AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multiscale structural design of MnO2@GO superoxide dismutase nanozyme for protection against antioxidant damage

Yue Yu1Yinuo Zhang1Yu Wang2Wenxing Chen3Zhanjun Guo1( )Ningning Song1( )Minmin Liang1 ( )
Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201204, China
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

Inspired by the structure of natural Mn-superoxide dismutase (Mn-SOD), the MnO2@GO-SOD nanozyme was constructed with graphene oxide (GO) sheets as frameworks, and δ-MnO2 nanoflakes as the active sites. The as-synthesized nanozyme exhibited layered structures with honeycomb-like morphology, which largely promoted the SOD-like activity and provided the nanozyme catalytic specificity.

Abstract

Rational design of metallic active sites and its microenvironment is critical for constructing superoxide dismutase (SOD) nanozymes. Here, we reported a novel SOD nanozyme design, with employing graphene oxide (GO) as the framework, and δ-MnO2 as the active sites, to mimic the natural Mn-SOD. This MnO2@GO nanozyme exhibited multiscale laminated structures with honeycomb-like morphology, providing highly specific surface area for ·O2 adsorption and confined spaces for subsequent catalytic reactions. Thus, the nanozyme achieved superlative SOD-like catalytic performance with inhibition rate of 95.5%, which is 222.6% and 1605.4% amplification over GO and MnO2 nanoparticles, respectively. Additionally, such unique hierarchical structural design endows MnO2@GO with catalytic specificity, which was not present in the individual component (GO or MnO2). This multiscale structural design provides new strategies for developing highly active and specific SOD nanozymes.

Electronic Supplementary Material

Download File(s)
12274_2023_5760_MOESM1_ESM.pdf (2.2 MB)

References

[1]

Miller, D. Transition metals as catalysts of “autoxidation” reactions. Free Radical Biol. Med. 1990, 8, 95–108.

[2]

Zhao, H. Q.; Zhang, R. F.; Yan, X. Y.; Fan, K. L. Superoxide dismutase nanozymes: An emerging star for anti-oxidation. J. Mater. Chem. B 2021, 9, 6939–6957.

[3]

Valko, M.; Morris, H.; Cronin, M. T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208.

[4]

Reaume, A. G.; Elliott, J. L.; Hoffman, E. K.; Kowall, N. W.; Ferrante, R. J.; Siwek, D. R.; Wilcox, H. M.; Flood, D. G.; Beal, M. F.; Brown, R. H. Jr. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet. 1996, 13, 43–47.

[5]

Finkel, T.; Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247.

[6]

Tong, L. Y.; Chuang, C. C.; Wu, S. Y.; Zuo, L. Reactive oxygen species in redox cancer therapy. Cancer Lett. 2015, 367, 18–25.

[7]

Fridovich, I. Superoxide radicals, superoxide dismutases and the aerobic lifestyle. Photochem. Photobiol. 1978, 28, 733–741.

[8]

Lu, M. J.; Wang, J. L.; Ren, G. Y.; Qin, F. J.; Zhao, Z. Q.; Li, K.; Chen, W. X.; Lin, Y. Q. Superoxide-like Cu/GO single-atom catalysts nanozyme with high specificity and activity for removing superoxide free radicals. Nano Res. 2022, 15, 8804–8809.

[9]

Zhong, J.; Zhang, Q.; Zhang, Z.; Shi, K. X.; Sun, Y. C.; Liu, T.; Lin, J.; Yang, K. Albumin mediated reactive oxygen species scavenging and targeted delivery of methotrexate for rheumatoid arthritis therapy. Nano Res. 2022, 15, 153–161.

[10]

Wang, W.; Jiang, X. P.; Chen, K. Z. Iron phosphate microflowers as peroxidase mimic and superoxide dismutase mimic for biocatalysis and biosensing. Chem. Commun. 2012, 48, 7289–7291.

[11]

Zelko, I. N.; Mariani, T. J.; Folz, R. J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biol. Med. 2002, 33, 337–349.

[12]

Gorecki, M.; Beck, Y.; Hartman, J. R.; Fischer, M.; Weiss, L.; Tochner, Z.; Slavin, S.; Nimrod, A. Recombinant human superoxide dismutases: Production and potential therapeutical uses. Free Radical Res. Commun. 1991, 12, 401–410.

[13]

Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105.

[14]

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

[15]

Jiang, B.; Guo, Z. J.; Liang, M. M. Recent progress in single-atom nanozymes research. Nano Res. 2023, 16, 1878–1889.

[16]

Ding, H.; Wang, D. J.; Huang, H. B.; Chen, X. Z.; Wang, J.; Sun, J. J.; Zhang, J. L.; Lu, L.; Miao, B. P.; Cai, Y. J. et al. Black phosphorus quantum dots as multifunctional nanozymes for tumor photothermal/catalytic synergistic therapy. Nano Res. 2022, 15, 1554–1563.

[17]

Wong, G. H. Protective roles of cytokines against radiation: Induction of mitochondrial MnSOD. Biochim. Biophys. Acta 1995, 1271, 205–209.

[18]

Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S. C.; Wang, X. Y.; Wu, J. J. X.; Li, S. R.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927–2933.

[19]

Jiang, X. M.; Gray, P.; Patel, M.; Zheng, J. W.; Yin, J. J. Crossover between anti- and pro-oxidant activities of different manganese oxide nanoparticles and their biological implications. J. Mater. Chem. B 2020, 8, 1191–1201.

[20]

Azadmanesh, J.; Borgstahl, G. E. O. A review of the catalytic mechanism of human manganese superoxide dismutase. Antioxidants 2018, 7, 25.

[21]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[22]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[23]

Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024.

[24]

Jia, F. C.; Xiao, X.; Nashalian, A.; Shen, S.; Yang, L.; Han, Z. Y.; Qu, H. J.; Wang, T. M.; Ye, Z.; Zhu, Z. J. et al. Advances in graphene oxide membranes for water treatment. Nano Res. 2022, 15, 6636–6654.

[25]

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

[26]

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Crystalline Mater. 2005, 220, 567–570.

[27]

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

[28]

Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J. J.; Pham, D. T.; Jo, J.; Xiu, Z. L.; Mathew, V.; Kim, J. A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 2015, 60, 121–125.

[29]

Chen, L. J.; Yin, H. F.; Zhang, Y. C.; Xie, H. D. Facile synthesis of modified MnO2/reduced graphene oxide nanocomposites and their application in supercapacitors. Nano 2020, 15, 2050099.

[30]

Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’ Homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

[31]

Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873.

[32]

Julien, C.; Massot, M.; Baddour-Hadjean, R.; Franger, S.; Bach, S.; Pereira-Ramos, J. P. Raman spectra of birnessite manganese dioxides. Solid State Ionics 2003, 159, 345–356.

[33]

Li, Z. P.; Mi, Y. J.; Liu, X. H.; Liu, S.; Yang, S. R.; Wang, J. Q. Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J. Mater. Chem. 2011, 21, 14706–14711.

[34]

Kim, M.; Hwang, Y.; Kim, J. Process dependent graphene/MnO2 composites for supercapacitors. Chem. Eng. J. 2013, 230, 482–490.

[35]

Lei, Z. B.; Shi, F. H.; Lu, L. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl. Mater. Interfaces 2012, 4, 1058–1064.

[36]
Mondal, J.; Srivastava, S. K. δ-MnO2 nanoflowers and their reduced graphene oxide nanocomposites for electromagnetic interference shielding. ACS Appl. Nano Mater. 2020, 3, 11048–11059.
[37]

Liu, Y. P.; Sheng, W. F.; Wu, Z. H. Synchrotron radiation and its applications progress in inorganic materials. J. Inorg. Mater. 2021, 36, 901–918.

[38]

Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

[39]

Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen, W. X. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994–5999.

[40]

Kobayashi, S.; Kottegoda, I. R. M.; Uchimoto, Y.; Wakihara, M. XANES and EXAFS analysis of nano-size manganese dioxide as a cathode material for lithium-ion batteries. J. Mater. Chem. 2004, 14, 1843–1848.

[41]

Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

[42]

Shen, X. M.; Liu, W. Q.; Gao, X. J.; Lu, Z. H.; Wu, X. C.; Gao, X. F. Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: A general way to the activation of molecular oxygen. J. Am. Chem. Soc. 2015, 137, 15882–15891.

[43]

De Gruijl, F. R. Skin cancer and solar UV radiation. Eur. J. Cancer 1999, 35, 2003–2009.

[44]

Melnikova, V. O.; Ananthaswamy, H. N. Cellular and molecular events leading to the development of skin cancer. Mutat. Res. 2005, 571, 91–106.

[45]

Loft, S.; Poulsen, H. E. Cancer risk and oxidative DNA damage in man. J. Mol. Med. 1996, 74, 297–312.

[46]

Marnett, L. J. Oxyradicals and DNA damage. Carcinogenesis 2000, 21, 361–370.

[47]

Kasai, H. Chemistry-based studies on oxidative DNA damage: Formation, repair, and mutagenesis. Free Radical Biol. Med. 2002, 33, 450–456.

[48]
Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed., in press, https://doi.org.10.1002/anie.202301879.
Nano Research
Pages 10763-10769
Cite this article:
Yu Y, Zhang Y, Wang Y, et al. Multiscale structural design of MnO2@GO superoxide dismutase nanozyme for protection against antioxidant damage. Nano Research, 2023, 16(8): 10763-10769. https://doi.org/10.1007/s12274-023-5760-5
Topics:

1041

Views

19

Crossref

15

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 10 March 2023
Revised: 11 April 2023
Accepted: 19 April 2023
Published: 25 May 2023
© Tsinghua University Press 2023
Return