Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Rational design of metallic active sites and its microenvironment is critical for constructing superoxide dismutase (SOD) nanozymes. Here, we reported a novel SOD nanozyme design, with employing graphene oxide (GO) as the framework, and δ-MnO2 as the active sites, to mimic the natural Mn-SOD. This MnO2@GO nanozyme exhibited multiscale laminated structures with honeycomb-like morphology, providing highly specific surface area for ·O2− adsorption and confined spaces for subsequent catalytic reactions. Thus, the nanozyme achieved superlative SOD-like catalytic performance with inhibition rate of 95.5%, which is 222.6% and 1605.4% amplification over GO and MnO2 nanoparticles, respectively. Additionally, such unique hierarchical structural design endows MnO2@GO with catalytic specificity, which was not present in the individual component (GO or MnO2). This multiscale structural design provides new strategies for developing highly active and specific SOD nanozymes.
Miller, D. Transition metals as catalysts of “autoxidation” reactions. Free Radical Biol. Med. 1990, 8, 95–108.
Zhao, H. Q.; Zhang, R. F.; Yan, X. Y.; Fan, K. L. Superoxide dismutase nanozymes: An emerging star for anti-oxidation. J. Mater. Chem. B 2021, 9, 6939–6957.
Valko, M.; Morris, H.; Cronin, M. T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208.
Reaume, A. G.; Elliott, J. L.; Hoffman, E. K.; Kowall, N. W.; Ferrante, R. J.; Siwek, D. R.; Wilcox, H. M.; Flood, D. G.; Beal, M. F.; Brown, R. H. Jr. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet. 1996, 13, 43–47.
Finkel, T.; Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247.
Tong, L. Y.; Chuang, C. C.; Wu, S. Y.; Zuo, L. Reactive oxygen species in redox cancer therapy. Cancer Lett. 2015, 367, 18–25.
Fridovich, I. Superoxide radicals, superoxide dismutases and the aerobic lifestyle. Photochem. Photobiol. 1978, 28, 733–741.
Lu, M. J.; Wang, J. L.; Ren, G. Y.; Qin, F. J.; Zhao, Z. Q.; Li, K.; Chen, W. X.; Lin, Y. Q. Superoxide-like Cu/GO single-atom catalysts nanozyme with high specificity and activity for removing superoxide free radicals. Nano Res. 2022, 15, 8804–8809.
Zhong, J.; Zhang, Q.; Zhang, Z.; Shi, K. X.; Sun, Y. C.; Liu, T.; Lin, J.; Yang, K. Albumin mediated reactive oxygen species scavenging and targeted delivery of methotrexate for rheumatoid arthritis therapy. Nano Res. 2022, 15, 153–161.
Wang, W.; Jiang, X. P.; Chen, K. Z. Iron phosphate microflowers as peroxidase mimic and superoxide dismutase mimic for biocatalysis and biosensing. Chem. Commun. 2012, 48, 7289–7291.
Zelko, I. N.; Mariani, T. J.; Folz, R. J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biol. Med. 2002, 33, 337–349.
Gorecki, M.; Beck, Y.; Hartman, J. R.; Fischer, M.; Weiss, L.; Tochner, Z.; Slavin, S.; Nimrod, A. Recombinant human superoxide dismutases: Production and potential therapeutical uses. Free Radical Res. Commun. 1991, 12, 401–410.
Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105.
Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.
Jiang, B.; Guo, Z. J.; Liang, M. M. Recent progress in single-atom nanozymes research. Nano Res. 2023, 16, 1878–1889.
Ding, H.; Wang, D. J.; Huang, H. B.; Chen, X. Z.; Wang, J.; Sun, J. J.; Zhang, J. L.; Lu, L.; Miao, B. P.; Cai, Y. J. et al. Black phosphorus quantum dots as multifunctional nanozymes for tumor photothermal/catalytic synergistic therapy. Nano Res. 2022, 15, 1554–1563.
Wong, G. H. Protective roles of cytokines against radiation: Induction of mitochondrial MnSOD. Biochim. Biophys. Acta 1995, 1271, 205–209.
Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S. C.; Wang, X. Y.; Wu, J. J. X.; Li, S. R.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927–2933.
Jiang, X. M.; Gray, P.; Patel, M.; Zheng, J. W.; Yin, J. J. Crossover between anti- and pro-oxidant activities of different manganese oxide nanoparticles and their biological implications. J. Mater. Chem. B 2020, 8, 1191–1201.
Azadmanesh, J.; Borgstahl, G. E. O. A review of the catalytic mechanism of human manganese superoxide dismutase. Antioxidants 2018, 7, 25.
Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.
Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.
Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024.
Jia, F. C.; Xiao, X.; Nashalian, A.; Shen, S.; Yang, L.; Han, Z. Y.; Qu, H. J.; Wang, T. M.; Ye, Z.; Zhu, Z. J. et al. Advances in graphene oxide membranes for water treatment. Nano Res. 2022, 15, 6636–6654.
Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.
Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Crystalline Mater. 2005, 220, 567–570.
Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.
Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J. J.; Pham, D. T.; Jo, J.; Xiu, Z. L.; Mathew, V.; Kim, J. A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 2015, 60, 121–125.
Chen, L. J.; Yin, H. F.; Zhang, Y. C.; Xie, H. D. Facile synthesis of modified MnO2/reduced graphene oxide nanocomposites and their application in supercapacitors. Nano 2020, 15, 2050099.
Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’ Homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.
Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873.
Julien, C.; Massot, M.; Baddour-Hadjean, R.; Franger, S.; Bach, S.; Pereira-Ramos, J. P. Raman spectra of birnessite manganese dioxides. Solid State Ionics 2003, 159, 345–356.
Li, Z. P.; Mi, Y. J.; Liu, X. H.; Liu, S.; Yang, S. R.; Wang, J. Q. Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J. Mater. Chem. 2011, 21, 14706–14711.
Kim, M.; Hwang, Y.; Kim, J. Process dependent graphene/MnO2 composites for supercapacitors. Chem. Eng. J. 2013, 230, 482–490.
Lei, Z. B.; Shi, F. H.; Lu, L. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl. Mater. Interfaces 2012, 4, 1058–1064.
Liu, Y. P.; Sheng, W. F.; Wu, Z. H. Synchrotron radiation and its applications progress in inorganic materials. J. Inorg. Mater. 2021, 36, 901–918.
Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.
Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen, W. X. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994–5999.
Kobayashi, S.; Kottegoda, I. R. M.; Uchimoto, Y.; Wakihara, M. XANES and EXAFS analysis of nano-size manganese dioxide as a cathode material for lithium-ion batteries. J. Mater. Chem. 2004, 14, 1843–1848.
Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.
Shen, X. M.; Liu, W. Q.; Gao, X. J.; Lu, Z. H.; Wu, X. C.; Gao, X. F. Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: A general way to the activation of molecular oxygen. J. Am. Chem. Soc. 2015, 137, 15882–15891.
De Gruijl, F. R. Skin cancer and solar UV radiation. Eur. J. Cancer 1999, 35, 2003–2009.
Melnikova, V. O.; Ananthaswamy, H. N. Cellular and molecular events leading to the development of skin cancer. Mutat. Res. 2005, 571, 91–106.
Loft, S.; Poulsen, H. E. Cancer risk and oxidative DNA damage in man. J. Mol. Med. 1996, 74, 297–312.
Marnett, L. J. Oxyradicals and DNA damage. Carcinogenesis 2000, 21, 361–370.
Kasai, H. Chemistry-based studies on oxidative DNA damage: Formation, repair, and mutagenesis. Free Radical Biol. Med. 2002, 33, 450–456.