Journal Home > Volume 16 , Issue 8

MicroRNA-208a (miR-208a) plays critical roles in the severe fibrosis and heart failure post myocardial ischemia/reperfusion (IR) injury. MiR-208a inhibitor (mI) with complementary RNA sequence can silence the expression of miR-208a, while it is challenging to achieve efficient and myocardium-targeted delivery. Herein, biomimetic nanocomplexes (NCs) reversibly coated with red blood cell membrane (RM) were developed for the myocardial delivery of mI. To construct the NCs, membrane-penetrating helical polypeptide (PG) was first adopted to condense mI and form the cationic inner core, which subsequently adsorbed catalase (CAT) via electrostatic interaction followed by surface coating with RM. The membrane-coated NCs enabled prolonged blood circulation after systemic administration, and could accumulate in the injured myocardium via passive targeting. In the oxidative microenvironment of injured myocardium, CAT decomposed H2O2 to produce O2 bubbles, which drove the shedding of the outer RM to expose the positively charged inner core, thus facilitated effective internalization by cardiac cells. Based on the combined contribution of mI-mediated miR-208a silencing and CAT-mediated alleviation of oxidative stress, NCs effectively ameliorated the myocardial microenvironment, hence reducing the infarct size as well as fibrosis and promoting recovery of cardiac functions. This study provides an effective strategy for the cytosolic delivery of nucleic acid cargoes in the myocardium, and it renders an enlightened approach to resolve the blood circulation/cell internalization dilemma of cell membrane-coated delivery systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

MicroRNA-208a silencing against myocardial ischemia/reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes

Show Author's information Jianhui Lu1,§Jiaheng Zhang1,§Wen Yan2,§Chenglong Ge3Yang Zhou3( )Rongying Zhu1Shanzhou Duan1Lichen Yin3( )Yongbing Chen1( )
Department of Thoracic Surgery, Suzhou Key Laboratory of Thoracic Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China

§ Jianhui Lu, Jiaheng Zhang, and Wen Yan contributed equally to this work.

Abstract

MicroRNA-208a (miR-208a) plays critical roles in the severe fibrosis and heart failure post myocardial ischemia/reperfusion (IR) injury. MiR-208a inhibitor (mI) with complementary RNA sequence can silence the expression of miR-208a, while it is challenging to achieve efficient and myocardium-targeted delivery. Herein, biomimetic nanocomplexes (NCs) reversibly coated with red blood cell membrane (RM) were developed for the myocardial delivery of mI. To construct the NCs, membrane-penetrating helical polypeptide (PG) was first adopted to condense mI and form the cationic inner core, which subsequently adsorbed catalase (CAT) via electrostatic interaction followed by surface coating with RM. The membrane-coated NCs enabled prolonged blood circulation after systemic administration, and could accumulate in the injured myocardium via passive targeting. In the oxidative microenvironment of injured myocardium, CAT decomposed H2O2 to produce O2 bubbles, which drove the shedding of the outer RM to expose the positively charged inner core, thus facilitated effective internalization by cardiac cells. Based on the combined contribution of mI-mediated miR-208a silencing and CAT-mediated alleviation of oxidative stress, NCs effectively ameliorated the myocardial microenvironment, hence reducing the infarct size as well as fibrosis and promoting recovery of cardiac functions. This study provides an effective strategy for the cytosolic delivery of nucleic acid cargoes in the myocardium, and it renders an enlightened approach to resolve the blood circulation/cell internalization dilemma of cell membrane-coated delivery systems.

Keywords: myocardial ischemia/reperfusion (IR) injury, reversible membrane coating, microRNA-208a silencing, red blood cell membrane, H2O2 responsiveness, membrane-penetrating α-helical polypeptide

References(56)

[1]

Heusch, G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat. Rev. Cardiol. 2020, 17, 773–789.

[2]

Wang, Y.; Hou, M. Y.; Duan, S. Z.; Zhao, Z. Y.; Wu, X. J.; Chen, Y. B.; Yin, L. C. Macrophage-targeting gene silencing orchestrates myocardial microenvironment remodeling toward the anti-inflammatory treatment of ischemia-reperfusion (IR) injury. Bioact. Mater. 2022, 17, 320–333.

[3]

Lan, M.; Hou, M. Y.; Yan, J.; Deng, Q. R.; Zhao, Z. Y.; Lv, S. X.; Dang, J. J.; Yin, M. Y.; Ji, Y.; Yin, L. C. Cardiomyocyte-targeted anti-inflammatory nanotherapeutics against myocardial ischemia reperfusion (IR) injury. Nano Res. 2022, 15, 9125–9134.

[4]

Liu, M. R.; Abad, B. L. D.; Cheng, K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv. Drug Deliv. Rev. 2021, 173, 504–519.

[5]

Lesizza, P.; Prosdocimo, G.; Martinelli, V.; Sinagra, G.; Zacchigna, S.; Giacca, M. Single-dose intracardiac injection of pro-regenerative MicroRNAs improves cardiac function after myocardial infarction. Circ. Res. 2017, 120, 1298–1304.

[6]

Zhou, Y.; Liang, Q. J.; Wu, X. J.; Duan, S. Z.; Ge, C. L.; Ye, H.; Lu, J. H.; Zhu, R. Y.; Chen, Y. B.; Meng, F. H. et al. siRNA delivery against myocardial ischemia reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes. Adv. Mater 2023, 35, 2210691.

[7]

Zhu, D. S.; Li, Z. H.; Huang, K.; Caranasos, T. G.; Rossi, J. S.; Cheng, K. Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nat. Commun. 2021, 12, 1412.

[8]

Ji, M. S.; Jeong, M. H.; Ahn, Y. K.; Kim, S. H.; Kim, Y. J.; Chae, S. C.; Hong, T. J.; Seong, I. W.; Chae, J. K.; Kim, C. J. et al. Clinical outcome of statin plus ezetimibe versus high-intensity statin therapy in patients with acute myocardial infarction propensity-score matching analysis. Int. J. Cardiol. 2016, 225, 50–59.

[9]

Steffens, S.; Montecucco, F.; Mach, F. The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury. Thromb. Haemost. 2009, 102, 240–247.

[10]

Tu, Z. X.; Zhong, Y. L.; Hu, H. Z.; Shao, D.; Haag, R. N.; Schirner, M.; Lee, J.; Sullenger, B.; Leong, K. W. Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 2022, 7, 557–574.

[11]

Lu, Y. F.; Li, C.; Chen, Q. J.; Liu, P. X.; Guo, Q.; Zhang, Y.; Chen, X. L.; Zhang, Y. J.; Zhou, W. X.; Liang, D. H. et al. Microthrombus-targeting micelles for neurovascular remodeling and enhanced microcirculatory perfusion in acute ischemic stroke. Adv. Mater. 2019, 31, 1808361.

[12]

Chistiakov, D. A.; Orekhov, A. N.; Bobryshev, Y. V. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J. Mol. Cell. Cardiol. 2016, 94, 107–121.

[13]

Small, E. M.; Frost, R. J. A.; Olson, E. N. MicroRNAs add a new dimension to cardiovascular disease. Circulation 2010, 121, 1022–1032.

[14]

Jin, K. Y.; Gao, S.; Yang, P. H.; Guo, R. F.; Li, D.; Zhang, Y. S.; Lu, X. Y.; Fan, G. W.; Fan, X. H. Single-cell RNA sequencing reveals the temporal diversity and dynamics of cardiac immunity after myocardial infarction. Small Methods 2022, 6, 2100752.

[15]

Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297.

[16]

Liu, B. H.; Wang, B.; Zhang, X. K.; Lock, R.; Nash, T.; Vunjak-Novakovic, G. Cell type-specific microRNA therapies for myocardial infarction. Sci. Transl. Med. 2021, 13, eabd0914.

[17]

Pinchi, E.; Frati, P.; Aromatario, M.; Cipolloni, L.; Fabbri, M.; La Russa, R.; Maiese, A.; Neri, M.; Santurro, A.; Scopetti, M. et al. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J. Cell. Mol. Med. 2019, 23, 6005–6016.

[18]

Alrob, O. A.; Khatib, S.; Naser, S. A. MicroRNAs 33, 122, and 208: A potential novel targets in the treatment of obesity, diabetes, and heart-related diseases. J. Physiol. Biochem. 2017, 73, 307–314.

[19]

Zhao, X.; Wang, Y.; Sun, X. L. The functions of microRNA-208 in the heart. Diabetes Res. Clin. Pract. 2020, 160, 108004.

[20]

Callis, T. E.; Pandya, K.; Seok, H. Y.; Tang, R. H.; Tatsuguchi, M.; Huang, Z. P.; Chen, J. F.; Deng, Z. L.; Gunn, B.; Shumate, J. et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 2009, 119, 2772–2786.

[21]

Linhares, V. L. F.; Almeida, N. A. S.; Menezes, D. C.; Elliott, D. A.; Lai, D.; Beyer, E. C.; De Carvalho, A. C. C.; Costa, M. W. Transcriptional regulation of the murine Connexin40 promoter by cardiac factors Nkx2-5, GATA4 and Tbx5. Cardiovasc. Res. 2004, 64, 402–411.

[22]

Morel, S.; Braunersreuther, V.; Chanson, M.; Bouis, D.; Rochemont, V.; Foglia, B.; Pelli, G.; Sutter, E.; Pinsky, D. J.; Mach, F. et al. Endothelial Cx40 limits myocardial ischaemia/reperfusion injury in mice. Cardiovasc. Res. 2014, 102, 329–337.

[23]

Werner, J. H.; Rosenberg, J. H.; Um, J. Y.; Moulton, M. J.; Agrawal, D. K. Molecular discoveries and treatment strategies by direct reprogramming in cardiac regeneration. Transl. Res. 2019, 203, 73–87.

[24]

Ko, T.; Nomura, S.; Yamada, S.; Fujita, K.; Fujita, T.; Satoh, M.; Oka, C.; Katoh, M.; Ito, M.; Katagiri, M. et al. Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis. Nat. Commun. 2022, 13, 3275.

[25]

Rinoldi, C.; Zargarian, S. S.; Nakielski, P.; Li, X. R.; Liguori, A.; Petronella, F.; Presutti, D.; Wang, Q. S.; Costantini, M.; De Sio, L. et al. Nanotechnology-assisted rna delivery: From nucleic acid therapeutics to COVID-19 vaccines. Small Methods 2021, 5, 2100402.

[26]

Krohn-Grimberghe, M.; Mitchell, M. J.; Schloss, M. J.; Khan, O. F.; Courties, G.; Guimaraes, P. P. G.; Rohde, D.; Cremer, S.; Kowalski, P. S.; Sun, Y. et al. Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nat. Biomed. Eng. 2020, 4, 1076–1089.

[27]

Kowalski, P. S.; Palmiero, U. C.; Huang, Y. X.; Rudra, A.; Langer, R.; Anderson, D. G. Ionizable amino-polyesters synthesized via ring opening polymerization of tertiary amino-alcohols for tissue selective mRNA delivery. Adv. Mater. 2018, 30, 1801151.

[28]

Kim, B. S.; Chuanoi, S.; Suma, T.; Anraku, Y.; Hayashi, K.; Naito, M.; Kim, H. J.; Kwon, I. C.; Miyata, K.; Kishimura, A. et al. Self-assembly of siRNA/PEG-b-catiomer at integer molar ratio into 100 nm-sized vesicular polyion complexes (siRNAsomes) for RNAi and codelivery of cargo macromolecules. J. Am. Chem. Soc. 2019, 141, 3699–3709.

[29]

Yoshinaga, N.; Ishii, T.; Naito, M.; Endo, T.; Uchida, S.; Cabral, H.; Osada, K.; Kataoka, K. Polyplex micelles with phenylboronate/gluconamide cross-linking in the core exerting promoted gene transfection through spatiotemporal responsivity to intracellular pH and ATP concentration. J. Am. Chem. Soc. 2017, 139, 18567–18575.

[30]

Tao, W.; Yurdagul, A.; Kong, N.; Li, W. L.; Wang, X. B.; Doran, A. C.; Feng, C.; Wang, J. Q.; Islam, M. A.; Farokhzad, O. C. et al. siRNA nanoparticles targeting CaMKIIγin lesional macrophages improve atherosclerotic plaque stability in mice. Sci. siRNA nanoparticles targeting CaMKIIγin lesional macrophages improve atherosclerotic plaque stability in mice. Sci. Transl. Med. 2020, 12, eaay1063.

[31]

Tai, W. Y.; Li, J. W.; Corey, E.; Gao, X. H. A ribonucleoprotein octamer for targeted siRNA delivery. Nat. Biomed. Eng. 2018, 2, 326–337.

[32]

Lopes, J.; Lopes, D.; Pereira-Silva, M.; Peixoto, D.; Veiga, F.; Hamblin, M. R.; Conde, J.; Corbo, C.; Zare, E. N.; Ashrafizadeh, M. et al. Macrophage cell membrane-cloaked nanoplatforms for biomedical applications. Small Methods 2022, 6, 2200289.

[33]

Hou, M. Y.; Wei, Y. S.; Zhao, Z. Y.; Han, W. Q.; Zhou, R. X.; Zhou, Y.; Zheng, Y. R.; Yin, L. C. Immuno-engineered nanodecoys for the multi-target anti-inflammatory treatment of autoimmune diseases. Adv. Mater. 2022, 34, 2108817.

[34]

Tang, J. N.; Su, T.; Huang, K.; Dinh, P. U.; Wang, Z. G.; Vandergriff, A.; Hensley, M. T.; Cores, J.; Allen, T.; Li, T. S. et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat. Biomed. Eng. 2018, 2, 17–26.

[35]

Wan, M. M.; Wang, Q.; Wang, R. L.; Wu, R.; Li, T.; Fang, D.; Huang, Y. Y.; Yu, Y. Q.; Fang, L. Y.; Wang, X. W. et al. Platelet-derived porous nanomotor for thrombus therapy. Sci. Adv. 2020, 6, eaaz9014.

[36]

Yan, J.; Liu, X.; Wu, F.; Ge, C. L.; Ye, H.; Chen, X. Y.; Wei, Y. S.; Zhou, R. X.; Duan, S. Z.; Zhu, R. Y. et al. Platelet pharmacytes for the hierarchical amplification of antitumor immunity in response to self-generated immune signals. Adv. Mater. 2022, 34, 2109517.

[37]

Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, 1706759.

[38]

Wang, S. Y.; Kai, M. X.; Duan, Y. O.; Zhou, Z. D.; Fang, R. H.; Gao, W. W.; Zhang, L. F. Membrane cholesterol depletion enhances enzymatic activity of cell-membrane-coated metal-organic-framework nanoparticles. Angew. Chem., Int. Edit. 2022, 61, e202203115.

[39]

Wang, Q. Q.; Wang, H. L.; Yan, H. G.; Tian, H. S.; Wang, Y. N.; Yu, W.; Dai, Z. Q.; Chen, P. F.; Liu, Z. M.; Tang, R. K. et al. Suppression of osteoclast multinucleation via a posttranscriptional regulation-based spatiotemporally selective delivery system. Sci. Adv. 2022, 8, eabn3333.

[40]

Liu, Y. J.; Zou, Y.; Feng, C.; Lee, A.; Yin, J. L.; Chung, R.; Park, J. B.; Rizos, H.; Tao, W.; Zheng, M. et al. Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett. 2020, 20, 1637–1646.

[41]

Deng, Y. K.; Zhou, Y.; Liang, Q. J.; Ge, C. L.; Yang, J. D.; Shan, B. C.; Liu, Y.; Zhou, X. Z.; Yin, L. C. Inflammation-instructed hierarchical delivery of IL-4/miR-21 orchestrates osteoimmune microenvironment toward the treatment of rheumatoid arthritis. Adv. Funct. Mater. 2021, 31, 2101033.

[42]

Yan, J. H.; Wang, Y. N.; Song, X. Y.; Yan, X. F.; Zhao, Y.; Yu, L. M.; He, Z. Y. The advancement of gas-generating nanoplatforms in biomedical fields: Current frontiers and future perspectives. Small Methods 2022, 6, 2200139.

[43]

Ye, H.; Zhou, Y.; Liu, X.; Chen, Y. B.; Duan, S. Z.; Zhu, R. Y.; Liu, Y.; Yin, L. C. Recent advances on reactive oxygen species-responsive delivery and diagnosis system. Biomacromolecules 2019, 20, 2441–2463.

[44]

Feng, W.; Han, X. G.; Hu, H.; Chang, M. Q.; Ding, L.; Xiang, H. J.; Chen, Y.; Li, Y. H. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 2023, 12, 2203.

[45]

Zhou, Y.; Deng, Y. K.; Liu, Z. M.; Yin, M. Y.; Hou, M. Y.; Zhao, Z. Y.; Zhou, X. Z.; Yin, L. C. Cytokine-scavenging nanodecoys reconstruct osteoclast/osteoblast balance toward the treatment of postmenopausal osteoporosis. Sci. Adv. 2021, 7, eabl6432.

[46]

Nakanishi, H.; Miki, K.; Komatsu, K. R.; Umeda, M.; Mochizuki, M.; Inagaki, A.; Yoshida, Y.; Saito, H. Monitoring and visualizing microRNA dynamics during live cell differentiation using microRNA-responsive non-viral reporter vectors. Biomaterials 2017, 128, 121–135.

[47]

Han, C. S.; Yang, J. J.; Zhang, E.; Jiang, Y.; Qiao, A. J.; Du, Y. P.; Zhang, Q. K.; An, J. Q.; Sun, J. C.; Wang, M. M. et al. Metabolic labeling of cardiomyocyte-derived small extracellular-vesicle (sEV) miRNAs identifies miR-208a in cardiac regulation of lung gene expression. J. Extracell. Vesicles 2022, 11, 12246.

[48]

Sun, P. C.; Scharnweber, T.; Wadhwani, P.; Rabe, K. S.; Niemeyer, C. M. DNA-directed assembly of a cell-responsive biohybrid interface for cargo release. Small Methods 2021, 5, 2001049.

[49]

Hou, M. Y.; Wu, X. J.; Zhao, Z. Y.; Deng, Q. R.; Chen, Y. B.; Yin, L. C. Endothelial cell-targeting, ROS-ultrasensitive drug/siRNA co-delivery nanocomplexes mitigate early-stage neutrophil recruitment for the anti-inflammatory treatment of myocardial ischemia reperfusion injury. Acta Biomater. 2022, 143, 344–355.

[50]

Kura, B.; Bacova, B. S.; Kalocayova, B.; Sykora, M.; Slezak, J. Oxidative stress-responsive MicroRNAs in heart injury. Int. J. Mol. Sci. 2020, 21, 358.

[51]

Moya, I. M.; Halder, G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat. Rev. Mol. Cell Biol. 2019, 20, 211–226.

[52]

Sun, Y.; Zhang, P.; Li, Y. Q.; Hou, Y. J.; Yin, C. Y.; Wang, Z. K.; Liao, Z. Y.; Fu, X. Y.; Li, M.; Fan, C. D. et al. Light-activated gold-selenium core-shell nanocomposites with NIR-II photoacoustic imaging performances for heart-targeted repair. ACS Nano 2022, 16, 18667–18681.

[53]

Frangogiannis, N. G. Regulation of the inflammatory response in cardiac repair. Circ. Res. 2012, 110, 159–173.

[54]

Wang, T. Y.; Sun, X. Y.; Guo, X.; Zhang, J. Q.; Yang, J.; Tao, S. X.; Guan, J.; Zhou, L.; Han, J.; Wang, C. Y. et al. Ultraefficiently calming cytokine storm using Ti3C2Tx MXene. Small Methods 2021, 5, 2001108.

[55]

Lindsey, M. L. Assigning matrix metalloproteinase roles in ischaemic cardiac remodelling. Nat. Rev. Cardiol. 2018, 15, 471–479.

[56]

Price, S.; Platz, E.; Cullen, L.; Tavazzi, G.; Christ, M.; Cowie, M. R.; Maisel, A. S.; Masip, J.; Miro, O.; McMurray, J. J. et al. Echocardiography and lung ultrasonography for the assessment and management of acute heart failure. Nat. Rev. Cardiol. 2017, 14, 427–440.

File
12274_2023_5810_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 March 2023
Revised: 01 May 2023
Accepted: 05 May 2023
Published: 13 June 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82172076, 52273144, and 52033006), 111 project, Collaborative Innovation Center of Suzhou Nano Science & Technology, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, and Suzhou Key Laboratory of Nanotechnology and Biomedicine.

Return