Journal Home > Volume 17 , Issue 2

Extracellular vesicles are nano- to micro-scale, membrane-bound particles released by cells into extracellular space, and act as carriers of biomarkers and therapeutics, holding promising potential in translational medicine. However, the challenges remain in handling and detecting extracellular vesicles for disease diagnosis as well as exploring their therapeutic capability for disease treatment. Here, we review the recent engineering and technology advances by leveraging the power of sound waves to address the challenges in diagnostic and therapeutic applications of extracellular vesicles and biomimetic nanovesicles. We first introduce the fundamental principles of sound waves for understanding different acoustic-assisted extracellular vesicle technologies. We discuss the acoustic-assisted diagnostic methods including the purification, manipulation, biosensing, and bioimaging of extracellular vesicles. Then, we summarize the recent advances in acoustically enhanced therapeutics using extracellular vesicles and biomimetic nanovesicles. Finally, we provide perspectives into current challenges and future clinical applications of the promising extracellular vesicles and biomimetic nanovesicles powered by sound.


menu
Abstract
Full text
Outline
About this article

Exploiting sound for emerging applications of extracellular vesicles

Show Author's information Zhuhao WuHongwei CaiChunhui TianZheng AoLei JiangFeng Guo( )
Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, USA

Abstract

Extracellular vesicles are nano- to micro-scale, membrane-bound particles released by cells into extracellular space, and act as carriers of biomarkers and therapeutics, holding promising potential in translational medicine. However, the challenges remain in handling and detecting extracellular vesicles for disease diagnosis as well as exploring their therapeutic capability for disease treatment. Here, we review the recent engineering and technology advances by leveraging the power of sound waves to address the challenges in diagnostic and therapeutic applications of extracellular vesicles and biomimetic nanovesicles. We first introduce the fundamental principles of sound waves for understanding different acoustic-assisted extracellular vesicle technologies. We discuss the acoustic-assisted diagnostic methods including the purification, manipulation, biosensing, and bioimaging of extracellular vesicles. Then, we summarize the recent advances in acoustically enhanced therapeutics using extracellular vesicles and biomimetic nanovesicles. Finally, we provide perspectives into current challenges and future clinical applications of the promising extracellular vesicles and biomimetic nanovesicles powered by sound.

Keywords: exosomes, therapeutics, biomimetic nanovesicles, extracellular vesicles, acoustics, disease diagnostics

References(228)

[1]

Willms, E.; Cabañas, C.; Mäger, I.; Wood, M. J. A.; Vader, P. Extracellular vesicle heterogeneity: Subpopulations, isolation techniques, and diverse functions in cancer progression. Front. Immunol. 2018, 9, 738.

[2]

Hessvik, N. P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 2018, 75, 193–208.

[3]

Rodrigues, M.; Fan, J.; Lyon, C.; Wan, M. H.; Hu, Y. Role of extracellular vesicles in viral and bacterial infections: Pathogenesis, diagnostics, and therapeutics. Theranostics 2018, 8, 2709–2721.

[4]

Cheng, L.; Hill, A. F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov. 2022, 21, 379–399.

[5]
Debnath, K.; Las Heras, K.; Rivera, A.; Lenzini, S.; Shin, J. W. Extracellular vesicle–matrix interactions. Nat. Rev. Mater., in press, https://doi.org/10.1038/s41578-023-00551-3.
DOI
[6]

Zhu, Q. F.; Huang, L.; Yang, Q. S.; Ao, Z.; Yang, R.; Krzesniak, J.; Lou, D. D.; Hu, L.; Dai, X. D.; Guo, F. et al. Metabolomic analysis of exosomal-markers in esophageal squamous cell carcinoma. Nanoscale 2021, 13, 16457–16464.

[7]

Zhu, Q. F.; Cheng, L. M.; Deng, C. Y.; Huang, L.; Li, J. Y.; Wang, Y.; Li, M.; Yang, Q. S.; Dong, X. J.; Su, J. Z. et al. The genetic source tracking of human urinary exosomes. Proc. Natl. Acad. Sci. USA 2021, 118, e2108876118.

[8]

Wan, Y.; Liu, B.; Lei, H.; Zhang, B.; Wang, Y.; Huang, H.; Chen, S.; Feng, Y.; Zhu, L.; Gu, Y. et al. Nanoscale extracellular vesicle-derived DNA is superior to circulating cell-free DNA for mutation detection in early-stage non-small-cell lung cancer. Ann. Oncol. 2018, 29, 2379–2383.

[9]

Guo, F.; French, J. B.; Li, P.; Zhao, H.; Chan, C. Y.; Fick, J. R.; Benkovic, S. J.; Huang, T. J. Probing cell–cell communication with microfluidic devices. Lab Chip 2013, 13, 3152–3162.

[10]

Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.

[11]

van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228.

[12]

Pegtel, D. M.; Gould, S. J. Exosomes. Annu. Rev. Biochem. 2019, 88, 487–514.

[13]

Molinaro, R.; Corbo, C.; Martinez, J. O.; Taraballi, F.; Evangelopoulos, M.; Minardi, S.; Yazdi, I. K.; Zhao, P.; De Rosa, E.; Sherman, M. B. et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat. Mater. 2016, 15, 1037–1046.

[14]

Zhao, C. C.; Pan, Y. W.; Yu, G. C.; Zhao, X. Z.; Chen, X. Y.; Rao, L. Vesicular antibodies: Shedding light on antibody therapeutics with cell membrane nanotechnology. Adv. Mater. 2023, 35, 2207875.

[15]

Shapiro, M. G.; Goodwill, P. W.; Neogy, A.; Yin, M.; Foster, F. S.; Schaffer, D. V.; Conolly, S. M. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotechnol. 2014, 9, 311–316.

[16]

Pfeifer, F. Recent advances in the study of gas vesicle proteins and application of gas vesicles in biomedical research. Life 2022, 12, 1455.

[17]

Schnell, C. Gas vesicles enable ultrasound imaging. Nat. Methods 2018, 15, 159.

[18]

Yang, S. K.; Guo, F.; Kiraly, B.; Mao, X. L.; Lu, M. Q.; Leong, K. W.; Huang, T. J. Microfluidic synthesis of multifunctional Janus particles for biomedical applications. Lab Chip 2012, 12, 2097–2102.

[19]

Wang, H.; Liu, K.; Chen, K. J.; Lu, Y. J.; Wang, S. T.; Lin, W. Y.; Guo, F.; Kamei, K. I.; Chen, Y. C.; Ohashi, M. et al. A rapid pathway toward a superb gene delivery system: Programming structural and functional diversity into a supramolecular nanoparticle library. ACS Nano 2010, 4, 6235–6243.

[20]

Gangadaran, P.; Hong, C. M.; Ahn, B. C. An update on in vivo imaging of extracellular vesicles as drug delivery vehicles. Front. Pharmacol. 2018, 9, 169.

[21]

Liang, Y. J.; Duan, L.; Lu, J. P.; Xia, J. Engineering exosomes for targeted drug delivery. Theranostics 2021, 11, 3183–3195.

[22]

Batrakova, E. V.; Kim, M. S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release 2015, 219, 396–405.

[23]

Cheng, G.; Li, W. Q.; Ha, L.; Han, X. H.; Hao, S. J.; Wan, Y.; Wang, Z. G.; Dong, F. P.; Zou, X.; Mao, Y. W. et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins. J. Am. Chem. Soc. 2018, 140, 7282–7291.

[24]

Tian, Y. H.; Li, S. P.; Song, J.; Ji, T. J.; Zhu, M. T.; Anderson, G. J.; Wei, J. Y.; Nie, G. J. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014, 35, 2383–2390.

[25]

Liang, Y. J.; Xu, X.; Li, X. F.; Xiong, J. Y.; Li, B. Q.; Duan, L.; Wang, D. P.; Xia, J. Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. ACS Appl. Mater. Interfaces 2020, 12, 36938–36947.

[26]

Jia, G.; Han, Y.; An, Y. L.; Ding, Y. N.; He, C.; Wang, X. H.; Tang, Q. S. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 2018, 178, 302–316.

[27]

Fitts, C. A.; Ji, N.; Li, Y. S.; Tan, C. Exploiting exosomes in cancer liquid biopsies and drug delivery. Adv. Healthc. Mater. 2019, 8, 1801268.

[28]

Yeo, R. W. Y.; Lai, R. C.; Zhang, B.; Tan, S. S.; Yin, Y. J.; Teh, B. J.; Lim, S. K. Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 336–341.

[29]

Rufo, J.; Zhang, P. R.; Zhong, R. Y.; Lee, L. P.; Huang, T. J. A sound approach to advancing healthcare systems: The future of biomedical acoustics. Nat. Commun. 2022, 13, 3459.

[30]

Ozcelik, A.; Rufo, J.; Guo, F.; Gu, Y. Y.; Li, P.; Lata, J.; Huang, T. J. Acoustic tweezers for the life sciences. Nat. Methods 2018, 15, 1021–1028.

[31]

Xu, J. H.; Cai, H. W.; Wu, Z. H.; Li, X.; Tian, C. H.; Ao, Z.; Niu, V. C.; Xiao, X.; Jiang, L.; Khodoun, M. et al. Acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand management of acute disease. Nat. Commun. 2023, 14, 869.

[32]

Guo, F.; Mao, Z. M.; Chen, Y. C.; Xie, Z. W.; Lata, J. P.; Li, P.; Ren, L. Q.; Liu, J. Y.; Yang, J.; Dao, M. et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl. Acad. Sci. USA 2016, 113, 1522–1527.

[33]

Guo, F.; Li, P.; French, J. B.; Mao, Z. M.; Zhao, H.; Li, S. X.; Nama, N.; Fick, J. R.; Benkovic, S. J.; Huang, T. J. Controlling cell–cell interactions using surface acoustic waves. Proc. Natl. Acad. Sci. USA 2015, 112, 43–48.

[34]

Wu, Z. H.; Pan, M. D.; Wang, J. L.; Wen, B. J.; Lu, L.; Ren, H. Z. Acoustofluidics for cell patterning and tissue engineering. Eng. Regener. 2022, 3, 397–406.

[35]

Ao, Z.; Wu, Z. H.; Cai, H. W.; Hu, L. Y.; Li, X.; Kaurich, C.; Chang, J.; Gu, M. X.; Cheng, L.; Lu, X. et al. Rapid profiling of tumor–immune interaction using acoustically assembled patient-derived cell clusters. Adv. Sci. 2022, 9, 2201478.

[36]

Athanassiadis, A. G.; Ma, Z. C.; Moreno-Gomez, N.; Melde, K.; Choi, E.; Goyal, R.; Fischer, P. Ultrasound-responsive systems as components for smart materials. Chem. Rev. 2022, 122, 5165–5208.

[37]

Armstrong, J. P. K.; Puetzer, J. L.; Serio, A.; Guex, A. G.; Kapnisi, M.; Breant, A.; Zong, Y. F.; Assal, V.; Skaalure, S. C.; King, O. et al. Engineering anisotropic muscle tissue using acoustic cell patterning. Adv. Mater. 2018, 30, 1802649.

[38]

Ao, Z.; Cai, H. W.; Wu, Z. H.; Ott, J.; Wang, H. L.; Mackie, K.; Guo, F. Controllable fusion of human brain organoids using acoustofluidics. Lab Chip 2021, 21, 688–699.

[39]

Liu, H. Q.; Ao, Z.; Cai, B.; Shu, X.; Chen, K. K.; Rao, L.; Luo, C. L.; Wang, F. B.; Liu, W.; Bondesson, M. et al. Size-amplified acoustofluidic separation of circulating tumor cells with removable microbeads. Nano Futures 2018, 2, 025004.

[40]

Lata, J. P.; Guo, F.; Guo, J. S.; Huang, P. H.; Yang, J.; Huang, T. J. Surface acoustic waves grant superior spatial control of cells embedded in hydrogel fibers. Adv. Mater. 2016, 28, 8632–8638.

[41]

Chen, B.; Wu, Y.; Ao, Z.; Cai, H. W.; Nunez, A.; Liu, Y. H.; Foley, J.; Nephew, K.; Lu, X. B.; Guo, F. High-throughput acoustofluidic fabrication of tumor spheroids. Lab Chip 2019, 19, 1755–1763.

[42]

Guo, F.; Zhou, W. J.; Li, P.; Mao, Z. M.; Yennawar, N. H.; French, J. B.; Huang, T. J. Precise manipulation and patterning of protein crystals for macromolecular crystallography using surface acoustic waves. Small 2015, 11, 2733–2737.

[43]

Ding, X. Y.; Li, P.; Lin, S. C. S.; Stratton, Z. S.; Nama, N.; Guo, F.; Slotcavage, D.; Mao, X. L.; Shi, J. J.; Costanzo, F. et al. Surface acoustic wave microfluidics. Lab Chip 2013, 13, 3626–3649.

[44]

Cai, H. W.; Wu, Z. H.; Ao, Z.; Nunez, A.; Chen, B.; Jiang, L.; Bondesson, M.; Guo, F. Trapping cell spheroids and organoids using digital acoustofluidics. Biofabrication 2020, 12, 035025.

[45]

Marzo, A.; Drinkwater, B. W. Holographic acoustic tweezers. Proc. Natl. Acad. Sci. USA 2019, 116, 84–89.

[46]

Marzo, A.; Seah, S. A.; Drinkwater, B. W.; Sahoo, D. R.; Long, B.; Subramanian, S. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 2015, 6, 8661.

[47]

Cai, H. W.; Ao, Z.; Wu, Z. H.; Song, S.; Mackie, K.; Guo, F. Intelligent acoustofluidics enabled mini-bioreactors for human brain organoids. Lab Chip 2021, 21, 2194–2205.

[48]

Wu, M. X.; Mao, Z. M.; Chen, K. J.; Bachman, H.; Chen, Y. C.; Rufo, J.; Ren, L. Q.; Li, P.; Wang, L.; Huang, T. J. Acoustic separation of nanoparticles in continuous flow. Adv. Funct. Mater. 2017, 27, 1606039.

[49]

Bruus, H.; Dual, J.; Hawkes, J.; Hill, M.; Laurell, T.; Nilsson, J.; Radel, S.; Sadhal, S.; Wiklund, M. Forthcoming lab on a chip tutorial series on acoustofluidics: Acoustofluidics—Exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 2011, 11, 3579–3580.

[50]

Lenshof, A.; Magnusson, C.; Laurell, T. Acoustofluidics 8: Applications of acoustophoresis in continuous flow microsystems. Lab Chip 2012, 12, 1210–1223.

[51]

Collins, D. J.; Ma, Z. C.; Han, J.; Ai, Y. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Lab Chip 2017, 17, 91–103.

[52]

Li, J. F.; Crivoi, A.; Peng, X. Y.; Shen, L.; Pu, Y. J.; Fan, Z.; Cummer, S. A. Three dimensional acoustic tweezers with vortex streaming. Commun. Phys. 2021, 4, 113.

[53]

Liu, Y. C.; Bai, L. M.; Guo, K. L.; Jia, Y. L.; Zhang, K.; Liu, Q. H.; Wang, P.; Wang, X. B. Focused ultrasound-augmented targeting delivery of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy. Theranostics 2019, 9, 5261–5281.

[54]

Liu, K.; Deng, Y. L.; Zhang, N. G.; Li, S. Z.; Ding, H. J.; Guo, F.; Liu, W.; Guo, S. S.; Zhao, X. Z. Generation of disk-like hydrogel beads for cell encapsulation and manipulation using a droplet-based microfluidic device. Microfluid. Nanofluid. 2012, 13, 761–767.

[55]

Zhao, L. B.; Li, S. Z.; Hu, H.; Guo, Z. X.; Guo, F.; Zhang, N. G.; Ji, X. H.; Liu, W.; Liu, K.; Guo, S. S. et al. A novel method for generation of amphiphilic PDMS particles by selective modification. Microfluid. Nanofluid. 2011, 10, 453–458.

[56]

Ji, X. H.; Zhang, N. G.; Cheng, W.; Guo, F.; Liu, W.; Guo, S. S.; He, Z. K.; Zhao, X. Z. Integrated parallel microfluidic device for simultaneous preparation of multiplex optical-encoded microbeads with distinct quantum dot barcodes. J. Mater. Chem. 2011, 21, 13380–13387.

[57]

Ji, X. H.; Cheng, W.; Guo, F.; Liu, W.; Guo, S. S.; He, Z. K.; Zhao, X. Z. On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system. Lab Chip 2011, 11, 2561–2568.

[58]

Guo, F.; Liu, K.; Ji, X. H.; Ding, H. J.; Zhang, M.; Zeng, Q.; Liu, W.; Guo, S. S.; Zhao, X. Z. Valve-based microfluidic device for droplet on-demand operation and static assay. Appl. Phys. Lett. 2010, 97, 233701.

[59]

Guo, F.; Ji, X. H.; Liu, K.; He, R. X.; Zhao, L. B.; Guo, Z. X.; Liu, W.; Guo, S. S.; Zhao, X. Z. Droplet electric separator microfluidic device for cell sorting. Appl. Phys. Lett. 2010, 96, 193701.

[60]

Guo, F.; Li, S. X.; Caglar, M. U.; Mao, Z. M.; Liu, W.; Woodman, A.; Arnold, J. J.; Wilke, C. O.; Huang, T. J.; Cameron, C. E. Single-cell virology: On-chip investigation of viral infection dynamics. Cell Rep. 2017, 21, 1692–1704.

[61]

Liu, K.; Lepin, E. J.; Wang, M. W.; Guo, F.; Lin, W. Y.; Chen, Y. C.; Sirk, S. J.; Olma, S.; Phelps, M. E.; Zhao, X. Z. et al. Microfluidic-based 18F-labeling of biomolecules for immuno-positron emission tomography. Mol. Imaging 2011, 10, 168–176.

[62]

He, Z. B.; Guo, F.; Feng, C.; Cai, B.; Lata, J. P.; He, R. X.; Huang, Q. Q.; Yu, X. L.; Rao, L.; Liu, H. Q. et al. Fetal nucleated red blood cell analysis for non-invasive prenatal diagnostics using a nanostructure microchip. J. Mater. Chem. B 2017, 5, 226–235.

[63]

Chen, J. C.; Li, P. L.; Zhang, T. Y.; Xu, Z. P.; Huang, X. W.; Wang, R. M.; Du, L. T. Review on strategies and technologies for exosome isolation and purification. Front. Bioeng. Biotechnol. 2022, 9, 811971.

[64]

Hammarström, B.; Laurell, T.; Nilsson, J. Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems. Lab Chip 2012, 12, 4296–4304.

[65]

Mao, Z. M.; Li, P.; Wu, M. X.; Bachman, H.; Mesyngier, N.; Guo, X. S.; Liu, S.; Costanzo, F.; Huang, T. J. Enriching nanoparticles via acoustofluidics. ACS Nano 2017, 11, 603–612.

[66]

Zhang, Y. L.; Yang, F.; Sun, Z. Y.; Li, Y. T.; Zhang, G. J. A surface acoustic wave biosensor synergizing DNA-mediated in situ silver nanoparticle growth for a highly specific and signal-amplified nucleic acid assay. Analyst 2017, 142, 3468–3476.

[67]

Sawyer, D. P.; Bar-Zion, A.; Farhadi, A.; Shivaei, S.; Ling, B.; Lee-Gosselin, A.; Shapiro, M. G. Ultrasensitive ultrasound imaging of gene expression with signal unmixing. Nat. Methods 2021, 18, 945–952.

[68]

Bourdeau, R. W.; Lee-Gosselin, A.; Lakshmanan, A.; Farhadi, A.; Kumar, S. R.; Nety, S. P.; Shapiro, M. G. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature 2018, 553, 86–90.

[69]

Smyth, T.; Kullberg, M.; Malik, N.; Smith-Jones, P.; Graner, M. W.; Anchordoquy, T. J. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J. Control. Release 2015, 199, 145–155.

[70]

Hu, C. M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985.

[71]

Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

[72]

Zhang, Z. X.; Wang, Y. Y.; Zhang, H. X.; Tang, Z. F.; Liu, W. P.; Lu, Y.; Wang, Z. F.; Yang, H. T.; Pang, W.; Zhang, H. et al. Hypersonic poration: A new versatile cell poration method to enhance cellular uptake using a piezoelectric nano-electromechanical device. Small 2017, 13, 1602962.

[73]

Esteban-Fernández de Ávila, B.; Gao, W. W.; Karshalev, E.; Zhang, L. F.; Wang, J. Cell-like micromotors. Acc. Chem. Res. 2018, 51, 1901–1910.

[74]

Lu, Y.; de Vries, W. C.; Overeem, N. J.; Duan, X. X.; Zhang, H. X.; Zhang, H.; Pang, W.; Ravoo, B. J.; Huskens, J. Controlled and tunable loading and release of vesicles by using gigahertz acoustics. Angew. Chem., Int. Ed. 2019, 58, 159–163.

[75]

Kahlert, C.; Kalluri, R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J. Mol. Med. 2013, 91, 431–437.

[76]

McAndrews, K. M.; Kalluri, R. Mechanisms associated with biogenesis of exosomes in cancer. Mol. Cancer 2019, 18, 52.

[77]

Ciardiello, C.; Cavallini, L.; Spinelli, C.; Yang, J. L.; Reis-Sobreiro, M.; de Candia, P.; Minciacchi, V. R.; Di Vizio, D. Focus on extracellular vesicles: New frontiers of cell-to-cell communication in cancer. Int. J. Mol. Sci. 2016, 17, 175.

[78]

Rao, L.; Wu, L.; Liu, Z. D.; Tian, R.; Yu, G. C.; Zhou, Z. J.; Yang, K. K.; Xiong, H. G.; Zhang, A. L.; Yu, G. T. et al. Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nat. Commun. 2020, 11, 4909.

[79]

Qi, S. L.; Zhang, H. Y.; Zhang, X. Y.; Yu, X. Y.; Wang, Y. J.; Meng, Q. F.; Yang, K.; Bai, B.; Tian, R.; Zhu, S. J. et al. Supramolecular engineering of cell membrane vesicles for cancer immunotherapy. Sci. Bull. 2022, 67, 1898–1909.

[80]

Wu, Z. H.; Ao, Z.; Cai, H. W.; Li, X.; Chen, B.; Tu, H. L.; Wang, Y. J.; Lu, R. O.; Gu, M. X.; Cheng, L. et al. Acoustofluidic assembly of primary tumor-derived organotypic cell clusters for rapid evaluation of cancer immunotherapy. J. Nanobiotechnol. 2023, 21, 40.

[81]

Haney, M. J.; Klyachko, N. L.; Zhao, Y. L.; Gupta, R.; Plotnikova, E. G.; He, Z. J.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A. V. et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release 2015, 207, 18–30.

[82]

Kim, T.; Kim, H. J.; Choi, W.; Lee, Y. M.; Pyo, J. H.; Lee, J.; Kim, J.; Kim, J.; Kim, J. H.; Kim, C. et al. Deep brain stimulation by blood-brain-barrier-crossing piezoelectric nanoparticles generating current and nitric oxide under focused ultrasound. Nat. Biomed. Eng. 2023, 7, 149–163.

[83]

Zheng, M. N.; Huang, M.; Ma, X. Y.; Chen, H. Z.; Gao, X. L. Harnessing exosomes for the development of brain drug delivery systems. Bioconjug. Chem. 2019, 30, 994–1005.

[84]

Cai, H. W.; Ao, Z.; Hu, L. Y.; Moon, Y.; Wu, Z. H.; Lu, H. C.; Kim, J.; Guo, F. Acoustofluidic assembly of 3D neurospheroids to model Alzheimer’s disease. Analyst 2020, 145, 6243–6253.

[85]

Wang, J. Q.; Li, Z. Z.; Pan, M.; Fiaz, M.; Hao, Y. S.; Yan, Y. R.; Sun, L. T.; Yan, F. Ultrasound-mediated blood-brain barrier opening: An effective drug delivery system for theranostics of brain diseases. Adv. Drug Deliv. Rev. 2022, 190, 114539.

[86]

Qin, Y.; Geng, X. R.; Sun, Y.; Zhao, Y. T.; Chai, W. Y.; Wang, X. B.; Wang, P. Ultrasound nanotheranostics: Toward precision medicine. J. Control. Release 2023, 353, 105–124.

[87]

Rufo, J.; Cai, F. Y.; Friend, J.; Wiklund, M.; Huang, T. J. Acoustofluidics for biomedical applications. Nat. Rev. Methods Primers 2022, 2, 30.

[88]

Melde, K.; Mark, A. G.; Qiu, T.; Fischer, P. Holograms for acoustics. Nature 2016, 537, 518–522.

[89]

Zhang, P. R.; Bachman, H.; Ozcelik, A.; Huang, T. J. Acoustic microfluidics. Annu. Rev. Anal. Chem. 2020, 13, 17–43.

[90]

Li, S. X.; Guo, F.; Chen, Y. C.; Ding, X. Y.; Li, P.; Wang, L.; Cameron, C. E.; Huang, T. J. Standing surface acoustic wave based cell coculture. Anal. Chem. 2014, 86, 9853–9859.

[91]

Mao, Z. M.; Xie, Y. L.; Guo, F.; Ren, L. Q.; Huang, P. H.; Chen, Y. C.; Rufo, J.; Costanzo, F.; Huang, T. J. Experimental and numerical studies on standing surface acoustic wave microfluidics. Lab Chip 2016, 16, 515–524.

[92]

Chen, K. J.; Wu, M. X.; Guo, F.; Li, P.; Chan, C. Y.; Mao, Z. M.; Li, S. X.; Ren, L. Q.; Zhang, R.; Huang, T. J. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Lab Chip 2016, 16, 2636–2643.

[93]

Barnkob, R.; Augustsson, P.; Laurell, T.; Bruus, H. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Phys. Rev. E 2012, 86, 056307.

[94]

Dalecki, D. Mechanical bioeffects of ultrasound. Annu. Rev. Biomed. Eng. 2004, 6, 229–248.

[95]

Zeng, Q.; Guo, F.; Yao, L.; Zhu, H. W.; Zheng, L.; Guo, Z. X.; Liu, W.; Chen, Y.; Guo, S. S.; Zhao, X. Z. Milliseconds mixing in microfluidic channel using focused surface acoustic wave. Sens. Actuat. B: Chem. 2011, 160, 1552–1556.

[96]

Bruus, H. Acoustofluidics 7: The acoustic radiation force on small particles. Lab Chip 2012, 12, 1014–1021.

[97]

Collins, D. J.; Morahan, B.; Garcia-Bustos, J.; Doerig, C.; Plebanski, M.; Neild, A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 2015, 6, 8686.

[98]

Cai, H. W.; Ao, Z.; Wu, Z. H.; Nunez, A.; Jiang, L.; Carpenter, R. L.; Nephew, K. P.; Guo, F. Profiling cell-matrix adhesion using digitalized acoustic streaming. Anal. Chem. 2020, 92, 2283–2290.

[99]

Wu, Z. H.; Cai, H. W.; Ao, Z.; Nunez, A.; Liu, H. C.; Bondesson, M.; Guo, S. S.; Guo, F. A digital acoustofluidic pump powered by localized fluid–substrate interactions. Anal. Chem. 2019, 91, 7097–7103.

[100]

Chen, Y. C.; Ding, X. Y.; Lin, S. C. S.; Yang, S. K.; Huang, P. H.; Nama, N.; Zhao, Y. H.; Nawaz, A. A.; Guo, F.; Wang, W. et al. Tunable nanowire patterning using standing surface acoustic waves. ACS Nano 2013, 7, 3306–3314.

[101]

Ren, L. Q.; Chen, Y. C.; Li, P.; Mao, Z. M.; Huang, P. H.; Rufo, J.; Guo, F.; Wang, L.; McCoy, J. P.; Levine, S. J. et al. A high-throughput acoustic cell sorter. Lab Chip 2015, 15, 3870–3879.

[102]

Ashokkumar, M. The characterization of acoustic cavitation bubbles—An overview. Ultrason. Sonochem. 2011, 18, 864–872.

[103]

Crum, L. A.; Fowlkes, J. B. Acoustic cavitation generated by microsecond pulses of ultrasound. Nature 1986, 319, 52–54.

[104]

Brotchie, A.; Grieser, F.; Ashokkumar, M. Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phys. Rev. Lett. 2009, 102, 084302.

[105]

Xu, J. H.; Tu, H. L.; Ao, Z.; Chen, Y. F.; Danehy, R.; Guo, F. Acoustic disruption of tumor endothelium and on-demand drug delivery for cancer chemotherapy. Nanotechnology 2019, 30, 154001.

[106]

Przystupski, D.; Ussowicz, M. Landscape of cellular bioeffects triggered by ultrasound-induced sonoporation. Int. J. Mol. Sci. 2022, 23, 11222.

[107]

Kramer, J. F. Ultrasound: Evaluation of its mechanical and thermal effects. Arch. Phys. Med. Rehabil. 1984, 65, 223–227.

[108]

Nazarzadeh, E.; Sajjadi, S. Thermal effects in nanoemulsification by ultrasound. Ind. Eng. Chem. Res. 2013, 52, 9683–9689.

[109]

Suslick, K. S.; Didenko, Y.; Fang, M. M.; Hyeon, T.; Kolbeck, K. J.; McNamara, W. B.; Mdleleni, M. M.; Wong, M. Acoustic cavitation and its chemical consequences. Philos. Trans. Roy. Soc. A: Math., Phys. Eng. Sci. 1999, 357, 335–353.

[110]

Suslick, K. S. Sonochemistry. Science 1990, 247, 1439–1445.

[111]

Mason, T. J. Sonochemistry and sonoprocessing: The link, the trends, and (probably) the future. Ultrason. Sonochem. 2003, 10, 175–179.

[112]

Xie, Y. L.; Zhao, C. L.; Zhao, Y. H.; Li, S. X.; Rufo, J.; Yang, S. K.; Guo, F.; Huang, T. J. Optoacoustic tweezers: A programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles. Lab Chip 2013, 13, 1772–1779.

[113]

de Jong, N.; Ten Cate, F. J.; Lancée, C. T.; Roelandt, J. R. T. C.; Bom, N. Principles and recent developments in ultrasound contrast agents. Ultrasonics 1991, 29, 324–330.

[114]

Frinking, P. J. A.; Bouakaz, A.; Kirkhorn, J.; Ten Cate, F. J.; de Jong, N. Ultrasound contrast imaging: Current and new potential methods. Ultrasound Med. Biol. 2000, 26, 965–975.

[115]

Sehgal, C. M.; Greenleaf, J. F. Scattering of ultrasound by tissues. Ultrason. Imaging 1984, 6, 60–80.

[116]

Manbachi, A.; Cobbold, R. S. C. Development and application of piezoelectric materials for ultrasound generation and detection. Ultrasound 2011, 19, 187–196.

[117]

Qiu, Y. Q.; Gigliotti, J. V.; Wallace, M.; Griggio, F.; Demore, C. E. M.; Cochran, S.; Trolier-McKinstry, S. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation, and imaging. Sensors 2015, 15, 8020–8041.

[118]

Jia, Y. L.; Chen, Y. X.; Wang, Q. C.; Jayasinghe, U.; Luo, X.; Wei, Q.; Wang, J.; Xiong, H. C.; Chen, C.; Xu, B. et al. Exosome: Emerging biomarker in breast cancer. Oncotarget 2017, 8, 41717–41733.

[119]

Lin, J.; Li, J.; Huang, B.; Liu, J.; Chen, X.; Chen, X. M.; Xu, Y. M.; Huang, L. F.; Wang, X. Z. Exosomes: Novel biomarkers for clinical diagnosis. Sci. World J. 2015, 2015, 657086.

[120]

Properzi, F.; Logozzi, M.; Fais, S. Exosomes: The future of biomarkers in medicine. Biomark. Med. 2013, 7, 769–778.

[121]

Yu, W.; Hurley, J.; Roberts, D.; Chakrabortty, S. K.; Enderle, D.; Noerholm, M.; Breakefield, X. O.; Skog, J. K. Exosome-based liquid biopsies in cancer: Opportunities and challenges. Ann. Oncol. 2021, 32, 466–477.

[122]

Liang, K.; Liu, F.; Fan, J.; Sun, D. L.; Liu, C.; Lyon, C. J.; Bernard, D. W.; Li, Y.; Yokoi, K.; Katz, M. H. et al. Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. 2017, 1, 0021.

[123]

Zhao, Z.; Yang, Y.; Zeng, Y.; He, M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 2016, 16, 489–496.

[124]

Zhang, P.; Zhou, X.; He, M.; Shang, Y. Q.; Tetlow, A. L.; Godwin, A. K.; Zeng, Y. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 2019, 3, 438–451.

[125]

Salunkhe, S.; Dheeraj; Basak, M.; Chitkara, D.; Mittal, A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. J. Control. Release 2020, 326, 599–614.

[126]

Zhang, P.; Wu, X. Q.; Gardashova, G.; Yang, Y.; Zhang, Y. H.; Xu, L.; Zeng, Y. Molecular and functional extracellular vesicle analysis using nanopatterned microchips monitors tumor progression and metastasis. Sci. Transl. Med. 2020, 12, eaaz2878.

[127]

Kamerkar, S.; Leng, C. R.; Burenkova, O.; Jang, S. C.; McCoy, C.; Zhang, K.; Dooley, K.; Kasera, S.; Zi, T.; Sisó, S. et al. Exosome-mediated genetic reprogramming of tumor-associated macrophages by exoASO-STAT6 leads to potent monotherapy antitumor activity. Sci. Adv. 2022, 8, eabj7002.

[128]

Li, S. X.; Ding, X. Y.; Guo, F.; Chen, Y. C.; Lapsley, M. I.; Lin, S. C. S.; Wang, L.; McCoy, J. P.; Cameron, C. E.; Huang, T. J. An on-chip, multichannel droplet sorter using standing surface acoustic waves. Anal. Chem. 2013, 85, 5468–5474.

[129]

Ding, X. Y.; Peng, Z. L.; Lin, S. C. S.; Geri, M.; Li, S. X.; Li, P.; Chen, Y. C.; Dao, M.; Suresh, S.; Huang, T. J. Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl. Acad. Sci. USA 2014, 111, 12992–12997.

[130]

Lin, S. J.; Yu, Z. X.; Chen, D.; Wang, Z. G.; Miao, J. M.; Li, Q. C.; Zhang, D. Y.; Song, J.; Cui, D. X. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 2020, 16, 1903916.

[131]

Xu, W. M.; Li, A.; Chen, J. J.; Sun, E. J. Research development on exosome separation technology. J. Membrane Biol. 2023, 256, 25–34.

[132]

He, M.; Crow, J.; Roth, M.; Zeng, Y.; Godwin, A. K. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 2014, 14, 3773–3780.

[133]

Wan, Y.; Cheng, G.; Liu, X.; Hao, S. J.; Nisic, M.; Zhu, C. D.; Xia, Y. Q.; Li, W. Q.; Wang, Z. G.; Zhang, W. L. et al. Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes. Nat. Biomed. Eng. 2017, 1, 0058.

[134]

Wu, Y.; Ao, Z.; Chen, B.; Muhsen, M.; Bondesson, M.; Lu, X. B.; Guo, F. Acoustic assembly of cell spheroids in disposable capillaries. Nanotechnology 2018, 29, 504006.

[135]

Jeppesen, D. K.; Hvam, M. L.; Primdahl-Bengtson, B.; Boysen, A. T.; Whitehead, B.; Dyrskjøt, L.; Ørntoft, T. F.; Howard, K. A.; Ostenfeld, M. S. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J. Extracell. Vesicles 2014, 3, 25011.

[136]

Kim, J.; Tan, Z. J.; Lubman, D. M. Exosome enrichment of human serum using multiple cycles of centrifugation. Electrophoresis 2015, 36, 2017–2026.

[137]

Yang, Y.; Zhang, L.; Jin, K.; He, M. H.; Wei, W.; Chen, X. J.; Yang, Q. R.; Wang, Y. Y.; Pang, W.; Ren, X. B. et al. Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles. Sci. Adv. 2022, 8, eabn8440.

[138]

Lee, K.; Shao, H. L.; Weissleder, R.; Lee, H. Acoustic purification of extracellular microvesicles. ACS Nano 2015, 9, 2321–2327.

[139]

Nam, J.; Lim, H.; Kim, D.; Shin, S. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip 2011, 11, 3361–3364.

[140]

Wu, M. X.; Ouyang, Y. S.; Wang, Z. Y.; Zhang, R.; Huang, P. H.; Chen, C. Y.; Li, H.; Li, P.; Quinn, D.; Dao, M. et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl. Acad. Sci. USA 2017, 114, 10584–10589.

[141]

Chen, Y. C.; Zhu, Q. F.; Cheng, L. M.; Wang, Y.; Li, M.; Yang, Q. S.; Hu, L.; Lou, D. D.; Li, J. Y.; Dong, X. J. et al. Exosome detection via the ultrafast-isolation system: EXODUS. Nat. Methods 2021, 18, 212–218.

[142]

Tayebi, M.; Yang, D. H.; Collins, D. J.; Ai, Y. Deterministic sorting of submicrometer particles and extracellular vesicles using a combined electric and acoustic field. Nano Lett. 2021, 21, 6835–6842.

[143]

Gu, Y. Y.; Chen, C. Y.; Mao, Z. M.; Bachman, H.; Becker, R.; Rufo, J.; Wang, Z. Y.; Zhang, P. R.; Mai, J.; Yang, S. J. et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci. Adv. 2021, 7, eabc0467.

[144]

Zhang, J. X.; Chen, C. Y.; Becker, R.; Rufo, J.; Yang, S. J.; Mai, J.; Zhang, P. R.; Gu, Y. Y.; Wang, Z. Y.; Ma, Z. H. et al. A solution to the biophysical fractionation of extracellular vesicles: Acoustic nanoscale separation via wave-pillar excitation resonance (ANSWER). Sci. Adv. 2022, 8, eade0640.

[145]

Wu, D.; Baresch, D.; Cook, C.; Ma, Z. C.; Duan, M. T.; Malounda, D.; Maresca, D.; Abundo, M. P.; Lee, J.; Shivaei, S. et al. Biomolecular actuators for genetically selective acoustic manipulation of cells. Sci. Adv. 2023, 9, eadd9186.

[146]

Rao, L.; Bu, L. L.; Cai, B.; Xu, J. H.; Li, A.; Zhang, W. F.; Sun, Z. J.; Guo, S. S.; Liu, W.; Wang, T. H. et al. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater. 2016, 28, 3460–3466.

[147]

Ning, B.; Huang, Z.; Youngquist, B. M.; Scott, J. W.; Niu, A.; Bojanowski, C. M.; Zwezdaryk, K. J.; Saba, N. S.; Fan, J.; Yin, X. M. et al. Liposome-mediated detection of SARS-CoV-2 RNA-positive extracellular vesicles in plasma. Nat. Nanotechnol. 2021, 16, 1039–1044.

[148]

Zhu, Q. F.; Xu, H.; Huang, L.; Luo, J. X.; Li, H. R.; Yang, R.; Liu, X. L.; Liu, F. Identification and detection of plasma extracellular vesicles-derived biomarkers for esophageal squamous cell carcinoma diagnosis. Biosens. Bioelectron. 2023, 225, 115088.

[149]

Lou, D. D.; Shi, K. Q.; Li, H. P.; Zhu, Q. F.; Hu, L.; Luo, J. X.; Yang, R.; Liu, F. Quantitative metabolic analysis of plasma extracellular vesicles for the diagnosis of severe acute pancreatitis. J. Nanobiotechnol. 2022, 20, 52.

[150]

Liu, H. Y.; Kumar, R.; Zhong, C. T.; Gorji, S.; Paniushkina, L.; Masood, R.; Wittel, U. A.; Fuchs, H.; Nazarenko, I.; Hirtz, M. Rapid capture of cancer extracellular vesicles by lipid patch microarrays. Adv. Mater. 2021, 33, 2008493.

[151]

Chin, L. K.; Son, T.; Hong, J. S.; Liu, A. Q.; Skog, J.; Castro, C. M.; Weissleder, R.; Lee, H.; Im, H. Plasmonic sensors for extracellular vesicle analysis: From scientific development to translational research. Acs Nano 2020, 14, 14528–14548.

[152]

Izadifar, Z.; Babyn, P.; Chapman, D. Ultrasound cavitation/microbubble detection and medical applications. J. Med. Biol. Eng. 2019, 39, 259–276.

[153]

Wang, C. Y.; Wang, C. C.; Jin, D.; Yu, Y.; Yang, F.; Zhang, Y. L.; Yao, Q. F.; Zhang, G. J. AuNP-amplified surface acoustic wave sensor for the quantification of exosomes. ACS Sens. 2020, 5, 362–369.

[154]

Lu, G. J.; Farhadi, A.; Szablowski, J. O.; Lee-Gosselin, A.; Barnes, S. R.; Lakshmanan, A.; Bourdeau, R. W.; Shapiro, M. G. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures. Nat. Mater. 2018, 17, 456–463.

[155]

Osborn, J.; Pullan, J. E.; Froberg, J.; Shreffler, J.; Gange, K. N.; Molden, T.; Choi, Y.; Brooks, A.; Mallik, S.; Sarkar, K. Echogenic exosomes as ultrasound contrast agents. Nanoscale Adv. 2020, 2, 3411–3422.

[156]

Wu, X. J.; Lin, B. J.; Yu, M. Z.; Yang, L.; Han, J. H.; Han, S. F. A carbohydrate-grafted nanovesicle with activatable optical and acoustic contrasts for dual modality high performance tumor imaging. Chem. Sci. 2015, 6, 2002–2009.

[157]
Hurt, R. C.; Buss, M. T.; Duan, M. T.; Wong, K.; You, M. Y.; Sawyer, D. P.; Swift, M. B.; Dutka, P.; Barturen-Larrea, P.; Mittelstein, D. R. et al. Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria. Nat. Biotechnol., in press, https://doi.org/10.1038/s41587-022-01581-y.
DOI
[158]

Farhadi, A.; Ho, G. H.; Sawyer, D. P.; Bourdeau, R. W.; Shapiro, M. G. Ultrasound imaging of gene expression in mammalian cells. Science 2019, 365, 1469–1475.

[159]

Conlan, R. S.; Pisano, S.; Oliveira, M. I.; Ferrari, M.; Mendes Pinto, I. Exosomes as reconfigurable therapeutic systems. Trends Mol. Med. 2017, 23, 636–650.

[160]

He, C. J.; Zheng, S.; Luo, Y.; Wang, B. Exosome theranostics: Biology and translational medicine. Theranostics 2018, 8, 237–255.

[161]

Antimisiaris, S. G.; Mourtas, S.; Marazioti, A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics 2018, 10, 218.

[162]

Zipkin, M. Big pharma buys into exosomes for drug delivery. Nat. Biotechnol. 2020, 38, 1226–1228.

[163]

Wiklander, O. P. B.; Brennan, M. Á.; Lötvall, J.; Breakefield, X. O.; El Andaloussi, S. Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med. 2019, 11, eaav8521.

[164]

EL Andaloussi, S.; Mäger, I.; Breakefield, X. O.; Wood, M. J. A. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357.

[165]

Yang, D. B.; Zhang, W. H.; Zhang, H. Y.; Zhang, F. Q.; Chen, L. M.; Ma, L. X.; Larcher, L. M.; Chen, S. X.; Liu, N.; Zhao, Q. X. et al. Progress, opportunity, and perspective on exosome isolation—Efforts for efficient exosome-based theranostics. Theranostics 2020, 10, 3684–3707.

[166]
Liang, S.; Yao, J. J.; Liu, D.; Rao, L.; Chen, X. Y.; Wang, Z. H. Harnessing nanomaterials for cancer sonodynamic immunotherapy. Adv. Mater., in press, https://doi.org/10.1002/adma.202211130.
DOI
[167]

Kim, M. S.; Haney, M. J.; Zhao, Y. L.; Mahajan, V.; Deygen, I.; Klyachko, N. L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O. et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomed.: Nanotechnol., Biol. Med. 2016, 12, 655–664.

[168]

Ao, Z.; Song, S.; Tian, C. H.; Cai, H. W.; Li, X.; Miao, Y. F.; Wu, Z. H.; Krzesniak, J.; Ning, B.; Gu, M. X. et al. Understanding immune-driven brain aging by human brain organoid microphysiological analysis platform. Adv. Sci. 2022, 9, 2200475.

[169]

Ao, Z.; Cai, H. W.; Wu, Z. H.; Krzesniak, J.; Tian, C. H.; Lai, Y. Y.; Mackie, K.; Guo, F. Human spinal organoid-on-a-chip to model nociceptive circuitry for pain therapeutics discovery. Anal. Chem. 2022, 94, 1365–1372.

[170]

Ao, Z.; Cai, H. W.; Wu, Z. H.; Hu, L. Y.; Nunez, A.; Zhou, Z. L.; Liu, H. C.; Bondesson, M.; Lu, X. B.; Lu, X. et al. Microfluidics guided by deep learning for cancer immunotherapy screening. Proc. Natl. Acad. Sci. USA 2022, 119, e2214569119.

[171]

Ao, Z.; Cai, H. W.; Wu, Z. H.; Hu, L. Y.; Li, X.; Kaurich, C.; Gu, M. X.; Cheng, L.; Lu, X.; Guo, F. Evaluation of cancer immunotherapy using mini-tumor chips. Theranostics 2022, 12, 3628–3636.

[172]

Wu, Z. H.; Gong, Z. Y.; Ao, Z.; Xu, J. H.; Cai, H. W.; Muhsen, M.; Heaps, S.; Bondesson, M.; Guo, S. S.; Guo, F. Rapid microfluidic formation of uniform patient-derived breast tumor spheroids. ACS Appl. Bio Mater. 2020, 3, 6273–6283.

[173]

Ao, Z.; Cai, H. W.; Havert, D. J.; Wu, Z. H.; Gong, Z. Y.; Beggs, J. M.; Mackie, K.; Guo, F. One-stop microfluidic assembly of human brain organoids to model prenatal cannabis exposure. Anal. Chem. 2020, 92, 4630–4638.

[174]

Ao, Z.; Cai, H. W.; Wu, Z. H.; Song, S.; Karahan, H.; Kim, B.; Lu, H. C.; Kim, J.; Mackie, K.; Guo, F. Tubular human brain organoids to model microglia-mediated neuroinflammation. Lab Chip 2021, 21, 2751–2762.

[175]

Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis, and function. Nat. Rev. Immunol. 2002, 2, 569–579.

[176]

Katzmann, D. J.; Stefan, C. J.; Babst, M.; Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 2003, 162, 413–423.

[177]

Wollert, T.; Hurley, J. H. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 2010, 464, 864–869.

[178]

Zhao, Z. X.; Qu, L. J.; Shuang, T.; Wu, S. J.; Su, Y. Q.; Lu, F.; Wang, D. S.; Chen, B. L.; Hao, Q. Low-intensity ultrasound radiation increases exosome yield for efficient drug delivery. J. Drug Deliv. Sci. Technol. 2020, 57, 101713.

[179]

Ambattu, L. A.; Ramesan, S.; Dekiwadia, C.; Hanssen, E.; Li, H. Y.; Yeo, L. Y. High frequency acoustic cell stimulation promotes exosome generation regulated by a calcium-dependent mechanism. Commun. Biol. 2020, 3, 553.

[180]

Sinha, S.; Hoshino, D.; Hong, N. H.; Kirkbride, K. C.; Grega-Larson, N. E.; Seiki, M.; Tyska, M. J.; Weaver, A. M. Cortactin promotes exosome secretion by controlling branched actin dynamics. J. Cell Biol. 2016, 214, 197–213.

[181]

Tanziela, T.; Shaikh, S.; Jiang, H.; Lu, Z. H.; Wang, X. M. Efficient encapsulation of biocompatible nanoparticles in exosomes for cancer theranostics. Nano Today 2020, 35, 100964.

[182]

Wang, X. D.; Zhao, X.; Zhong, Y. X.; Shen, J. H.; An, W. L. Biomimetic exosomes: A new generation of drug delivery system. Front. Bioeng. Biotechnol. 2022, 10, 865682.

[183]

Alvarez-Erviti, L.; Seow, Y.; Yin, H. F.; Betts, C.; Lakhal, S.; Wood, M. J. A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345.

[184]

Yong, T. Y.; Zhang, X. Q.; Bie, N. N.; Zhang, H. B.; Zhang, X. T.; Li, F. Y.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H. A. et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 2019, 10, 3838.

[185]

Hu, T. Y.; Frieman, M.; Wolfram, J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat. Nanotechnol. 2020, 15, 247–249.

[186]

Wan, Y.; Wang, L. X.; Zhu, C. D.; Zheng, Q.; Wang, G. X.; Tong, J. L.; Fang, Y.; Xia, Y. Q.; Cheng, G.; He, X. et al. Aptamer-conjugated extracellular nanovesicles for targeted drug delivery. Cancer Res. 2018, 78, 798–808.

[187]

Wang, Z. Y.; Rich, J.; Hao, N. J.; Gu, Y. Y.; Chen, C. Y.; Yang, S. J.; Zhang, P. R.; Huang, T. J. Acoustofluidics for simultaneous nanoparticle-based drug loading and exosome encapsulation. Microsyst. Nanoeng. 2022, 8, 45.

[188]

Wu, Z. G.; Li, T. L.; Gao, W.; Xu, T. L.; Jurado-Sánchez, B.; Li, J. X.; Gao, W. W.; He, Q.; Zhang, L. F.; Wang, J. Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Adv. Funct. Mater. 2015, 25, 3881–3887.

[189]

Sun, W. Q.; Xing, C. Y.; Zhao, L. B.; Zhao, P.; Yang, G. D.; Yuan, L. J. Ultrasound assisted exosomal delivery of tissue responsive mRNA for enhanced efficacy and minimized off-target effects. Mol. Ther. Nucl. Acids 2020, 20, 558–567.

[190]

Wang, D. D.; Yao, Y. Z.; Xiao, Y.; Chen, X.; Hu, J.; Yang, X. L. Ultrasound responsive erythrocyte membrane-derived hybrid nanovesicles with controlled drug release for tumor therapy. Nanoscale 2021, 13, 9945–9951.

[191]

Kadry, H.; Noorani, B.; Cucullo, L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020, 17, 69.

[192]

Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412.

[193]

Knox, E. G.; Aburto, M. R.; Clarke, G.; Cryan, J. F.; O’Driscoll, C. M. The blood-brain barrier in aging and neurodegeneration. Mol. Psychiatry 2022, 27, 2659–2673.

[194]

Terstappen, G. C.; Meyer, A. H.; Bell, R. D.; Zhang, W. D. Strategies for delivering therapeutics across the blood-brain barrier. Nat. Rev. Drug Discov. 2021, 20, 362–383.

[195]

Shiekh, F. A. Blood-brain barrier: A real obstacle for therapeutics. Int. J. Nanomed. 2012, 7, 4065–4066.

[196]

Liang, Y. J.; Iqbal, Z.; Lu, J. P.; Wang, J. H.; Zhang, H.; Chen, X.; Duan, L.; Xia, J. Cell-derived nanovesicle-mediated drug delivery to the brain: Principles and strategies for vesicle engineering. Mol. Ther. 2023, 31, 1207–1224.

[197]

Whelan, R.; Hargaden, G. C.; Knox, A. J. S. Modulating the blood-brain barrier: A comprehensive review. Pharmaceutics 2021, 13, 1980.

[198]

Meairs, S.; Alonso, A. Ultrasound, microbubbles, and the blood-brain barrier. Prog. Biophys. Mol. Biol. 2007, 93, 354–362.

[199]

Ramos-Zaldívar, H. M.; Polakovicova, I.; Salas-Huenuleo, E.; Corvalán, A. H.; Kogan, M. J.; Yefi, C. P.; Andia, M. E. Extracellular vesicles through the blood-brain barrier: A review. Fluids Barriers CNS 2022, 19, 60.

[200]

Wasielewska, J. M.; White, A. R. “Focused ultrasound-mediated drug delivery in humans—A path towards translation in neurodegenerative diseases”. Pharm. Res. 2022, 39, 427–439.

[201]

Ogawa, K.; Kato, N.; Yoshida, M.; Hiu, T.; Matsuo, T.; Mizukami, S.; Omata, D.; Suzuki, R.; Maruyama, K.; Mukai, H. et al. Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain. J. Control. Release 2022, 348, 34–41.

[202]

Rezai, A. R.; Ranjan, M.; D’Haese, P. F.; Haut, M. W.; Carpenter, J.; Najib, U.; Mehta, R. I.; Chazen, J. L.; Zibly, Z.; Yates, J. R. et al. Noninvasive hippocampal blood-brain barrier opening in Alzheimer’s disease with focused ultrasound. Proc. Natl. Acad. Sci. USA 2020, 117, 9180–9182.

[203]

Rabut, C.; Yoo, S.; Hurt, R. C.; Jin, Z. Y.; Li, H. Y.; Guo, H. S.; Ling, B.; Shapiro, M. G. Ultrasound technologies for imaging and modulating neural activity. Neuron 2020, 108, 93–110.

[204]

Arvanitis, C. D.; Askoxylakis, V.; Guo, Y. T.; Datta, M.; Kloepper, J.; Ferraro, G. B.; Bernabeu, M. O.; Fukumura, D.; McDannold, N.; Jain, R. K. Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood-tumor barrier disruption. Proc. Natl. Acad. Sci. USA 2018, 115, E8717–E8726.

[205]

Blackmore, J.; Shrivastava, S.; Sallet, J.; Butler, C. R.; Cleveland, R. O. Ultrasound neuromodulation: A review of results, mechanisms, and safety. Ultrasound Med. Biol. 2019, 45, 1509–1536.

[206]

Hu, Q.; Lyon, C. J.; Fletcher, J. K.; Tang, W. F.; Wan, M. H.; Hu, T. Y. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses. Acta Pharm. Sin. B 2021, 11, 1493–1512.

[207]

Bar-Zion, A.; Nourmahnad, A.; Mittelstein, D. R.; Shivaei, S.; Yoo, S.; Buss, M. T.; Hurt, R. C.; Malounda, D.; Abedi, M. H.; Lee-Gosselin, A. et al. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nat. Nanotechnol. 2021, 16, 1403–1412.

[208]

Sheybani, N. D.; Batts, A. J.; Mathew, A. S.; Thim, E. A.; Price, R. J. Focused ultrasound hyperthermia augments release of glioma-derived extracellular vesicles with differential immunomodulatory capacity. Theranostics 2020, 10, 7436–7447.

[209]

Deng, Z. T.; Wang, J. Q.; Xiao, Y.; Li, F.; Niu, L. L.; Liu, X.; Meng, L.; Zheng, H. R. Ultrasound-mediated augmented exosome release from astrocytes alleviates amyloid-β-induced neurotoxicity. Theranostics 2021, 11, 4351–4362.

[210]

Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019, 21, 9–17.

[211]

Kitagawa, M.; Wu, P. P.; Balkunde, R.; Cunniff, P.; Jackson, D. An RNA exosome subunit mediates cell-to-cell trafficking of a homeobox mRNA via plasmodesmata. Science 2022, 375, 177–182.

[212]

Hu, L.; Zhang, T.; Ma, H. X.; Pan, Y. J.; Wang, S. Y.; Liu, X. L.; Dai, X. D.; Zheng, Y. Y.; Lee, L. P.; Liu, F. Discovering the secret of diseases by incorporated tear exosomes analysis via rapid-isolation system: iTEARS. ACS Nano 2022, 16, 11720–11732.

[213]

Witwer, K. W.; Buzás, E. I.; Bemis, L. T.; Bora, A.; Lässer, C.; Lötvall, J.; Nolte-’t Hoen, E. N.; Piper, M. G.; Sivaraman, S.; Skog, J. et al. Standardization of sample collection, isolation, and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2013, 2, 20360.

[214]

Singh, K.; Nalabotala, R.; Koo, K. M.; Bose, S.; Nayak, R.; Shiddiky, M. J. A. Separation of distinct exosome subpopulations: Isolation and characterization approaches and their associated challenges. Analyst 2021, 146, 3731–3749.

[215]

Xiong, H. W.; Huang, Z. P.; Yang, Z. J.; Lin, Q. Y.; Yang, B.; Fang, X. E.; Liu, B. H.; Chen, H.; Kong, J. L. Recent progress in detection and profiling of cancer cell-derived exosomes. Small 2021, 17, 2007971.

[216]

Tayebi, M.; O’Rorke, R.; Wong, H. C.; Low, H. Y.; Han, J.; Collins, D. J.; Ai, Y. Massively multiplexed submicron particle patterning in acoustically driven oscillating nanocavities. Small 2020, 16, 2000462.

[217]

Zhou, Y. N.; Ma, Z. C.; Tayebi, M.; Ai, Y. Submicron particle focusing and exosome sorting by wavy microchannel structures within viscoelastic fluids. Anal. Chem. 2019, 91, 4577–4584.

[218]

Dholakia, K.; Drinkwater, B. W.; Ritsch-Marte, M. Comparing acoustic and optical forces for biomedical research. Nat. Rev. Phys. 2020, 2, 480–491.

[219]

Ghanem, M. A.; Maxwell, A. D.; Wang, Y. N.; Cunitz, B. W.; Khokhlova, V. A.; Sapozhnikov, O. A.; Bailey, M. R. Noninvasive acoustic manipulation of objects in a living body. Proc. Natl. Acad. Sci. USA 2020, 117, 16848–16855.

[220]

García-Manrique, P.; Gutiérrez, G.; Blanco-López, M. C. Fully artificial exosomes: Towards new theranostic biomaterials. Trends Biotechnol. 2018, 36, 10–14.

[221]

Ku, A. S.; Lim, H. C.; Evander, M.; Laurell, T.; Scheding, S.; Ceder, Y. Acoustic enrichment of extracellular vesicles from biological fluids. Anal. Chem. 2018, 90, 8011–8019.

[222]

Li, Y.; Liu, R. Y.; Ji, W. H.; Li, Y. H.; Liu, L. Y.; Zhang, X. Delivery systems for theranostics in neurodegenerative diseases. Nano Res. 2018, 11, 5535–5555.

[223]

Mehryab, F.; Rabbani, S.; Shahhosseini, S.; Shekari, F.; Fatahi, Y.; Baharvand, H.; Haeri, A. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater. 2020, 113, 42–62.

[224]

Ko, J.; Bhagwat, N.; Yee, S. S.; Ortiz, N.; Sahmoud, A.; Black, T.; Aiello, N. M.; McKenzie, L.; O’Hara, M.; Redlinger, C. et al. Combining machine learning and nanofluidic technology to diagnose pancreatic cancer using exosomes. ACS Nano 2017, 11, 11182–11193.

[225]

Chen, C.; Zong, S. F.; Liu, Y.; Wang, Z. Y.; Zhang, Y. Z.; Chen, B. A.; Cui, Y. P. Profiling of exosomal biomarkers for accurate cancer identification: Combining DNA-PAINT with machine-learning-based classification. Small 2019, 15, 1901014.

[226]

Ebrahimkhani, S.; Beadnall, H. N.; Wang, C. Y.; Suter, C. M.; Barnett, M. H.; Buckland, M. E.; Vafaee, F. Serum exosome microRNAs predict multiple sclerosis disease activity after fingolimod treatment. Mol. Neurobiol. 2020, 57, 1245–1258.

[227]

Zlotogorski-Hurvitz, A.; Dekel, B. Z.; Malonek, D.; Yahalom, R.; Vered, M. FTIR-based spectrum of salivary exosomes coupled with computational-aided discriminating analysis in the diagnosis of oral cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 685–694.

[228]

Hao, N. J.; Wang, Z. Y.; Liu, P. Z.; Becker, R.; Yang, S. J.; Yang, K. C.; Pei, Z. C.; Zhang, P. R.; Xia, J. P.; Shen, L. et al. Acoustofluidic multimodal diagnostic system for Alzheimer’s disease. Biosens. Bioelectron. 2022, 196, 113730.

Publication history
Copyright
Acknowledgements

Publication history

Received: 02 April 2023
Revised: 09 May 2023
Accepted: 11 May 2023
Published: 01 July 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This project was supported by the NIH awards (Nos. U01DA056242, R01DK133864, and DP2AI160242).

Return