Journal Home > Volume 16 , Issue 9

A detailed geometric analysis of spherical triboelectric nanogenerators is presented. In comparison with earlier works on spherical triboelectric generators, the general case where the moving dielectric rolls on the inside surface of the larger sphere of the TENG is discussed in terms of maximum energy harvesting. An optimization analysis of geometrical parameters allows various cases of electrode geometry, either in the form of a spherical circle, spherical ellipse, spherical rectangle, or spherical isosceles trapezium, to be solved. The analytical insight and computational effective models provided by differential geometry make the mathematical model superior compared to standard three-dimensional (3D) numerical methods.


menu
Abstract
Full text
Outline
About this article

Modeling and optimization of a spherical triboelectric generator

Show Author's information Jens Gravesen1Morten Willatzen2( )Jiajia Shao2Zhong Lin Wang2,3
DTU Compute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Abstract

A detailed geometric analysis of spherical triboelectric nanogenerators is presented. In comparison with earlier works on spherical triboelectric generators, the general case where the moving dielectric rolls on the inside surface of the larger sphere of the TENG is discussed in terms of maximum energy harvesting. An optimization analysis of geometrical parameters allows various cases of electrode geometry, either in the form of a spherical circle, spherical ellipse, spherical rectangle, or spherical isosceles trapezium, to be solved. The analytical insight and computational effective models provided by differential geometry make the mathematical model superior compared to standard three-dimensional (3D) numerical methods.

Keywords: modeling and optimization, spherical triboelectric nanogenerator, differential geometry analysis, electrode shape study

References(12)

[1]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[2]
Harper, W. F. Contact and Frictional Electrification; Clarendon Press: Oxford, 1967.
[3]

Horn, R. G.; Smith, D. T.; Grabbe, A. Contact electrification induced by monolayer modification of a surface and relation to acid-base interactions. Nature 1993, 366, 442–443.

[4]

Lowell, J.; Rose-Innes, A. C. Contact electrification. Adv. Phys. 1980, 29, 947–1023.

[5]

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

[6]

Hinchet, R.; Yoon, H. J.; Ryu, H.; Kim, M. K.; Choi, E. K.; Kim, D. S.; Kim, S. W. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 2019, 365, 491–494.

[7]
Wang, Z. L.; Lin, L.; Chen, J.; Niu, S. M.; Zi, Y. L. Triboelectric Nanogenerators; Springer: Cham, 2016.
DOI
[8]

Wang, Z. L. New wave power. Nature 2017, 542, 159–160.

[9]

Shao, J. J.; Willatzen, M.; Wang, Z. L. Theoretical modeling of triboelectric nanogenerators (TENGs). J. Appl. Phys. 2020, 128, 111101.

[10]

Gravesen, J.; Willatzen, M.; Shao, J. J.; Wang, Z. L. Energy optimization of a mirror-symmetric spherical triboelectric nanogenerator. Adv. Funct. Mater. 2022, 32, 2110516.

[11]

Gravesen, J.; Willatzen, M.; Shao, J. J.; Wang, Z. L. Modeling and optimization of a rotational symmetric spherical triboelectric generator. Nano Energy 2022, 100, 107491.

[12]
Gravesen, J.; Willatzen, M.; Shao, J. J.; Wang, Z. L. Handbook of triboelectric nanogenerators; Wang, Z. L., Ed.; Springer, 2022.
Publication history
Copyright

Publication history

Received: 28 January 2023
Revised: 27 March 2023
Accepted: 12 April 2023
Published: 14 June 2023
Issue date: September 2023

Copyright

© Tsinghua University Press 2023
Return