Journal Home > Volume 16 , Issue 7

Activating the cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon genes (cGAS/STING) signaling has emerged as a promising anti-tumor strategy due to the important role of the pathway in innate and adaptive immunity, yet the selective delivery of STING agonists to tumors following systemic administration remains challenging. Herein, we develop a nano-STING agonist-decorated microrobot platform to achieve the enhanced anti-tumor effect. Fe ions and the STING agonist 2’3’-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) are co-encapsulated in the mitochondria-targeting nanoparticles (mTNPs), which can trigger the release of mitochondrial DNA (mtDNA) by Fenton reaction-induced mitochondria oxidative damage. The exogenous cGAMP and the endogenous mtDNA can work synergistically to induce potent cGAS/STING signaling activation. Furthermore, we decorate mTNPs onto Salmonella typhimurium VNP20009 (VNP) bacteria to facilitate tumor accumulation and deep penetration. We demonstrate that the systemic administration of this microrobot activates both innate and adaptive immunity, improving the immunotherapeutic efficacy of the STING agonists.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nano-STING agonist-decorated microrobots boost innate and adaptive anti-tumor immunity

Show Author's information Yixin Wang1,2,3Zhaoting Li1,2,3Yu Chen1,2,3Allie Barrett1Fanyi Mo1Quanyin Hu1,2,3( )
Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA

Abstract

Activating the cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon genes (cGAS/STING) signaling has emerged as a promising anti-tumor strategy due to the important role of the pathway in innate and adaptive immunity, yet the selective delivery of STING agonists to tumors following systemic administration remains challenging. Herein, we develop a nano-STING agonist-decorated microrobot platform to achieve the enhanced anti-tumor effect. Fe ions and the STING agonist 2’3’-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) are co-encapsulated in the mitochondria-targeting nanoparticles (mTNPs), which can trigger the release of mitochondrial DNA (mtDNA) by Fenton reaction-induced mitochondria oxidative damage. The exogenous cGAMP and the endogenous mtDNA can work synergistically to induce potent cGAS/STING signaling activation. Furthermore, we decorate mTNPs onto Salmonella typhimurium VNP20009 (VNP) bacteria to facilitate tumor accumulation and deep penetration. We demonstrate that the systemic administration of this microrobot activates both innate and adaptive immunity, improving the immunotherapeutic efficacy of the STING agonists.

Keywords: drug delivery, bacteria, Fenton reaction, stimulator of interferon genes (STING), tumor immunotherapy, mitochondrial DNA (mtDNA)

References(32)

[1]

Jerby-Arnon, L.; Shah, P.; Cuoco, M. S.; Rodman, C.; Su, M. J.; Melms, J. C.; Leeson, R.; Kanodia, A.; Mei, S. L.; Lin, J. R. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 2018, 175, 984–997.e24.

[2]

Li, X. F.; Khorsandi, S.; Wang, Y. F.; Santelli, J.; Huntoon, K.; Nguyen, N.; Yang, M. M.; Lee, D.; Lu, Y. F.; Gao, R. Q. et al. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nat. Nanotechnol. 2022, 17, 891–899.

[3]

Motwani, M.; Pesiridis, S.; Fitzgerald, K. A. DNA sensing by the cGAS-STING pathway in health and disease. Nat. Rev. Genet. 2019, 20, 657–674.

[4]

Barber, G. N. STING: Infection, inflammation and cancer. Nat. Rev. Immunol. 2015, 15, 760–770.

[5]

Li, L. Y.; Yin, Q.; Kuss, P.; Maliga, Z.; Millán, J. L.; Wu, H.; Mitchison, T. J. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 2014, 10, 1043–1048.

[6]

Shae, D.; Becker, K. W.; Christov, P.; Yun, D. S.; Lytton-Jean, A. K. R.; Sevimli, S.; Ascano, M.; Kelley, M.; Johnson, D. B.; Balko, J. M. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 2019, 14, 269–278.

[7]

Gao, D. X.; Li, T.; Li, X. D.; Chen, X.; Li, Q. Z.; Wight-Carter, M.; Chen, Z. J. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc. Natl. Acad. Sci. USA 2015, 112, E5699–E5705.

[8]

Cheng, N.; Watkins-Schulz, R.; Junkins, R. D.; David, C. N.; Johnson, B. M.; Montgomery, S. A.; Peine, K. J.; Darr, D. B.; Yuan, H.; McKinnon, K. P. et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 2018, 3, 120638.

[9]

Dane, E. L.; Belessiotis-Richards, A.; Backlund, C.; Wang, J. N.; Hidaka, K.; Milling, L. E.; Bhagchandani, S.; Melo, M. B.; Wu, S. W.; Li, N. et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat. Mater. 2022, 21, 710–720.

[10]
Zhang, Z. Y.; Liu, J.; Xiao, M.; Zhang, Q. F.; Liu, Z. H.; Liu, M. Y.; Zhang, P.; Zeng, Y. L. Peptide nanotube loaded with a STING agonist, c-di-GMP, enhance cancer immunotherapy against melanoma. Nano Res, in press, https://doi.org/10.1007/s12274-022-5102-z.
[11]

Kato, K.; Nishimasu, H.; Oikawa, D.; Hirano, S.; Hirano, H.; Kasuya, G.; Ishitani, R.; Tokunaga, F.; Nureki, O. Structural insights into cGAMP degradation by ecto-nucleotide pyrophosphatase phosphodiesterase 1. Nat. Commun. 2018, 9, 4424.

[12]

Diner, E. J.; Burdette, D. L.; Wilson, S. C.; Monroe, K. M.; Kellenberger, C. A.; Hyodo, M.; Hayakawa, Y.; Hammond, M. C.; Vance, R. E. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 2013, 3, 1355–1361.

[13]

Cen, D.; Ge, Q. W.; Xie, C. K.; Zheng, Q.; Guo, J. S.; Zhang, Y. Q.; Wang, Y. F.; Li, X.; Gu, Z.; Cai, X. J. ZnS@BSA nanoclusters potentiate efficacy of cancer immunotherapy. Adv. Mater. 2021, 33, 2104037.

[14]

Zhao, M.; Wang, Y. Z.; Li, L.; Liu, S. Y.; Wang, C. S.; Yuan, Y. J.; Yang, G.; Chen, Y. N.; Cheng, J. Q.; Lu, Y. R. et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics 2021, 11, 1845–1863.

[15]

Yang, B. W.; Ding, L.; Yao, H. L.; Chen, Y.; Shi, J. L. A metal-organic framework (MOF) Fenton nanoagent-enabled nanocatalytic cancer therapy in synergy with autophagy inhibition. Adv. Mater. 2020, 32, 1907152.

[16]

Zhou, Y. F.; Fan, S. Y.; Feng, L. L.; Huang, X. L.; Chen, X. Y. Manipulating intratumoral fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv. Mater. 2021, 33, 2104223.

[17]

Yang, N.; Zhang, T.; Cao, C. Y.; Mao, G. X.; Shao, J. J.; Song, X. J.; Wang, W. J.; Mou, X. Z.; Dong, X. C. BSA stabilized photothermal-Fenton reactor with cisplatin for chemo/chemodynamic cascade oncotherapy. Nano Res 2022, 15, 2235–2243.

[18]

Wang, Y. D.; Gao, F. C.; Li, X. F.; Niu, G. M.; Yang, Y. F.; Li, H.; Jiang, Y. Y. Tumor microenvironment-responsive Fenton nanocatalysts for intensified anticancer treatment. J. Nanobiotechnol. 2022, 20, 69.

[19]

Zhan, M. X.; Yu, X. R.; Zhao, W.; Peng, Y. J.; Peng, S. J.; Li, J. C.; Lu, L. G. Extracellular matrix-degrading STING nanoagonists for mild NIR-II photothermal-augmented chemodynamic-immunotherapy. J. Nanobiotechnol. 2022, 20, 23.

[20]

Sies, H. Strategies of antioxidant defense. Eur. J. Biochem. 1993, 215, 213–219.

[21]

Chen, W. F.; Wang, Y.; Qin, M.; Zhang, X. D.; Zhang, Z. R.; Sun, X.; Gu, Z. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 2018, 12, 5995–6005.

[22]

Li, Z. T.; Wang, Y. X.; Liu, J.; Rawding, P.; Bu, J.; Hong, S.; Hu, Q. Y. Chemically and biologically engineered bacteria-based delivery systems for emerging diagnosis and advanced therapy. Adv. Mater. 2021, 33, 2102580.

[23]

Ni, J.; Zhou, H. L.; Gu, J. Y.; Liu, X. P.; Chen, J.; Yi, X.; Yang, K. Bacteria-assisted delivery and oxygen production of nano-enzyme for potent radioimmunotherapy of cancer. Nano Res 2022, 15, 7355–7365.

[24]

Wang, W. G.; Xu, H. H.; Ye, Q. S.; Tao, F.; Wheeldon, I.; Yuan, A. H.; Hu, Y. Q.; Wu, J. H. Systemic immune responses to irradiated tumours via the transport of antigens to the tumour periphery by injected flagellate bacteria. Nat. Biomed. Eng. 2022, 6, 44–53.

[25]

Chen, W. F.; Guo, Z. F.; Zhu, Y. N.; Qiao, N.; Zhang, Z. R.; Sun, X. Combination of bacterial-photothermal therapy with an anti-PD-1 peptide depot for enhanced immunity against advanced cancer. Adv. Funct. Mater. 2020, 30, 1906623.

[26]

Cheng, K. M.; Zhao, R. F.; Li, Y.; Qi, Y. Q.; Wang, Y. Z.; Zhang, Y. L.; Qin, H.; Qin, Y. T.; Chen, L.; Li, C. et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat. Commun. 2021, 12, 2041.

[27]

Yue, Y. L.; Xu, J. Q.; Li, Y.; Cheng, K. M.; Feng, Q. Q.; Ma, X. T.; Ma, N. N.; Zhang, T. J.; Wang, X. W.; Zhao, X. et al. Antigen-bearing outer membrane vesicles as tumour vaccines produced in situ by ingested genetically engineered bacteria. Nat. Biomed. Eng. 2022, 6, 898–909.

[28]

Dong, Z. L.; Feng, L. Z.; Chao, Y.; Hao, Y.; Chen, M. C.; Gong, F.; Han, X.; Zhang, R.; Cheng, L.; Liu, Z. Amplification of tumor oxidative stresses with liposomal Fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 2019, 19, 805–815.

[29]

Marcus, A.; Mao, A. J.; Lensink-Vasan, M.; Wang, L.; Vance, R. E.; Raulet, D. H. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 2018, 49, 754–763.e4.

[30]

Shen, M.; Chen, C. R.; Guo, Q. Q.; Wang, Q.; Liao, J. H.; Wang, L. T.; Yu, J.; Xue, M.; Duan, Y. R.; Zhang, J. L. Systemic delivery of mPEG-masked trispecific T-cell nanoengagers in synergy with STING agonists overcomes immunotherapy resistance in TNBC and generates a vaccination effect. Adv. Sci. 2022, 9, e2203523.

[31]

Leventhal, D. S.; Sokolovska, A.; Li, N.; Plescia, C.; Kolodziej, S. A.; Gallant, C. W.; Christmas, R.; Gao, J. R.; James, M. J.; Abin-Fuentes, A. et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 2020, 11, 2739.

[32]

Hayman, T. J.; Baro, M.; MacNeil, T.; Phoomak, C.; Aung, T. N.; Cui, W.; Leach, K.; Iyer, R.; Challa, S.; Sandoval-Schaefer, T. et al. STING enhances cell death through regulation of reactive oxygen species and DNA damage. Nat. Commun. 2021, 12, 2327.

File
12274_2023_5737_MOESM1_ESM.pdf (629.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 February 2023
Revised: 09 April 2023
Accepted: 13 April 2023
Published: 31 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We acknowledge the Dr. Glen Kwon lab for the help with nanoparticle characterization. We also want to thank optical imaging core, small animal facilities, flow cytometry core, and histological core in the University of Wisconsin-Madison for their help with this study. This work was supported by the start-up package from the University of Wisconsin-Madison (to Q. Y. H.).

Return