Journal Home > Volume 17 , Issue 1

Metallic clusters, ranging from 1 to 2 nm in size, have emerged as promising candidates for creating nanoelectronic devices at the single-cluster level. With the intermediate quantum properties between metals and semiconductors, these metallic clusters offer an alternative pathway to silicon-based electronics and organic molecules for miniaturized electronics with dimensions below 5 nm. Significant progress has been made in studies of single-cluster electronic devices. However, a clear guide for selecting, synthesizing, and fabricating functional single-cluster electronic devices is still required. This review article provides a comprehensive overview of single-cluster electronic devices, including the mechanisms of electron transport, the fabrication of devices, and the regulations of electron transport properties. Furthermore, we discuss the challenges and future directions for single-cluster electronic devices and their potential applications.


menu
Abstract
Full text
Outline
About this article

Single-cluster electronics using metallic clusters: Fabrications, regulations, and applications

Show Author's information Caiyun WeiWei XuShurui JiRuiyun Huang( )Junyang LiuWenqiu SuJie BaiJiale Huang( )Wenjing Hong( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Research Centre of Chemicals for Electronic Manufacturing, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China

Abstract

Metallic clusters, ranging from 1 to 2 nm in size, have emerged as promising candidates for creating nanoelectronic devices at the single-cluster level. With the intermediate quantum properties between metals and semiconductors, these metallic clusters offer an alternative pathway to silicon-based electronics and organic molecules for miniaturized electronics with dimensions below 5 nm. Significant progress has been made in studies of single-cluster electronic devices. However, a clear guide for selecting, synthesizing, and fabricating functional single-cluster electronic devices is still required. This review article provides a comprehensive overview of single-cluster electronic devices, including the mechanisms of electron transport, the fabrication of devices, and the regulations of electron transport properties. Furthermore, we discuss the challenges and future directions for single-cluster electronic devices and their potential applications.

Keywords: electronic properties, electron transport, structure regulation, single-cluster junctions, metallic clusters

References(107)

[1]

Wilcoxon, J. P.; Abrams, B. L. Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 2006, 35, 1162–1194.

[2]

Schmid, G. The relevance of shape and size of Au55 clusters. Chem. Soc. Rev. 2008, 37, 1909–1930.

[3]

Dubois, J. G. A.; Gerritsen, J. W.; Shafranjuk, S. E.; Boon, E. J. G.; Schmid, G.; van Kempen, H. Coulomb staircases and quantum size effects in tunnelling spectroscopy on ligand-stabilized metal clusters. Eur. Lett. 1996, 33, 279–284.

[4]

Ni, J. T.; Zhong, C. L.; Li, L. Y.; Su, M. X.; Wang, X. R.; Sun, J. N.; Chen, S.; Duan, C. B.; Han, C. M.; Xu, H. Deep-blue electroluminescence from phosphine-stabilized Au3 triangles and Au3Ag pyramids. Angew. Chem., Int. Ed. 2022, 61, e202213826.

[5]

Hu, F.; Guan, Z. J.; Yang, G. Y.; Wang, J. Q.; Li, J. J.; Yuan, S. F.; Liang, G. J.; Wang, Q. M. Molecular gold nanocluster Au156 showing metallic electron dynamics. J. Am. Chem. Soc. 2021, 143, 17059–17067.

[6]

Chen, T. K.; Lin, H. B.; Cao, Y. T.; Yao, Q. F.; Xie, J. P. Interactions of metal nanoclusters with light: Fundamentals and applications. Adv. Mater. 2022, 34, 2103918.

[7]

Zhu, M. Z.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H. F.; Schatz, G. C.; Jin, R. C. Reversible switching of magnetism in thiolate-protected Au25 superatoms. J. Am. Chem. Soc. 2009, 131, 2490–2492.

[8]

Zyazin, A. S.; van den Berg, J. W. G.; Osorio, E. A.; van der Zant, H. S. J.; Konstantinidis, N. P.; Leijnse, M.; Wegewijs, M. R.; May, F.; Hofstetter, W.; Danieli, C. et al. Electric field controlled magnetic anisotropy in a single molecule. Nano Lett. 2010, 10, 3307–3311.

[9]

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

[10]

Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

[11]

Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.

[12]

Nimtz, G.; Marquardt, P.; Gleiter, H. Size-induced metal-insulator transition in metals and semiconductors. J. Cryst. Growth 1988, 86, 66–71.

[13]

Marquardt, P.; Nimtz, G.; Mühlschlegel, B. On the quasi-static conductivity of sub-micrometer crystals. Solid State Commun. 1988, 65, 539–542.

[14]

Siu, T. C.; Wong, J. Y.; Hight, M. O.; Su, T. A. Single-cluster electronics. Phys. Chem. Chem. Phys. 2021, 23, 9643–9659.

[15]

Hu, K. J.; Yan, W. C.; Zhang, M. H.; Song, F. Q. Electrical devices designed based on inorganic clusters. Nanotechnology 2022, 33, 502001.

[16]

Albrecht, T.; Mertens, S. F. L.; Ulstrup, J. Intrinsic multistate switching of gold clusters through electrochemical gating. J. Am. Chem. Soc. 2007, 129, 9162–9167.

[17]

Lovat, G.; Choi, B.; Paley, D. W.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Room-temperature current blockade in atomically defined single-cluster junctions. Nat. Nanotechnol. 2017, 12, 1050–1054.

[18]

Wu, C. L.; Qiao, X. H.; Robertson, C. M.; Higgins, S. J.; Cai, C. X.; Nichols, R. J.; Vezzoli, A. A chemically soldered polyoxometalate single-molecule transistor. Angew. Chem., Int. Ed. 2020, 59, 12029–12034.

[19]

Kastner, M. A. The single-electron transistor. Rev. Mod. Phys. 1992, 64, 849–858.

[20]

Gunasekaran, S.; Reed, D. A.; Paley, D. W.; Bartholomew, A. K.; Venkataraman, L.; Steigerwald, M. L.; Roy, X.; Nuckolls, C. Single-electron currents in designer single-cluster devices. J. Am. Chem. Soc. 2020, 142, 14924–14932.

[21]

Chi, L. F.; Hartig, M.; Drechsler, T.; Schwaack, T.; Seidel, C.; Fuchs, H.; Schmid, G. Single-electron tunneling in Au55 cluster monolayers. Appl. Phys. A 1998, 66, S187–S190.

[22]

Yuan, P.; Zhang, R. H.; Selenius, E.; Ruan, P. P.; Yao, Y. R.; Zhou, Y.; Malola, S.; Häkkinen, H.; Teo, B. K.; Cao, Y. et al. Solvent-mediated assembly of atom-precise gold-silver nanoclusters to semiconducting one-dimensional materials. Nat. Commun. 2020, 11, 2229.

[23]

Song, H.; Reed, M. A.; Lee, T. Single molecule electronic devices. Adv. Mater. 2011, 23, 1583–1608.

[24]

Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a molecular junction. Science 1997, 278, 252–254.

[25]

Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.

[26]

Hong, W. J.; Valkenier, H.; Mészáros, G.; Manrique, D. Z.; Mishchenko, A.; Putz, A.; García, P. M.; Lambert, C. J.; Hummelen, J. C.; Wandlowski, T. An MCBJ case study: The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface. Beilstein J. Nanotechnol. 2011, 2, 699–713.

[27]

Leary, E.; van Zalinge, H.; Higgins, S. J.; Nichols, R. J.; Fabrizi de Biani, F.; Leoni, P.; Marchetti, L.; Zanello, P. A molecular wire incorporating a robust hexanuclear platinum cluster. Phys. Chem. Chem. Phys. 2009, 11, 5198–5202.

[28]

Boardman, B. M.; Widawsky, J. R.; Park, Y. S.; Schenck, C. L.; Venkataraman, L.; Steigerwald, M. L.; Nuckolls, C. Conductance of single cobalt chalcogenide cluster junctions. J. Am. Chem. Soc. 2011, 133, 8455–8457.

[29]

Nakazato, K.; Thornton, T. J.; White, J.; Ahmed, H. Single-electron effects in a point contact using side-gating in delta-doped layers. Appl. Phys. Lett. 1992, 61, 3145–3147.

[30]

Chen, W.; Ahmed, H.; Nakazoto, K. Coulomb blockade at 77 K in nanoscale metallic islands in a lateral nanostructure. Appl. Phys. Lett. 1995, 66, 3383–3384.

[31]

Bezryadin, A.; Dekker, C.; Schmid, G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 1997, 71, 1273–1275.

[32]

Klein, D. L.; McEuen, P. L.; Katari, J. E. B.; Roth, R.; Alivisatos, A. P. An approach to electrical studies of single nanocrystals. Appl. Phys. Lett. 1996, 68, 2574–2576.

[33]

Wei, Z. X.; Jiang, W. R.; Bai, Z. B.; Lian, Z.; Wang, Z. G.; Song, F. Q. The synthesis and electrical transport of ligand-protected Au13 clusters. Eur. Phys. J. D 2017, 71, 237.

[34]

Xu, W.; Li, R. H.; Wang, C. H.; Zhong, J. H.; Liu, J. Y.; Hong, W. J. Investigation of electronic excited states in single-molecule junctions. Nano Res. 2022, 15, 5726–5745.

[35]

Yang, Y.; Liu, J. Y.; Zheng, J. T.; Lu, M.; Shi, J.; Hong, W. J.; Yang, F. Z.; Tian, Z. Q. Promising electroplating solution for facile fabrication of Cu quantum point contacts. Nano Res. 2017, 10, 3314–3323.

[36]

Kaliginedi, V.; Rudnev, A. V.; Moreno-García, P.; Baghernejad, M.; Huang, C. C.; Hong, W. J.; Wandlowski, T. Promising anchoring groups for single-molecule conductance measurements. Phys. Chem. Chem. Phys. 2014, 16, 23529–23539.

[37]

Zharinov, V. S.; Picot, T.; Scheerder, J. E.; Janssens, E.; van de Vondel, J. Room temperature single electron transistor based on a size-selected aluminium cluster. Nanoscale 2020, 12, 1164–1170.

[38]

Ralls, K. S.; Buhrman, R. A.; Tiberio, R. C. Fabrication of thin-film metal nanobridges. Appl. Phys. Lett. 1989, 55, 2459–2461.

[39]

Ralph, D. C.; Black, C. T.; Tinkham, M. Spectroscopic measurements of discrete electronic states in single metal particles. Phys. Rev. Lett. 1995, 74, 3241–3244.

[40]

Schön, G.; Simon, U. A fascinating new field in colloid science: Small ligand-stabilized metal clusters and their possible application in microelectronics: Part II: Future directions. Colloid. Polym. Sci. 1995, 273, 202–218.

[41]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[42]

Schmid, G. Clusters and colloids: Bridges between molecular and condensed material. Endeavour 1990, 14, 172–178.

[43]

Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301–303.

[44]

Guo, X. F.; Small, J. P.; Klare, J. E.; Wang, Y. L.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L. M.; O’Brien, S. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 2006, 311, 356–359.

[45]

Yang, P.; Arfaoui, I.; Cren, T.; Goubet, N.; Pileni, M. P. Electronic properties probed by scanning tunneling spectroscopy: From isolated gold nanocrystal to well-defined supracrystals. Phys. Rev. B 2012, 86, 075409.

[46]

Kano, S.; Azuma, Y.; Kanehara, M.; Teranishi, T.; Majima, Y. Room-temperature coulomb blockade from chemically synthesized Au nanoparticles stabilized by acid–base interaction. Appl. Phys. Express 2010, 3, 105003.

[47]

Junno, T.; Carlsson, S. B.; Xu, H. Q.; Montelius, L.; Samuelson, L. Fabrication of quantum devices by Ångström-level manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 1998, 72, 548–550.

[48]

Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933.

[49]

Hong, W. J.; Manrique, D. Z.; Moreno-Garcia, P.; Gulcur, M.; Mishchenko, A.; Lambert, C. J.; Bryce, M. R.; Wandlowski, T. Single molecular conductance of tolanes: Experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 2012, 134, 2292–2304.

[50]

Liu, J. Y.; Huang, X. Y.; Wang, F.; Hong, W. J. Quantum interference effects in charge transport through single-molecule junctions: Detection, manipulation, and application. Acc. Chem. Res. 2019, 52, 151–160.

[51]

de Bruijckere, J.; Gehring, P.; Palacios-Corella, M.; Clemente-León, M.; Coronado, E.; Paaske, J.; Hedegård, P.; van der Zant, H. S. J. Ground-state spin blockade in a single-molecule junction. Phys. Rev. Lett. 2019, 122, 197701.

[52]

Vinod, C. P.; Kulkarni, G. U.; Rao, C. N. R. Size-dependent changes in the electronic structure of metal clusters as investigated by scanning tunneling spectroscopy. Chem. Phys. Lett. 1998, 289, 329–333.

[53]

Dorogi, M.; Gomez, J.; Osifchin, R.; Andres, R. P.; Reifenberger, R. Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. Phys. Rev. B 1995, 52, 9071–9077.

[54]

van Kempen, H.; Dubois, J. G. A.; Gerritsen, J. W.; Schmid, G. Small metallic particles studied by scanning tunneling microscopy. Phys. B 1995, 204, 51–56.

[55]

Soldatov, E. S.; Khanin, V. V.; Trifonov, A. S.; Presnov, D. E.; Yakovenko, S. A.; Khomutov, G. B.; Gubin, C. P.; Kolesov, V. V. Single-electron transistor based on a single cluster molecule at room temperature. J. Exp. Theor. Phys. Lett. 1996, 64, 556–560.

[56]

Koo, H.; Kano, S.; Tanaka, D.; Sakamoto, M.; Teranishi, T.; Cho, G.; Majima, Y. Characterization of thiol-functionalized oligo(phenylene-ethynylene)-protected Au nanoparticles by scanning tunneling microscopy and spectroscopy. Appl. Phys. Lett. 2012, 101, 083115.

[57]

Andres, R. P.; Bein, T.; Dorogi, M.; Feng, S.; Henderson, J. I.; Kubiak, C. P.; Mahoney, W.; Osifchin, R. G.; Reifenberger, R. Coulomb staircase at room temperature in a self-assembled molecular nanostructure. Science 1996, 272, 1323–1325.

[58]

Wang, B.; Wang, H. Q.; Li, H. X.; Zeng, C. G.; Hou, J. G.; Xiao, X. D. Tunable single-electron tunneling behavior of ligand-stabilized gold particles on self-assembled monolayers. Phys. Rev. B 2000, 63, 035403.

[59]

Yang, G. H.; Tan, L.; Yang, Y. Y.; Chen, S. W.; Liu, G. Y. Single electron tunneling and manipulation of nanoparticles on surfaces at room temperature. Surf. Sci. 2005, 589, 129–138.

[60]

van Bentum, P. J. M.; Smokers, R. T. M.; van Kempen, H. Incremental charging of single small particles. Phys. Rev. Lett. 1988, 60, 2543–2546.

[61]

Wilkins, R.; Ben-Jacob, E.; Jaklevic, R. C. Scanning-tunneling-microscope observations of Coulomb blockade and oxide polarization in small metal droplets. Phys. Rev. Lett. 1989, 63, 801–804.

[62]

Gittins, D. I.; Bethell, D.; Schiffrin, D. J.; Nichols, R. J. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 2000, 408, 67–69.

[63]

Chen, H. L.; Brasiliense, V.; Mo, J. S.; Zhang, L.; Jiao, Y.; Chen, Z.; Jones, L. O.; He, G.; Guo, Q. H.; Chen, X. Y. et al. Single-molecule charge transport through positively charged electrostatic anchors. J. Am. Chem. Soc. 2021, 143, 2886–2895.

[64]

Zhang, B. H.; Chen, J. S.; Cao, Y. T.; Chai, O. J. H.; Xie, J. P. Ligand design in ligand-protected gold nanoclusters. Small 2021, 17, 2004381.

[65]

Choi, B.; Capozzi, B.; Ahn, S.; Turkiewicz, A.; Lovat, G.; Nuckolls, C.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Solvent-dependent conductance decay constants in single cluster junctions. Chem. Sci. 2016, 7, 2701–2705.

[66]

Yuan, S. S.; Xu, X. H.; Daaoub, A.; Fang, C.; Cao, W. Q.; Chen, H.; Sangtarash, S.; Zhang, J. W.; Sadeghi, H.; Hong, W. J. Single-atom control of electrical conductance and thermopower through single-cluster junctions. Nanoscale 2021, 13, 12594–12601.

[67]

Feng, A. N.; Hou, S. J.; Yan, J. Z.; Wu, Q. Q.; Tang, Y. X.; Yang, Y.; Shi, J.; Xiao, Z. Y.; Lambert, C. J.; Zheng, N. F. et al. Conductance growth of single-cluster junctions with increasing sizes. J. Am. Chem. Soc. 2022, 144, 15680–15688.

[68]

Wei, C. Y.; Ye, J. Y.; Su, Y. M.; Zheng, J. T.; Xiao, S. Q.; Chen, J. W.; Yuan, S. S.; Zhang, C. Y.; Bai, J.; Xu, H. et al. Halide anchors for single-cluster electronics. CCS Chem. 2022, 1–9.

[69]

Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 2016, 1, 16002.

[70]

Xie, X. M.; Li, P. H.; Xu, Y. X.; Zhou, L.; Yan, Y.; Xie, L. H.; Jia, C. C.; Guo, X. F. Single-molecule junction: A reliable platform for monitoring molecular physical and chemical processes. ACS Nano 2022, 16, 3476–3505.

[71]

Thijssen, J. M.; van der Zant, H. S. J. Charge transport and single-electron effects in nanoscale systems. Phys. Status Solidi B 2008, 245, 1455–1470.

[72]

Xiang, D.; Wang, X. L.; Jia, C. C.; Lee, T.; Guo, X. F. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440.

[73]

Kaliginedi, V.; Moreno-Garcia, P.; Valkenier, H.; Hong, W. J.; García-Suárez, V. M.; Buiter, P.; Otten, J. L.; Hummelen, J. C.; Lambert, C. J.; Wandlowski, T. Correlations between molecular structure and single-junction conductance: A case study with oligo(phenylene-ethynylene)-type wires. J. Am. Chem. Soc. 2012, 134, 5262–5275.

[74]

Song, H.; Kim, Y.; Jeong, H.; Reed, M. A.; Lee, T. Coherent tunneling transport in molecular junctions. J. Phys. Chem. C 2010, 114, 20431–20435.

[75]

Kano, S.; Tada, T.; Majima, Y. Nanoparticle characterization based on STM and STS. Chem. Soc. Rev. 2015, 44, 970–987.

[76]

Danilov, A.; Kubatkin, S.; Kafanov, S.; Hedegård, P.; Stuhr-Hansen, N.; Moth-Poulsen, K.; Bjørnholm, T. Electronic transport in single molecule junctions: Control of the molecule-electrode coupling through intramolecular tunneling barriers. Nano Lett. 2008, 8, 1–5.

[77]

Roy, X.; Schenck, C. L.; Ahn, S.; Lalancette, R. A.; Venkataraman, L.; Nuckolls, C.; Steigerwald, M. L. Quantum soldering of individual quantum dots. Angew. Chem., Int. Ed. 2012, 51, 12473–12476.

[78]

Zotti, L. A.; Leary, E.; Soriano, M.; Cuevas, J. C.; Palacios, J. J. A molecular platinum cluster junction: a single-molecule switch. J. Am. Chem. Soc. 2013, 135, 2052–2055.

[79]

Bai, J.; Li, X. H.; Zhu, Z. Y.; Zheng, Y.; Hong, W. J. Single-molecule electrochemical transistors. Adv. Mater. 2021, 33, 2005883.

[80]

Higaki, T.; Li, Q.; Zhou, M.; Zhao, S.; Li, Y. W.; Li, S. T.; Jin, R. C. Toward the tailoring chemistry of metal nanoclusters for enhancing functionalities. Acc. Chem. Res. 2018, 51, 2764–2773.

[81]

Kwak, K.; Lee, D. Electrochemistry of atomically precise metal nanoclusters. Acc. Chem. Res. 2019, 52, 12–22.

[82]

Boronat, M.; Leyva-Pérez, A.; Corma, A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: Attempts to predict reactivity with clusters and nanoparticles of gold. Acc. Chem. Res. 2014, 47, 834–844.

[83]

Huang, J. H.; Si, Y. B.; Dong, X. Y.; Wang, Z. Y.; Liu, L. Y.; Zang, S. Q.; Mak, T. C. W. Symmetry breaking of atomically precise fullerene-like metal nanoclusters. J. Am. Chem. Soc. 2021, 143, 12439–12444.

[84]

Li, J.; Hou, S. J.; Yao, Y. R.; Zhang, C. Y.; Wu, Q. Q.; Wang, H. C.; Zhang, H. W.; Liu, X. Y.; Tang, C.; Wei, M. X. et al. Room-temperature logic-in-memory operations in single-metallofullerene devices. Nat. Mater. 2022, 21, 917–923.

[85]

Greenwald, J. E.; Cameron, J.; Findlay, N. J.; Fu, T. R.; Gunasekaran, S.; Skabara, P. J.; Venkataraman, L. Highly nonlinear transport across single-molecule junctions via destructive quantum interference. Nat. Nanotechnol. 2021, 16, 313–317.

[86]

Sherif, S.; Rubio-Bollinger, G.; Pinilla-Cienfuegos, E.; Coronado, E.; Cuevas, J. C.; Agrait, N. Current rectification in a single molecule diode: The role of electrode coupling. Nanotechnology 2015, 26, 291001.

[87]

Schönenberger, C.; van Houten, H.; Donkersloot, H. C. Single-electron tunnelling observed at room temperature by scanning-tunnelling microscopy. Eur. Lett. 1992, 20, 249–254.

[88]

Zhang, N.; Hu, H.; Qu, L.; Huo, R.; Zhang, J.; Duan, C. B.; Meng, Y. S.; Han, C. M.; Xu, H. Overcoming efficiency limitation of cluster light-emitting diodes with asymmetrically functionalized biphosphine Cu4I4 cubes. J. Am. Chem. Soc. 2022, 144, 6551–6557.

[89]

Lee, T. H.; Dickson, R. M. Single-molecule LEDs from nanoscale electroluminescent junctions. J. Phys. Chem. B 2003, 107, 7387–7390.

[90]

Benten, W.; Nilius, N.; Ernst, N.; Freund, H. J. Photon emission spectroscopy of single oxide-supported Ag-Au alloy clusters. Phys. Rev. B 2005, 72, 045403.

[91]

Yu, A.; Li, S. W.; Czap, G.; Ho, W. Tunneling-electron-induced light emission from single gold nanoclusters. Nano Lett. 2016, 16, 5433–5436.

[92]

Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R. Single-molecule magnets. MRS Bull. 2011, 25, 66–71.

[93]

Heersche, H. B.; de Groot, Z.; Folk, J. A.; van der Zant, H. S. J.; Romeike, C.; Wegewijs, M. R.; Zobbi, L.; Barreca, D.; Tondello, E.; Cornia, A. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 2006, 96, 206801.

[94]

Barraza-Lopez, S.; Park, K.; García-Suárez, V.; Ferrer, J. First-principles study of electron transport through the single-molecule magnet Mn12. Phys. Rev. Lett. 2009, 102, 246801.

[95]

Hao, H.; Zheng, X. H.; Jia, T.; Zeng, Z. Room temperature memory device using single-molecule magnets. RSC Adv. 2015, 5, 54667–54671.

[96]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[97]

Zang, Y. P.; Stone, I.; Inkpen, M. S.; Ng, F.; Lambert, T. H.; Nuckolls, C.; Steigerwald, M. L.; Roy, X.; Venkataraman, L. In situ coupling of single molecules driven by gold-catalyzed electrooxidation. Angew. Chem., Int. Ed. 2019, 58, 16008–16012.

[98]

Peiris, C. R.; Vogel, Y. B.; Le Brun, A. P.; Aragonès, A. C.; Coote, M. L.; Díez-Pérez, I.; Ciampi, S.; Darwish, N. Metal-single-molecule-semiconductor junctions formed by a radical reaction bridging gold and silicon electrodes. J. Am. Chem. Soc. 2019, 141, 14788–14797.

[99]

Aragonès, A. C.; Haworth, N. L.; Darwish, N.; Ciampi, S.; Bloomfield, N. J.; Wallace, G. G.; Diez-Perez, I.; Coote, M. L. Electrostatic catalysis of a Diels–Alder reaction. Nature 2016, 531, 88–91.

[100]

Shen, H.; Xu, Z.; Wang, L. Z.; Han, Y. Z.; Liu, X. H.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Tertiary chiral nanostructures from C–H···F directed assembly of chiroptical superatoms. Angew. Chem., Int. Ed. 2021, 60, 22411–22416.

[101]

Liu, W. D.; Wang, J. Q.; Yuan, S. F.; Chen, X.; Wang, Q. M. Chiral superatomic nanoclusters Ag47 induced by the ligation of amino acids. Angew. Chem., Int. Ed. 2021, 60, 11430–11435.

[102]

Liu, X.; Saranya, G.; Huang, X. Y.; Cheng, X. L.; Wang, R.; Chen, M. Y.; Zhang, C. F.; Li, T.; Zhu, Y. Ag2Au50(PET)36 nanocluster: Dimeric assembly of Au25(PET)18 enabled by silver atoms. Angew. Chem., Int. Ed. 2020, 59, 13941–13946.

[103]

Zheng, K. Y.; Fung, V.; Yuan, X.; Jiang, D. E.; Xie, J. P. Real time monitoring of the dynamic intracluster diffusion of single gold atoms into silver nanoclusters. J. Am. Chem. Soc. 2019, 141, 18977–18983.

[104]

Wang, Y.; Su, H.; Ren, L.; Malola, S.; Lin, S.; Teo, B. K.; Hakkinen, H.; Zheng, N. Site preference in multimetallic nanoclusters: Incorporation of alkali metal ions or copper atoms into the alkynyl-protected body-centered cubic cluster [Au7Ag8(C≡CtBu)12]+. Angew. Chem., Int. Ed. 2016, 55, 15152–15156.

[105]

Liao, L. W.; Zhou, S. M.; Dai, Y. F.; Liu, L. R.; Yao, C. H.; Fu, C. F.; Yang, J. L.; Wu, Z. K. Mono-mercury doping of Au25 and the HOMO/LUMO energies evaluation employing differential pulse voltammetry. J. Am. Chem. Soc. 2015, 137, 9511–9514.

[106]

Wang, K.; Meyhofer, E.; Reddy, P. Thermal and thermoelectric properties of molecular junctions. Adv. Funct. Mater. 2019, 30, 1904534.

[107]

Rincón-García, L.; Ismael, A. K.; Evangeli, C.; Grace, I.; Rubio-Bollinger, G.; Porfyrakis, K.; Agraït, N.; Lambert, C. J. Molecular design and control of fullerene-based bi-thermoelectric materials. Nat. Mater. 2016, 15, 289–293.

Publication history
Copyright
Acknowledgements

Publication history

Received: 19 March 2023
Revised: 16 April 2023
Accepted: 23 April 2023
Published: 29 June 2023
Issue date: January 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22250003, 22173075, 21933012, and 22003052) and the Fundamental Research Funds for the Central Universities (Nos. 20720220020, 20720220072, and 20720200068).

Return