tumors. However, insufficient solubility, poor bioavailability and adverse events limited the treatment outcomes and prognosis. To address this, we here developed a novel biosynthetic and unfolded protein nanocarrier to load and deliver Etoposide. Compared with the pristine agent, the loading efficiency of the nanoformulated drug increased four times and the half-life time increased to 17.6 h with controlled release of the Etoposide for 6 days. The half-maximal inhibitory concentration at 48 h was lower than that at 24 h, suggesting a long-acting anti-tumor property. Moreover, the anti-tumor performance in rat models was significantly enhanced by improving solubility and cellular internalization. Additionally, immunogenicity and adverse toxicologic effects such as kidney and liver toxicity were significantly weakened. Therefore, the assembly strategy enables etoposide with higher efficacy, bioavailability, and safety, and has great potential in the comprehensive treatment of malignant tumors.

Electronic Supplementary Material

Download File(s)
12274_2023_5841_MOESM1_ESM.pdf (584.9 KB)

References

[1]

Davey, S. G. Engineering etoposide. Nat. Rev. Chem. 2020, 4, 63–63.

[2]

Al-Ali, A. A. A.; Sandra, L.; Versweyveld, D.; Pijpers, I.; Dillen, L.; Vermeulen, A.; Snoeys, J.; Holm, R.; Nielsen, C. U. High-dose etoposide formulations do not saturate intestinal p-glycoprotein: Development, stability, and pharmacokinetics in sprague-dawley rats. Int. J. Pharm. 2020, 583, 119399.

[3]

Arumugam, S. P.; Balakrishnan, S. B.; Ganesan, V.; Munisamy, M.; Kuppu, S. V.; Narayanan, V.; Baskaralingam, V.; Jeyachandran, S.; Thambusamy, S. In-vitro dissolution and microbial inhibition studies on anticancer drug etoposide with β-cyclodextrin. Mater. Sci. Eng. C 2019, 102, 96–105.

[4]

Zhu, Y. J.; Zhu, R. R.; Wang, M.; Wu, B.; He, X. L.; Qian, Y. C.; Wang, S. L. Anti-metastatic and anti-angiogenic activities of core-shell SiO2@LDH loaded with etoposide in non-small cell lung cancer. Adv. Sci. 2016, 3, 1600229.

[5]

Beauté, L.; McClenaghan, N.; Lecommandoux, S. Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic applications. Adv. Drug Deliv. Rev. 2019, 138, 148–166.

[6]

Abdel-Bar, H. M.; Walters, A. A.; Wang, J. T. W.; Al-Jamal, K. T. Combinatory delivery of etoposide and siCD47 in a lipid polymer hybrid delays lung tumor growth in an experimental melanoma lung metastatic model. Adv. Healthcare Mater. 2021, 10, 2001853.

[7]

Su, J. J.; Lu, S.; Wei, Z.; Li, B.; Li, J. J.; Sun, J.; Liu, K.; Zhang, H. J.; Wang, F. Biocompatible inorganic nanoagent for efficient synergistic tumor treatment with augmented antitumor immunity. Small 2022, 18, 2200897.

[8]

Liu, B.; Gu, X. Q.; Sun, Q. N.; Jiang, S. J.; Sun, J.; Liu, K.; Wang, F.; Wei, Y. Injectable in situ induced robust hydrogel for photothermal therapy and bone fracture repair. Adv. Funct. Mater. 2021, 31, 2010779.

[9]

Liu, B.; Sun, J.; Zhu, J. J.; Li, B.; Ma, C.; Gu, X. Q.; Liu, K.; Zhang, H. J.; Wang, F.; Su, J. J. et al. Injectable and NIR-responsive DNA-inorganic hybrid hydrogels with outstanding photothermal therapy. Adv. Mater. 2020, 32, 2004460.

[10]

Su, J. J.; Lu, S.; Jiang, S. J.; Li, B.; Liu, B.; Sun, Q. N.; Li, J. J.; Wang, F.; Wei, Y. Engineered protein photo-thermal hydrogels for outstanding in situ tongue cancer therapy. Adv. Mater. 2021, 33, 2100619.

[11]

Wang, N.; Cheng, X. J.; Li, N.; Wang, H.; Chen, H. Y. Nanocarriers and their loading strategies. Adv. Healthcare Mater. 2019, 8, 1801002.

[12]

Fenton, O. S.; Olafson, K. N.; Pillai, P. S.; Mitchell, M. J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 2018, 30, 1705328.

[13]

Wei, G. Q.; Wang, Y.; Huang, X. H.; Hou, H. B.; Zhou, S. B. Peptide-based nanocarriers for cancer therapy. Small Methods 2018, 2, 1700358.

[14]

Jiang, Q.; Zhao, S.; Liu, J. B.; Song, L. L.; Wang, Z. G.; Ding, B. Q. Rationally designed DNA-based nanocarriers. Adv. Drug Deliv. Rev. 2019, 147, 2–21.

[15]

Ruman, U.; Fakurazi, S.; Masarudin, M. J.; Hussein, M. Z. Nanocarrier-based therapeutics and theranostics drug delivery systems for next generation of liver cancer nanodrug modalities. Int. J. Nanomedicine 2020, 15, 1437–1456.

[16]

Li, Y. X.; Sun, J.; Li, J. J.; Liu, K.; Zhang, H. J. Engineered protein nanodrug as an emerging therapeutic tool. Nano Res. 2022, 15, 5161–5172.

[17]

Bunschoten, A.; Buckle, T.; Kuil, J.; Luker, G. D.; Luker, K. E.; Nieweg, O. E.; Van Leeuwen, F. W. B. Targeted non-covalent self-assembled nanoparticles based on human serum albumin. Biomaterials 2012, 33, 867–875.

[18]

Pitek, A. S.; Jameson, S. A.; Veliz, F. A.; Shukla, S.; Steinmetz, N. F. Serum albumin ‘camouflage’ of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials 2016, 89, 89–97.

[19]

Su, J. J.; Liu, B. M.; He, H. N.; Ma, C.; Wei, B.; Li, M.; Li, J. J.; Wang, F.; Sun, J.; Liu, K. et al. Engineering high strength and super-toughness of unfolded structural proteins and their extraordinary anti-adhesion performance for abdominal hernia repair. Adv. Mater. 2022, 34, 2200842.

[20]

Zhao, K. L.; Liu, Y. W.; Ren, Y. B.; Li, B.; Li, J. J.; Wang, F.; Ma, C.; Ye, F. F.; Sun, J.; Zhang, H. J. et al. Molecular engineered crown-ether-protein with strong adhesion over a wide temperature range from -196 to 200 °C. Angew. Chem., Int. Ed. 2022, 61, e202207425.

[21]

Wang, Z. L.; Gu, X. Q.; Li, B.; Li, J. J.; Wang, F.; Sun, J.; Zhang, H. J.; Liu, K.; Guo, W. S. Molecularly engineered protein glues with superior adhesion performance. Adv. Mater. 2022, 34, 2204590.

[22]

Zhang, P.; Li, J. J.; Sun, J.; Li, Y. X.; Liu, K.; Wang, F.; Zhang, H. J.; Su, J. J. Bioengineered protein fibers with anti-freezing mechanical behaviors. Adv. Funct. Mater. 2022, 32, 2209006.

[23]

Wei, Z.; Sun, J.; Lu, S.; Liu, Y. W.; Wang, B.; Zhao, L.; Wang, Z. L.; Liu, K.; Li, J. J.; Su, J. J. et al. An engineered protein-Au bioplaster for efficient skin tumor therapy. Adv. Mater. 2022, 34, 2110062.

[24]

Li, J. J.; Li, B.; Sun, J.; Ma, C.; Wan, S. K.; Li, Y. X.; Göstl, R.; Herrmann, A.; Liu, K.; Zhang, H. J. Engineered near-infrared fluorescent protein assemblies for robust bioimaging and therapeutic applications. Adv. Mater. 2020, 32, 2000964.

[25]

Wan, S. K.; Cheng, W. H.; Li, J. J.; Wang, F.; Xing, X. W.; Sun, J.; Zhang, H. J.; Liu, K. Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks. Nano Res. 2022, 15, 9192–9198.

[26]

Zhao, X. Y.; Li, X.; Li, B.; Sun, Y.; Shi, Y. J.; Shen, H. X.; Wang, F.; Li, J. J.; Sharopov, F.; Mukhiddinov, Z. et al. A robust protein-peptide co-assembling nanoformulation (PePCAN) platform with significant cell-entry characteristics for targeted cancer therapy. Chem. Eng. J. 2023, 453, 139886.

[27]

Zhao, L.; Gu, X. Q.; Jiang, F. Q.; Li, B.; Lu, S.; Wang, F.; Sun, Y.; Liu, K.; Li, J. J. Long-lasting proteinaceous nanoformulation for tumor imaging and therapy. ACS Omega 2022, 7, 31299–31308.

[28]

Su, J. J.; Sun, Q. N.; Lin, S.; Lu, S.; Zhang, Q.; Li, Y. X.; Li, B.; Sun, Y.; Liu, K.; Zhang, H. J. et al. Biosynthetic and unfolded protein nanocarriers for chemotherapeutic drugs in oral cancers: Improved bioavailability and safety of chemotherapeutics. Adv. Funct. Mater. 2022, 32, 2204271.

[29]

Ma, C.; Li, B.; Zhang, J. R.; Sun, Y.; Li, J. J.; Zhou, H. C.; Shen, J. L.; Gu, R.; Qian, J. C.; Fan, C. H. et al. Significantly improving the bioefficacy for rheumatoid arthritis with supramolecular nanoformulations. Adv. Mater. 2021, 33, 2100098.

[30]

Wang, S. D.; Li, B.; Zhang, H. L.; Chen, J. Y.; Sun, X.; Xu, J.; Ren, T. T.; Zhang, Y. Y.; Ma, C.; Guo, W. et al. Improving bioavailability of hydrophobic prodrugs through supramolecular nanocarriers based on recombinant proteins for osteosarcoma treatment. Angew. Chem., Int. Ed. 2021, 60, 11252–11256.

[31]

Wang, C. Y.; Zhang, J. R.; Li, B.; Zuo, J. L.; Li, Y. X.; Sun, Y.; Wang, F.; Liu, K.; Li, J. J. High-efficiency treatment for osteoarthritis via self-assembled dual-functionalized nanobiologics. ACS Biomater. Sci. Eng. 2022, 8, 3320–3328.

[32]

Zhang, J. R.; Sun, Y.; Qu, Q.; Li, B.; Zhang, L. L.; Gu, R.; Zuo, J. L.; Wei, W.; Ma, C.; Liu, L. et al. Engineering non-covalently assembled protein nanoparticles for long-acting gouty arthritis therapy. J. Mater. Chem. B 2021, 9, 9923–9931.

[33]

Golombek, S. K.; May, J. N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018, 130, 17–38.

[34]

Izci, M.; Maksoudian, C.; Manshian, B. B.; Soenen, S. J. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem. Rev. 2021, 121, 1746–1803.

[35]

Lázaro, I. A.; Haddad, S.; Sacca, S.; Orellana-Tavra, C.; Fairen-Jimenez, D.; Forgan, R. S. Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery. Chem 2017, 2, 561–578.

[36]

You, X. R.; Wang, L. Y.; Wang, L.; Wu, J. Rebirth of aspirin synthesis by-product: Prickly poly(salicylic acid) nanoparticles as self-anticancer drug carrier. Adv. Funct. Mater. 2021, 31, 2100805.

[37]

Sengupta, S.; Tyagi, P.; Chandra, S.; Kochupillai, V.; Gupta, S. K. Encapsulation in cationic liposomes enhances antitumour efficacy and reduces the toxicity of etoposide, a topo-isomerase II inhibitor. Pharmacology 2001, 62, 163–171.

[38]

Zhu, J. W.; Chen, J. T.; Song, D. M.; Zhang, W. D.; Guo, J. P.; Cai, G. P.; Ren, Y. H.; Wan, C. Y.; Kong, L. Y.; Yu, W. Y. Real-time monitoring of etoposide prodrug activated by hydrogen peroxide with improved safety. J. Mater. Chem. B 2019, 7, 7548–7557.

Nano Research
Pages 11216-11220
Cite this article:
Wang B, Xu X, Li B, et al. Protein-based nanocarriers for efficient Etoposide delivery and cancer therapy. Nano Research, 2023, 16(8): 11216-11220. https://doi.org/10.1007/s12274-023-5841-5
Topics:

1081

Views

8

Crossref

7

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 03 April 2023
Revised: 11 May 2023
Accepted: 12 May 2023
Published: 09 June 2023
© Tsinghua University Press 2023
Return