AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Antimicrobial hydrogel with multiple pH-responsiveness for infected burn wound healing

Na Li1,§Wan Liu1,2,§Xiaoyan Zheng1( )Qing Wang3Lixin Shen3( )Junfeng Hui1,2Daidi Fan1,2( )
Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
Biotech. & Biomed. Research Institute, Northwest University, Xi’an 710069, China
The college of life sciences, Northwest University, Xi’an 710069, China

§ Na Li and Wan Liu contributed equally to this work.

Show Author Information

Graphical Abstract

This paper showed the construction mechanism of the P-ZIF nanoparticles and H-A/SA/P-ZIF (HASPZ) (SA = sodium alginate) hydrogels, and their application in the treatment of infected burn wound.

Abstract

Burns are a common medical problem globally, and wound infection is one of the major causes of inducing related complications. Although antibiotics effectively prevent wound infections, the misuse of antibiotics has created a new problem of superbugs. Herein, we propose a new strategy to obtain pH-responsive antimicrobial P-ZIF (ZIF: zeolitic imidazolate framework) by loading polyhexamethylenebiguanide (PHMB) into the framework of ZIF-8 nanoparticles. This will enable PHMB to be released in the weak acid environment of an infected wound. To address burn infections, P-ZIF nanoparticles were loaded into a hydrogel system made of sodium alginate (SA) and 3-aminophenylboronic acid modified human-like collagen (H-A) through borate ester bonds. The resulting H-A/SA/P-ZIF (HASPZ) hydrogel dressing not only possesses antibacterial and wound healing properties but also has dual pH responsiveness to prevent the overuse of medication while effectively treat deep second-degree burns. Therefore, P-ZIF nanoparticles and the corresponding HASPZ hydrogel dressing are considered of significant importance in antimicrobial, drug delivery, and wound repair.

Electronic Supplementary Material

Download File(s)
12274_2023_5751_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Jahromi, M. A. M.; Zangabad, P. S.; Basri, S. M. M.; Zangabad, K. S.; Ghamarypour, A.; Aref, A. R.; Karimi, M.; Hamblin, M. R. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv. Drug Delivery Rev. 2018, 123, 33–64.

[2]

Jeschke, M. G.; Van Baar, M. E.; Choudhry, M. A.; Chung, K. K.; Gibran, N. S.; Logsetty, S. Burn injury. Nat. Rev. Dis. Primers 2020, 6, 11.

[3]

Church, D.; Elsayed, S.; Reid, O.; Winston, B.; Lindsay, R. Burn wound infections. Clin. Microbiol. Rev. 2006, 19, 403–434.

[4]

Huang, W. J.; Wang, Y. X.; Huang, Z. Q.; Wang, X. L.; Chen, L. Y.; Zhang, Y.; Zhang, L. N. On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing. ACS Appl. Mater. Interfaces 2018, 10, 41076–41088.

[5]

Wang, Y. W.; Beekman, J.; Hew, J.; Jackson, S.; Issler-Fisher, A. C.; Parungao, R.; Lajevardi, S. S.; Li, Z.; Maitz, P. K. M. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv. Drug Delivery Rev. 2018, 123, 3–17.

[6]

Jayakumar, A.; Jose, V. K.; Lee, J. M. Hydrogels for medical and environmental applications. Small Methods 2020, 4, 1900735.

[7]

Li, S. Q.; Dong, S. J.; Xu, W. G.; Tu, S. C.; Yan, L. S.; Zhao, C. W.; Ding, J. X.; Chen, X. S. Antibacterial hydrogels. Adv. Sci. 2018, 5, 1700527.

[8]

Caló, E.; Khutoryanskiy, V. V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267.

[9]

Liang, Y. P.; He, J. H.; Guo, B. L. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722.

[10]

Huang, H. Y.; Dong, Z. C.; Ren, X. Y.; Jia, B.; Li, G. W.; Zhou, S. W.; Zhao, X.; Wang, W. Z. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. Nano Res. 2023, 16, 3475–3515.

[11]

Maleki, A.; He, J. H.; Bochani, S.; Nosrati, V.; Shahbazi, M. A.; Guo, B. L. Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 2021, 15, 18895–18930.

[12]

Huang, Y.; Mu, L.; Zhao, X.; Han, Y.; Guo, B. L. Bacterial growth-induced tobramycin smart release self-healing hydrogel for Pseudomonas aeruginosa-infected burn wound healing. ACS Nano 2022, 16, 13022–13036.

[13]

Xiong, Y. H.; Zhang, L. J.; Xiu, Z. P.; Yu, B. R.; Duan, S.; Xu, F. J. Derma-like antibacterial polysaccharide gel dressings for wound care. Acta Biomater. 2022, 148, 119–132.

[14]

Zhao, Y.; Chen, L.; Wang, Y. N.; Song, X. Y.; Li, K. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.

[15]

Maleki, A.; Shahbazi, M. A.; Alinezhad, V.; Santos, H. A. The progress and prospect of zeolitic imidazolate frameworks in cancer therapy, antibacterial activity, and biomineralization. Adv. Healthc. Mater. 2020, 9, 2000248.

[16]

Carraro, F.; Williams, J. D.; Linares-Moreau, M.; Parise, C.; Liang, W. B.; Amenitsch, H.; Doonan, C.; Kappe, C. O.; Falcaro, P. Continuous-flow synthesis of ZIF-8 biocomposites with tunable particle size. Angew. Chem., Int. Ed. 2020, 59, 8123–8127.

[17]

Shi, L. X.; Wu, J.; Qiao, X. R.; Ha, Y.; Li, Y. P.; Peng, C.; Wu, R. B. In situ biomimetic mineralization on ZIF-8 for smart drug delivery. ACS Biomater. Sci. Eng. 2020, 6, 4595–4603.

[18]

Yang, N.; Venezuela, J.; Almathami, S.; Dargusch, M. Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects. Biomaterials 2022, 280, 121301.

[19]

Fu, J. T.; Zhou, Y. X.; Liu, T.; Wang, W. H.; Zhao, Y. T.; Sun, Y.; Zhang, Y. M.; Qin, W. X.; Chen, Z. W.; Lu, C. et al. A triple-enhanced chemodynamic approach based on glucose-powered hybrid nanoreactors for effective bacteria killing. Nano Res. 2023, 16, 2682–2694.

[20]

Taheri, M.; Ashok, D.; Sen, T.; Enge, T. G.; Verma, N. K.; Tricoli, A.; Lowe, A.; Nisbet, D. R.; Tsuzuki, T. Stability of ZIF-8 nanopowders in bacterial culture media and its implication for antibacterial properties. Chem. Eng. J. 2021, 413, 127511.

[21]

Liu, Y.; Li, T.; Sun, M. L.; Cheng, Z. Q.; Jia, W. Y.; Jiao, K.; Wang, S. R.; Jiang, K. Z.; Yang, Y. H.; Dai, Z. H. et al. ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the treatment of periodontitis. Acta Biomater. 2022, 146, 37–48.

[22]

Su, L. Z.; Li, Y. F.; Liu, Y.; Ma, R. J.; Liu, Y.; Huang, F.; An, Y. L.; Ren, Y. J.; Van Der Mei, H. C.; Busscher, H. J. et al. Antifungal-inbuilt metal-organic-frameworks eradicate Candida albicans biofilms. Adv. Funct. Mater. 2020, 30, 2000537.

[23]

Peng, W.; Yin, H.; Liu, P. M.; Peng, J. M.; Sun, J.; Zhang, X.; Gu, Y. H.; Dong, X. H.; Ma, Z. Z.; Shen, J. et al. Covalently construction of poly(hexamethylene biguanide) as high-efficiency antibacterial coating for silicone rubber. Chem. Eng. J. 2021, 412, 128707.

[24]

Chindera, K.; Mahato, M.; Sharma, A. K.; Horsley, H.; Kloc-Muniak, K.; Kamaruzzaman, N. F.; Kumar, S.; McFarlane, A.; Stach, J.; Bentin, T. et al. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Sci. Rep. 2016, 6, 23121.

[25]

Zheng, M.; Liu, S.; Guan, X. G.; Xie, Z. G. One-step synthesis of nanoscale zeolitic imidazolate frameworks with high curcumin loading for treatment of cervical cancer. ACS Appl. Mater. Interfaces 2015, 7, 22181–22187.

[26]

Wang, M. M.; Yao, J. X.; Shen, S. H.; Heng, C. N.; Zhang, Y. Y.; Yang, T.; Zheng, X. Y. A scaffold with zinc-whitlockite nanoparticles accelerates bone reconstruction by promoting bone differentiation and angiogenesis. Nano Res. 2023, 16, 757–770.

[27]

Shen, S. H.; Fan, D. D.; Yuan, Y.; Ma, X. X.; Zhao, J.; Yang, J. An ultrasmall infinite coordination polymer nanomedicine-composited biomimetic hydrogel for programmed dressing-chemo-low level laser combination therapy of burn wounds. Chem. Eng. J. 2021, 426, 130610.

[28]

Zheng, G. C.; Chen, Z. W.; Sentosun, K.; Pérez-Juste, I.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Hong, M. Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures. Nanoscale 2017, 9, 16645–16651.

[29]

Zong, L.; Yang, Y. Q.; Yang, H.; Wu, X. C. Shapeable aerogels of metal-organic-frameworks supported by aramid nanofibrils for efficient adsorption and interception. ACS Appl. Mater. Interfaces 2020, 12, 7295–7301.

[30]

Souza, C.; Watanabe, E.; Borgheti-Cardoso, L. N.; De Abreu Fantini, M. C.; Lara, M. G. Mucoadhesive system formed by liquid crystals for buccal administration of poly(hexamethylene biguanide) hydrochloride. J. Pharm. Sci. 2014, 103, 3914–3923.

[31]

Cruz, L.; Mateus, N.; De Freitas, V. pH-regulated interaction modes between cyanidin-3-glucoside and phenylboronic acid-modified alginate. Carbohyd. Polym. 2022, 280, 119029.

[32]

Shen, D.; Yu, H. J.; Wang, L.; Chen, X.; Feng, J. Y.; Li, C. J.; Xiong, W.; Zhang, Q. Glucose-responsive hydrogel-based microneedles containing phenylborate ester bonds and N-isopropylacrylamide moieties and their transdermal drug delivery properties. Eur. Polym. J. 2021, 148, 110348.

[33]

Lei, H.; Fan, D. D. Conductive, adaptive, multifunctional hydrogel combined with electrical stimulation for deep wound repair. Chem. Eng. J. 2021, 421, 129578.

[34]

Yuan, Y.; Shen, S. H.; Fan, D. D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: Shape adaptability, injectable self-healing property and enhanced adhesion. Biomaterials 2021, 276, 120838.

[35]

Huang, Y.; Bai, L.; Yang, Y. T.; Yin, Z. H.; Guo, B. L. Biodegradable gelatin/silver nanoparticle composite cryogel with excellent antibacterial and antibiofilm activity and hemostasis for Pseudomonas aeruginosa-infected burn wound healing. J. Colloid Interface Sci. 2022, 608, 2278–2289.

[36]

Zhao, Y.; Yu, Y. P.; Gao, F.; Wang, Z. Y.; Chen, W. X.; Chen, C.; Yang, J.; Yao, Y. C.; Du, J. Y.; Zhao, C. et al. A highly accessible copper single-atom catalyst for wound antibacterial application. Nano Res. 2021, 14, 4808–4813.

[37]

Li, Y.; Fu, R. Z.; Duan, Z. G.; Zhu, C. H.; Fan, D. D. Construction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healing. Bioact. Mater. 2022, 9, 461–474.

[38]

Qu, J.; Zhao, X.; Liang, Y. P.; Xu, Y. M.; Ma, P. X.; Guo, B. L. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem. Eng. J. 2019, 362, 548–560.

[39]

Gao, S.; Qu, L. L.; Zhu, C. H.; Ouyang, P. K.; Fan, D. D. A novel degradable injectable HLC-HPA hydrogel with anti-inflammatory activity for biomedical materials: Preparation, characterization, in vivo and in vitro evaluation. Sci. China Technol. Sci. 2020, 63, 2449–2463.

[40]

Sun, G. M.; Zhang, X. J.; Shen, Y. I.; Sebastian, R.; Dickinson, L. E.; Fox-Talbot, K.; Reinblatt, M.; Steenbergen, C.; Harmon, J. W.; Gerecht, S. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Natl. Acad. Sci. USA 2011, 108, 20976–20981.

Nano Research
Pages 11139-11148
Cite this article:
Li N, Liu W, Zheng X, et al. Antimicrobial hydrogel with multiple pH-responsiveness for infected burn wound healing. Nano Research, 2023, 16(8): 11139-11148. https://doi.org/10.1007/s12274-023-5751-6
Topics:

1280

Views

7

Crossref

10

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 09 March 2023
Revised: 11 April 2023
Accepted: 16 April 2023
Published: 22 June 2023
© Tsinghua University Press 2023
Return