Journal Home > Volume 17 , Issue 6

Heterojunction structures improve the intrinsic activity of electrocatalysts by enhancing the charge transfer between the catalyst and the electrode. In this paper, the NiS/FeS2 heterostructured electrocatalyst is fabricated by a simple sulfidation method using an interface engineering strategy to adjust the surface electron density of the electrocatalyst. As expected, NiS/FeS2 electrocatalyst exhibits superior activity and durable oxygen evolution reaction (OER) stability, requiring only a low overpotential of 183 mV to achieve a current density of 10 mA·cm−2 and can be stable for more than 80 h, superior to NiS, FeS2 electrocatalyst individually, and precious RuO2. Notably, NiS/FeS2 is also a good bifunctional electrocatalyst with good overall water splitting performance, and it only requires a voltage 1.56 V to obtain a current density of 10 mA·cm−2 for more than 12 h. Remarkably, the NiS/FeS2 hybridization facilitates the formation of coral-like structures, increasing the electrochemical surface area (ECSA) and enhancing the charge transfer efficiency, thus leading to excellent electrocatalytic performance. This work proposes a constructive strategy for designing efficient electrocatalysts based on interface engineering, and lays a foundation for designing a new class of electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineered interface of three-dimensional coralliform NiS/FeS2 heterostructures for robust electrocatalytic water cleavage

Show Author's information Xin Yu1,2,§Jing Mei1,2,§Yeshuang Du2Xiaohong Cheng3( )Xing Wang1( )Qi Wu1,2( )
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China

§ Xin Yu and Jing Mei contributed equally to this work.

Abstract

Heterojunction structures improve the intrinsic activity of electrocatalysts by enhancing the charge transfer between the catalyst and the electrode. In this paper, the NiS/FeS2 heterostructured electrocatalyst is fabricated by a simple sulfidation method using an interface engineering strategy to adjust the surface electron density of the electrocatalyst. As expected, NiS/FeS2 electrocatalyst exhibits superior activity and durable oxygen evolution reaction (OER) stability, requiring only a low overpotential of 183 mV to achieve a current density of 10 mA·cm−2 and can be stable for more than 80 h, superior to NiS, FeS2 electrocatalyst individually, and precious RuO2. Notably, NiS/FeS2 is also a good bifunctional electrocatalyst with good overall water splitting performance, and it only requires a voltage 1.56 V to obtain a current density of 10 mA·cm−2 for more than 12 h. Remarkably, the NiS/FeS2 hybridization facilitates the formation of coral-like structures, increasing the electrochemical surface area (ECSA) and enhancing the charge transfer efficiency, thus leading to excellent electrocatalytic performance. This work proposes a constructive strategy for designing efficient electrocatalysts based on interface engineering, and lays a foundation for designing a new class of electrocatalysts.

Keywords: water splitting, nanorods, interface engineering, bifunctional, NiS/FeS2

References(81)

[1]

Li, X. P.; Huang, C.; Han, W. K.; Ouyang, T.; Liu, Z. Q. Transition metal-based electrocatalysts for overall water splitting. Chin. Chem. Lett. 2021, 32, 2597–2616.

[2]

Xu, S. R.; Zhao, H. T.; Li, T. S.; Liang, J.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Asiri, A. M.; Wu, Q.; Sun, X. P. Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: Recent advances and future prospects. J. Mater. Chem. A 2020, 8, 19729–19745.

[3]

Wang, S. D.; Zhang, X. D.; Chen, G. Z.; Liu, B.; Li, H. M.; Hu, J. H.; Fu, J. W.; Liu, M. Hydroxyl radical induced from hydrogen peroxide by cobalt manganese oxides for ciprofloxacin degradation. Chin. Chem. Lett. 2022, 33, 5208–5212.

[4]

Cai, C.; Liu, K.; Zhu, Y. M.; Li, P. C.; Wang, Q. Y.; Liu, B.; Chen, S. Y.; Li, H. J. W.; Zhu, L.; Li, H. M. et al. Optimizing hydrogen binding on Ru sites with RuCo alloy nanosheets for efficient alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202113664.

[5]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[6]

Li, D. Y.; Liao, L. L.; Zhou, H. Q.; Zhao, Y.; Cai, F. M.; Zeng, J. S.; Liu, F.; Wu, H.; Tang, D. S.; Yu, F. Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reaction. Mater. Today Phys. 2021, 16, 100314.

[7]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[8]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[9]

Yu, X.; Xu, S. R.; Wang, Z.; Cheng, X. H.; Du, Y. S.; Chen, G.; Sun, X. P.; Wu, Q. An Mn-doped NiCoP flower-like structure as a highly efficient electrocatalyst for hydrogen evolution reaction in acidic and alkaline solutions with long duration. Nanoscale 2021, 13, 11069–11076.

[10]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[11]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[12]

Cao, M. Q.; Liu, K.; Song, Y.; Ma, C.; Lin, Y. Y.; Li, H. J. W.; Chen, K. J.; Fu, J. W.; Li, H. M.; Luo, J. et al. Regulating local charges of atomically dispersed Moδ+ sites by nitrogen coordination on cobalt nanosheets to trigger water dissociation for boosted hydrogen evolution in alkaline media. J. Energy Chem. 2022, 72, 125–132.

[13]

Wu, K. N.; Wei, X. N.; Li, D.; Hu, P. Nitrogen incorporated nickel molybdenum sulfide as efficient electrocatalyst for overall water splitting. J. Mater. Sci. Technol. 2022, 99, 270–276.

[14]

Li, Y. J.; Mao, Z. F.; Wang, Q.; Li, D. B.; Wang, R.; He, B. B.; Gong, Y. S.; Wang, H. W. Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chem. Eng. J. 2020, 390, 124556.

[15]

Riyajuddin, S.; Azmi, K.; Pahuja, M.; Kumar, S.; Maruyama, T.; Bera, C.; Ghosh, K. Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting. ACS Nano 2021, 15, 5586–5599.

[16]

Cao, X. L.; Xiong, Y.; Sun, J.; Xie, X. Y.; Sun, Q. J.; Wang, Z. L. Multidiscipline applications of triboelectric nanogenerators for the intelligent era of internet of things. Nano-Micro Lett. 2023, 15, 14.

[17]

Chen, S.; Chen, Q. W.; Ding, S. Y.; Tian, Y. D.; Wang, J.; Hou, S. Q.; Zhang, J. T. Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries. Nano Res 2023, 16, 4246–4276.

[18]

Liu, Q.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Yang, Q.; Dong, K.; Fang, X. D.; Zheng, D. D.; Alshehri, A. A.; Sun, X. P. N, O-doped carbon foam as metal-free electrocatalyst for efficient hydrogen production from seawater. Nano Res. 2022, 15, 8922–8927.

[19]

Yu, X.; Xu, S. R.; Liu, X.; Cheng, X. H.; Du, Y. S.; Wu, Q. Mn-doped NiCo2S4 nanosheet array as an efficient and durable electrocatalyst for oxygen evolution reaction. J. Alloys Compd. 2021, 878, 160388.

[20]

Pang, Y.; Xu, W. C.; Zhu, S. L.; Cui, Z. D.; Liang, Y. Q.; Li, Z. Y.; Wu, S. L.; Chang, C. T.; Luo, S. Y. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting. J. Mater. Sci. Technol. 2021, 82, 96–104.

[21]

Luo, W. J.; Wang, Y. J.; Cheng, C. W. Ru-based electrocatalysts for hydrogen evolution reaction: Recent research advances and perspectives. Mater. Today Phys. 2020, 15, 100274.

[22]

Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069–8097.

[23]

Hu, Y. W.; Xiong, T. Z.; Balogun, M. S. J. T.; Huang, Y. C.; Adekoya, D.; Zhang, S. Q.; Tong, Y. X. Enhanced metallicity boosts hydrogen evolution capability of dual-bimetallic Ni-Fe nitride nanoparticles. Mater. Today Phys. 2020, 15, 100267.

[24]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[25]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[26]

Zhang, F. H.; Liu, Y. F.; Wu, L. B.; Ning, M. H.; Song, S. W.; Xiao, X.; Hadjiev, V. G.; Fan, D. E.; Wang, D. Z.; Yu, L. et al. Efficient alkaline seawater oxidation by a three-dimensional core–shell dendritic NiCo@NiFe layered double hydroxide electrode. Mater. Today Phys. 2022, 27, 100841.

[27]

Xiao, Z. Y.; Zhou, W.; Zhang, N.; Liao, C. G.; Huang, S. C.; Chen, G. X.; Chen, G.; Liu, M.; Liu, X. H.; Ma, R. Z. Lithium doped nickel oxide nanocrystals with a tuned electronic structure for oxygen evolution reaction. Chem. Commun. 2021, 57, 6070–6073.

[28]

Zhao, J.; Zhang, J. J.; Li, Z. Y.; Bu, X. H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small 2020, 16, 2003916.

[29]

Xu, S. R.; Du, Y. S.; Yu, X.; Wang, Z.; Cheng, X. H.; Liu, Q.; Luo, Y. L.; Sun, X. P.; Wu, Q. A Cr-FeOOH@Ni-P/NF binder-free electrode as an excellent oxygen evolution reaction electrocatalyst. Nanoscale 2021, 13, 17003–17010.

[30]

Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

[31]

Liao, H. X.; Ni, G. H.; Tan, P. F.; Liu, Y.; Chen, K. J.; Wang, G. M.; Liu, M.; Pan, J. Borate narrowed band gap of nickel-iron layer double hydroxide to mediate rapid reconstruction kinetics for water oxidation. Appl. Catal. B: Environ. 2022, 317, 121713.

[32]

Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 2020, 10, 1900954.

[33]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

[34]

Xu, S. R.; Yu, X.; Luo, L.; Li, W. J.; Du, Y. S.; Kong, Q. Q.; Wu, Q. Multiscale manipulating induced flexible heterogeneous V-NiFe2O4@Ni2P electrocatalyst for efficient and durable oxygen evolution reaction. Nano Res. 2022, 15, 4942–4949.

[35]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[36]

Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 2016, 10, 2342–2348.

[37]

Liu, M. J.; Li, J. H. Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl. Mater. Interfaces 2016, 8, 2158–2165.

[38]

Zhang, W. Q.; Qin, X. H.; Wei, T. R.; Liu, Q.; Luo, J.; Liu, X. J. Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. J. Colloid Interface Sci. 2023, 638, 650–657.

[39]

Liao, C. G.; Xiao, Z. Y.; Zhang, N.; Liang, B.; Chen, G.; Wu, W.; Pan, J. L.; Liu, M.; Zheng, X. R.; Kang, Q. et al. Photo-irradiation tunes highly active sites over β-Ni(OH)2 nanosheets for the electrocatalytic oxygen evolution reaction. Chem. Commun. 2021, 57, 9060–9063.

[40]

Liao, H. X.; Luo, T.; Tan, P. F.; Chen, K. J.; Lu, L. L.; Liu, Y.; Liu, M.; Pan, J. Unveiling role of sulfate ion in nickel-iron (oxy) hydroxide with enhanced oxygen-evolving performance. Adv. Funct. Mater. 2021, 31, 2102772.

[41]

Chen, S. Y.; Wang, S. Y.; Hao, P. P.; Li, M. H.; Zhang, Y.; Guo, J.; Ding, W. P.; Liu, M.; Wang, J. L.; Guo, X. F. N, O-C nanocage-mediated high-efficient hydrogen evolution reaction on IrNi@N, O-C electrocatalyst. Appl. Catal. B: Environ. 2022, 304, 120996.

[42]

Li, W.; Gao, X. F.; Xiong, D. H.; Wei, F.; Song, W. G.; Xu, J. Y.; Liu, L. F. Hydrothermal synthesis of monolithic Co3Se4 nanowire electrodes for oxygen evolution and overall water splitting with high efficiency and extraordinary catalytic stability. Adv. Energy Mater. 2017, 7, 1602579.

[43]

Li, W.; Xiong, D. H.; Gao, X. F.; Liu, L. F. The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes. Chem. Commun. 2019, 55, 8744–8763.

[44]

Meng, G.; Cao, H. J.; Wei, T. R.; Liu, Q.; Fu, J. T.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ru clusters toward an efficient and durable hydrogen oxidation reaction. Chem. Commun. 2022, 58, 11839–11842.

[45]

Li, Y. X.; Yin, J.; An, L.; Lu, M.; Sun, K.; Zhao, Y. Q.; Gao, D. Q.; Cheng, F. Y.; Xi, P. X. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 2018, 14, 1801070.

[46]

Yang, Y. Y.; Meng, H. X.; Zhang, Y.; Li, Z. M.; Zhang, Z. Y.; Hu, Z. G. Interfaces modulation strategy to synthesize bifunctional electrocatalyst for highly efficient overall water splitting. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 607, 125452.

[47]

Tian, G. Q.; Wei, S. R.; Guo, Z. T.; Wu, S. W.; Chen, Z. L.; Xu, F. M.; Cao, Y.; Liu, Z.; Wang, J. Q.; Ding, L. et al. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting. J. Mater. Sci. Technol. 2021, 77, 108–116.

[48]

Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517–6524.

[49]

Wu, L. B.; Yu, L.; McElhenny, B.; Xing, X. X.; Luo, D.; Zhang, F. H.; Bao, J. M.; Chen, S.; Ren, Z. F. Rational design of core–shell-structured CoPx@FeOOH for efficient seawater electrolysis. Appl. Catal. B: Environ. 2021, 294, 120256.

[50]

Ren, J. T.; Yuan, Z. Y. Hierarchical nickel sulfide nanosheets directly grown on Ni foam: A stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium. ACS Sustain. Chem. Eng. 2017, 5, 7203–7210.

[51]

Guo, K. L.; Wang, Y. T.; Yang, S. Z.; Huang, J. F.; Zou, Z. H.; Pan, H. R.; Shinde, P. S.; Pan, S. L.; Huang, J. E.; Xu, C. L. Bonding interface boosts the intrinsic activity and durability of NiSe@Fe2O3 heterogeneous electrocatalyst for water oxidation. Sci. Bull. 2021, 66, 52–61.

[52]

Dong, B.; Zhao, X.; Han, G. Q.; Li, X.; Shang, X.; Liu, Y. R.; Hu, W. H.; Chai, Y. M.; Zhao, H.; Liu, C. G. Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 13499–13508.

[53]

Liu, C. C.; Han, Y.; Yao, L. B.; Liang, L. M.; He, J. Y.; Hao, Q. Y.; Zhang, J.; Li, Y.; Liu, H. Engineering bimetallic NiFe-based hydroxides/selenides heterostructure nanosheet arrays for highly-efficient oxygen evolution reaction. Small 2021, 17, 2007334.

[54]

He, X. B.; Zhao, X. R.; Yin, F. X.; Chen, B. H.; Li, G. R.; Yin, H. Q. NiS-FeS/N, S co-doped carbon hybrid: Synergistic effect between NiS and FeS facilitating electrochemical oxygen evolution reaction. Int. J. Energy Res. 2020, 44, 7057–7067.

[55]

Li, W. J.; Deng, Y. Q.; Luo, L.; Du, Y. S.; Cheng, X. H.; Wu, Q. Nitrogen-doped Fe2O3/NiTe2 as an excellent bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2023, 639, 416–423.

[56]

Wen, X. L.; Liang, Y. X.; Bai, P. P.; Luo, B. W.; Fang, T.; Yue, L.; An, T.; Song, W. Y.; Zheng, S. Q. First-principles calculations of the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2). Phys. B: Condens. Matter 2017, 525, 119–126.

[57]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

[58]

Zheng, L.; Dong, Y. Y.; Chi, B.; Cui, Z. M.; Deng, Y. J.; Shi, X. D.; Du, L.; Liao, S. J. UIO-66-NH2-derived mesoporous carbon catalyst co-doped with Fe/N/S as highly efficient cathode catalyst for PEMFCs. Small 2019, 15, 1803520.

[59]

Jin, H. H.; Zhou, H.; He, D. P.; Wang, Z. H.; Wu, Q. L.; Liang, Q. R.; Liu, S. L.; Mu, S. C. MOF-derived 3D Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl. Catal. B: Environ. 2019, 250, 143–149.

DOI
[60]

Wang, K.; Guo, W. L.; Yan, S. C.; Song, H. Z.; Shi, Y. Hierarchical Co-FeS2/CoS2 heterostructures as a superior bifunctional electrocatalyst. RSC Adv. 2018, 8, 28684–28691.

[61]

Wu, A. P.; Xie, Y.; Ma, H.; Tian, C. G.; Gu, Y.; Yan, H. J.; Zhang, X. M.; Yang, G. Y.; Fu, H. G. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353–363.

[62]

Chae, G. S.; Youn, D. H.; Lee, J. S. Nanostructured iron sulfide/N, S dual-doped carbon nanotube-graphene composites as efficient electrocatalysts for oxygen reduction reaction. Materials 2021, 14, 2146.

[63]

Su, H.; Song, S. J.; Li, S. S.; Gao, Y. Q.; Ge, L.; Song, W. Y.; Ma, T. Y.; Liu, J. High-valent bimetal Ni3S2/Co3S4 induced by Cu doping for bifunctional electrocatalytic water splitting. Appl. Catal. B: Environ. 2021, 293, 120225.

[64]

Yu, L.; Mishra, I. K.; Xie, Y. L.; Zhou, H. Q.; Sun, J. Y.; Zhou, J. Q.; Ni, Y. Z.; Luo, D.; Yu, F.; Yu, Y. et al. Ternary Ni2(1−x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. Nano Energy 2018, 53, 492–500.

[65]

Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano 2018, 12, 9635–9638.

[66]

Yu, J. H.; Cheng, G. Z.; Luo, W. Ternary nickel-iron sulfide microflowers as a robust electrocatalyst for bifunctional water splitting. J. Mater. Chem. A 2017, 5, 15838–15844.

[67]

Luan, X. Q.; Du, H. T.; Kong, Y.; Qu, F. L.; Lu, L. M. A novel FeS-NiS hybrid nanoarray: An efficient and durable electrocatalyst for alkaline water oxidation. Chem. Commun. 2019, 55, 7335–7338.

[68]

Li, C. Y.; Liu, M. D.; Ding, H. Y.; He, L. Q.; Wang, E. Z.; Wang, B. L.; Fan, S. S.; Liu, K. A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 17527–17536.

[69]

Yang, Y.; Xie, Y. C.; Yu, Z. H.; Guo, S. S.; Yuan, M. W.; Yao, H. Q.; Liang, Z. P.; Lu, Y. R.; Chan, T. S.; Li, C. et al. Self-supported NiFe-LDH@CoSx nanosheet arrays grown on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2021, 419, 129512.

[70]

Ding, L.; Li, K.; Xie, Z. Q.; Yang, G. Q.; Yu, S. L.; Wang, W. T.; Yu, H. R.; Baxter, J.; Meyer, H. M.; Cullen, D. A. et al. Constructing ultrathin W-doped NiFe nanosheets via facile electrosynthesis as bifunctional electrocatalysts for efficient water splitting. ACS Appl. Mater. Interfaces 2021, 13, 20070–20080.

[71]

Liu, Z. H.; Tan, H.; Xin, J. P.; Duan, J. Z.; Su, X. W.; Hao, P.; Xie, J. F.; Zhan, J.; Zhang, J.; Wang, J. J. et al. Metallic intermediate phase inducing morphological transformation in thermal nitridation: Ni3FeN-based three-dimensional hierarchical electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 2018, 10, 3699–3706.

[72]

Zhang, X. L.; Liang, C.; Qu, X. Y.; Ren, Y. F.; Yin, J. J.; Wang, W. J.; Yang, M. S.; Huang, W.; Dong, X. C. Sandwich-structured Fe-Ni2P/MoSx/NF bifunctional electrocatalyst for overall water splitting. Adv. Mater. Interfaces 2020, 7, 1901926.

[73]

Jin, C. Q.; Zhai, P. B.; Wei, Y.; Chen, Q.; Wang, X. G.; Yang, W. W.; Xiao, J.; He, Q. Q.; Liu, Q. Y.; Gong, Y. J. Ni(OH)2 templated synthesis of ultrathin Ni3S2 nanosheets as bifunctional electrocatalyst for overall water splitting. Small 2021, 17, 2102097.

[74]

Jiang, S.; Shao, H.; Cao, G. Y.; Li, H.; Xu, W. L.; Li, J. L.; Fang, J.; Wang, X. G. Waste cotton fabric derived porous carbon containing Fe3O4/NiS nanoparticles for electrocatalytic oxygen evolution. J. Mater. Sci. Technol. 2020, 59, 92–99.

[75]

Zhai, Z. J.; Li, C.; Zhang, L.; Wu, H. C.; Zhang, L.; Tang, N.; Wang, W.; Gong, J. L. Dimensional construction and morphological tuning of heterogeneous MoS2/NiS electrocatalysts for efficient overall water splitting. J. Mater. Chem. A 2018, 6, 9833–9838.

[76]

Xiao, X.; Huang, D. K.; Fu, Y. Q.; Wen, M.; Jiang, X. X.; Lv, X. W.; Li, M.; Gao, L.; Liu, S. S.; Wang, M. K. et al. Engineering NiS/Ni2P heterostructures for efficient electrocatalytic water splitting. ACS Appl. Mater. Interfaces 2018, 10, 4689–4696.

[77]

Wu, C. R.; Liu, B. T.; Wang, J.; Su, Y. Y.; Yan, H. Q.; Ng, C.; Li, C.; Wei, J. M. 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting. Appl. Surf. Sci. 2018, 441, 1024–1033.

[78]

Jadhav, H. S.; Roy, A.; Desalegan, B. Z.; Seo, J. G. An advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting. Sustain. Energy Fuels 2020, 4, 312–323.

[79]

Gao, L. F.; Guo, C. Y.; Liu, X. J.; Ma, X. J.; Zhao, M. Z.; Kuang, X.; Yang, H.; Zhu, X. J.; Sun, X.; Wei, Q. Co-doped FeS2 with a porous structure for efficient electrocatalytic overall water splitting. New J. Chem. 2020, 44, 1711–1718.

[80]

Zhang, R. Z.; Zhu, Z. Q.; Lin, J. H.; Zhang, K. F.; Li, N.; Zhao, C. J. Hydrolysis assisted in-situ growth of 3D hierarchical FeS/NiS/nickel foam electrode for overall water splitting. Electrochim. Acta 2020, 332, 135534.

[81]

Guan, J. L.; Li, C. F.; Zhao, J. W.; Yang, Y. Z.; Zhou, W.; Wang, Y.; Li, G. R. FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting. Appl. Catal. B: Environ. 2020, 269, 118600.

File
12274_2023_5740_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 March 2023
Revised: 12 April 2023
Accepted: 13 April 2023
Published: 05 August 2023
Issue date: June 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22275052), the Natural Science Foundation of Hubei Province (No. 2019CFB569), and the Science and Technology Foundation for Creative Research Group of Hubei Normal University (No. 2019CZ08). The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for the TEM test and SCI-Go (www.sci-go.com) for the XPS analysis.

Return