Journal Home > Volume 16 , Issue 9

The triboelectric nanogenerators (TENGs), suppling power for freely mobile and distributed electronic equipment from Internet of Things, have been considered as “the energy for the new era”. Research on the service behavior has become increasingly important for achieving the reliability evaluation and life prediction of TENGs, as TENGs advance from prototypes to practical applications. Due to the wide selection of materials, the diversity of device structures, and the complexity of working environment, TENGs show unique characteristics in the service behavior. These dilemmas lead to the fact that systematical summary of service behavior for TENGs is still in its infancy. Here, the progresses of the service behavior for TENGs are comprehensively reviewed from the influence of environmental factors on the service performance of TENGs to the impact of TENGs during the service on their surroundings. We summed up the performance evolution of TENGs in the real environment and the reproducibility of TENGs of which the electrical output will be restored after failure. Then, the service adaptability of TENG is systematically discussed, including the biological and environmental compatibility. Finally, the challenges and opportunities that the related research faced are proposed to promote the emerging technology from laboratory to factory.


menu
Abstract
Full text
Outline
About this article

Service behavior of triboelectric nanogenerators: Bridging the gap between prototypes and applications

Show Author's information Fangfang Gao1,2,§Xiaochen Xun1,2,§Xuan Zhao1,2( )Liangxu Xu1,2Qi Li1,2Bin Zhao1,2Tian Ouyang1,2Qingliang Liao1,2( )Yue Zhang1,2
Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

§ Fangfang Gao and Xiaochen Xun contributed equally to this work.

Abstract

The triboelectric nanogenerators (TENGs), suppling power for freely mobile and distributed electronic equipment from Internet of Things, have been considered as “the energy for the new era”. Research on the service behavior has become increasingly important for achieving the reliability evaluation and life prediction of TENGs, as TENGs advance from prototypes to practical applications. Due to the wide selection of materials, the diversity of device structures, and the complexity of working environment, TENGs show unique characteristics in the service behavior. These dilemmas lead to the fact that systematical summary of service behavior for TENGs is still in its infancy. Here, the progresses of the service behavior for TENGs are comprehensively reviewed from the influence of environmental factors on the service performance of TENGs to the impact of TENGs during the service on their surroundings. We summed up the performance evolution of TENGs in the real environment and the reproducibility of TENGs of which the electrical output will be restored after failure. Then, the service adaptability of TENG is systematically discussed, including the biological and environmental compatibility. Finally, the challenges and opportunities that the related research faced are proposed to promote the emerging technology from laboratory to factory.

Keywords: triboelectric nanogenerator, self-powered sensor, service behavior, environmental influence

References(140)

[1]

Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672.

[2]

Tan, S.; Huang, T. Y.; Yavuz, I.; Wang, R.; Yoon, T. W.; Xu, M. J.; Xing, Q. Y.; Park, K.; Lee, D. K.; Chen, C. H. et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 2022, 605, 268–273.

[3]

Lheritier, P.; Torelló, A.; Usui, T.; Nouchokgwe, Y.; Aravindhan, A.; Li, J. N.; Prah, U.; Kovacova, V.; Bouton, O.; Hirose, S. et al. Large harvested energy with non-linear pyroelectric modules. Nature 2022, 609, 718–721.

[4]

Zheng, N.; Xue, J. H.; Jie, Y.; Cao, X.; Wang, Z. L. Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing. Nano Res. 2022, 15, 6213–6219.

[5]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[6]

Ma, M. Y.; Kang, Z.; Liao, Q. L.; Zhang, Q.; Gao, F. F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969.

[7]

Zhu, P. C.; Zhang, B. S.; Wang, H. Y.; Wu, Y. H.; Cao, H. J.; He, L. B.; Li, C. Y.; Luo, X. P.; Li, X.; Mao, Y. C. 3D printed triboelectric nanogenerator as self-powered human–machine interactive sensor for breathing-based language expression. Nano Res. 2022, 15, 7460–7467.

[8]

Prada, T.; Harnchana, V.; Lakhonchai, A.; Chingsungnoen, A.; Poolcharuansin, P.; Chanlek, N.; Klamchuen, A.; Thongbai, P.; Amornkitbamrung, V. Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications. Nano Res. 2022, 15, 272–279.

[9]

Wu, H.; Wang, S.; Wang, Z. K.; Zi, Y. L. Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 2021, 12, 5470.

[10]

Luo, J. J.; Wang, Z. L. Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat 2020, 2, e12059.

[11]

Wang, Z. M.; An, J.; Nie, J. H.; Luo, J. J.; Shao, J. J.; Jiang, T.; Chen, B. D.; Tang, W.; Wang, Z. L. A self-powered angle sensor at nanoradian-resolution for robotic arms and personalized medicare. Adv. Mater. 2020, 32, e2001466.

[12]

Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.

[13]

Zhao, X.; Kang, Z.; Liao, Q. L.; Zhang, Z.; Ma, M. Y.; Zhang, Q.; Zhang, Y. Ultralight, self-powered, and self-adaptive motion sensor based on triboelectric nanogenerator for perceptual layer application in Internet of things. Nano Energy 2018, 48, 312–319.

[14]

Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

[15]

Wang, Z. L. Toward self-powered sensor networks. Nano Today 2010, 5, 512–514.

[16]

Cheng, G.; Zheng, H. W.; Yang, F.; Zhao, L.; Zheng, M. L.; Yang, J. J.; Qin, H. F.; Du, Z. L.; Wang, Z. L. Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip-electrode air-discharging and application for UV sensing. Nano Energy 2018, 44, 208–216.

[17]

Zheng, M. L.; Yang, F.; Guo, J. M.; Zhao, L.; Jiang, X. H.; Gu, G. Q.; Zhang, B.; Cui, P.; Cheng, G.; Du, Z. L. Cd(OH)2@ZnO nanowires thin-film transistor and UV photodetector with a floating ionic gate tuned by a triboelectric nanogenerator. Nano Energy 2020, 73, 104808.

[18]

Xu, L. X.; Zhang, Z.; Gao, F. F.; Zhao, X.; Xun, X. C.; Kang, Z.; Liao, Q. L.; Zhang, Y. Self-powered ultrasensitive pulse sensors for noninvasive multi-indicators cardiovascular monitoring. Nano Energy 2021, 81, 105614.

[19]

Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

[20]

Lin, S. Q.; Xu, L.; Chi Wang, A.; Wang, Z. L. Quantifying electron-transfer in liquid–solid contact electrification and the formation of electric double-layer. Nat. Commun. 2020, 11, 399.

[21]

Zhao, X.; Zhang, Z.; Liao, Q. L.; Xun, X. C.; Gao, F. F.; Xu, L. X.; Kang, Z.; Zhang, Y. Self-powered user-interactive electronic skin for programmable touch operation platform. Sci. Adv. 2020, 6, eaba4294.

[22]

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

[23]

Li, X. J.; Jiang, C. M.; Ying, Y. B.; Ping, J. F. Biotriboelectric nanogenerators: Materials, structures, and applications. Adv. Energy Mater. 2020, 10, 2002001.

[24]

Xu, W.; Wong, M. C.; Hao, J. H. Strategies and progress on improving robustness and reliability of triboelectric nanogenerators. Nano Energy 2019, 55, 203–215.

[25]

Zhang, Q.; Liang, Q. J.; Liao, Q. L.; Yi, F.; Zheng, X.; Ma, M. Y.; Gao, F. F.; Zhang, Y. Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. 2017, 29, 1606703.

[26]

Lin, Z. H.; Xie, Y. N.; Yang, Y.; Wang, S. H.; Zhu, G.; Wang, Z. L. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. ACS Nano 2013, 7, 4554–4560.

[27]

Lee, J. W.; Jung, S.; Lee, T. W.; Jo, J.; Chae, H. Y.; Choi, K.; Kim, J. J.; Lee, J. H.; Yang, C.; Baik, J. M. High-output triboelectric nanogenerator based on dual inductive and resonance effects-controlled highly transparent polyimide for self-powered sensor network systems. Adv. Energy Mater. 2019, 9, 1901987.

[28]

Cheon, S.; Kang, H.; Kim, H.; Son, Y.; Lee, J. Y.; Shin, H. J.; Kim, S. W.; Cho, J. H. High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride-silver nanowire composite nanofibers. Adv. Funct. Mater. 2018, 28, 1703778.

[29]

Zhang, Y. Z.; Yang, Z. H.; Song, K. X.; Pang, X. J.; Shangguan, B. Triboelectric behaviors of materials under high speeds and large currents. Friction 2013, 1, 259–270.

[30]

Lin, Z. H.; Cheng, G.; Li, X. H.; Yang, P. K.; Wen, X. N.; Lin Wang, Z. A multi-layered interdigitative-electrodes-based triboelectric nanogenerator for harvesting hydropower. Nano Energy 2015, 15, 256–265.

[31]

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

[32]

Chen, J.; Guo, H. Y.; Hu, C. G.; Wang, Z. L. Robust triboelectric nanogenerator achieved by centrifugal force induced automatic working mode transition. Adv. Energy Mater. 2020, 10, 2000886.

[33]

Lin, Z. M.; Zhang, B. B.; Zou, H. Y.; Wu, Z. Y.; Guo, H. Y.; Zhang, Y.; Yang, J.; Wang, Z. L. Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability. Nano Energy 2020, 68, 104378.

[34]

Liang, Q. J.; Zhanga, Z.; Yan, X. Q.; Gu, Y. S.; Zhao, Y. L.; Zhang, G. J.; Lu, S. N.; Liao, Q. L.; Zhang, Y. Functional triboelectric generator as self-powered vibration sensor with contact mode and non-contact mode. Nano Energy 2015, 14, 209–216.

[35]

Wei, X. Y.; Kuang, S. Y.; Li, H. Y.; Pan, C. F.; Zhu, G.; Wang, Z. L. Interface-free area-scalable self-powered electroluminescent system driven by triboelectric generator. Sci. Rep. 2015, 5, 13658.

[36]

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

[37]

Li, X. Y.; Yin, X.; Zhao, Z. H.; Zhou, L. L.; Liu, D.; Zhang, C. L.; Zhang, C. G.; Zhang, W.; Li, S. X.; Wang, J. et al. Long-lifetime triboelectric nanogenerator operated in conjunction modes and low crest factor. Adv. Energy Mater. 2020, 10, 1903024.

[38]

Lin, L.; Wang, S. H.; Niu, S. M.; Liu, C.; Xie, Y. N.; Wang, Z. L. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031–3038.

[39]

Guo, H. Y.; Chen, J.; Yeh, M. H.; Fan, X.; Wen, Z.; Li, Z. L.; Hu, C. G.; Wang, Z. L. An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. ACS Nano 2015, 9, 5577–5584.

[40]

Shang, W. Y.; Gu, G. Q.; Yang, F.; Zhao, L.; Cheng, G.; Du, Z. L.; Wang, Z. L. A sliding-mode triboelectric nanogenerator with chemical group grated structure by shadow mask reactive ion etching. ACS Nano 2017, 11, 8796–8803.

[41]

Cui, P.; Wang, J. J.; Xiong, J. Q.; Li, S. H.; Zhang, W. H.; Liu, X. L.; Gu, G. Q.; Guo, J. M.; Zhang, B.; Cheng, G. et al. Meter-scale fabrication of water-driven triboelectric nanogenerator based on in-situ grown layered double hydroxides through a bottom–up approach. Nano Energy 2020, 71, 104646.

[42]

Kwak, S. S.; Kim, S. M.; Ryu, H.; Kim, J.; Khan, U.; Yoon, H. J.; Jeong, Y. H.; Kim, S. W. Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators. Energy Environ. Sci. 2019, 12, 3156–3163.

[43]

Lee, J. H.; Hinchet, R.; Kim, S. K.; Kim, S.; Kim, S. W. Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 2015, 8, 3605–3613.

[44]

Xu, C.; Zi, Y. L.; Wang, A. C.; Zou, H. Y.; Dai, Y. J.; He, X.; Wang, P. H.; Wang, Y. C.; Feng, P. Z.; Li, D. W. et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, e1706790.

[45]

Xu, C.; Wang, A. C.; Zou, H. Y.; Zhang, B. B.; Zhang, C. L.; Zi, Y. L.; Pan, L.; Wang, P. H.; Feng, P. Z.; Lin, Z. Q. et al. Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Adv. Mater. 2018, 30, e1803968.

[46]

Lu, C. X.; Han, C. B.; Gu, G. Q.; Chen, J.; Yang, Z. W.; Jiang, T.; He, C.; Wang, Z. L. Temperature effect on performance of triboelectric nanogenerator. Adv. Eng. Mater. 2017, 19, 1700275.

[47]

Wang, A. C.; Zhang, B. B.; Xu, C.; Zou, H. Y.; Lin, Z. Q.; Wang, Z. L. Unraveling temperature-dependent contact electrification between sliding-mode triboelectric pairs. Adv. Funct. Mater. 2020, 30, 1909384.

[48]

Wen, X. N.; Su, Y. J.; Yang, Y.; Zhang, H. L.; Wang, Z. L. Applicability of triboelectric generator over a wide range of temperature. Nano Energy 2014, 4, 150–156.

[49]

Chowdry, A.; Westgate, C. R. The role of bulk traps in metal-insulator contact charging. J. Phys. D Appl. Phys. 1974, 7, 713–725.

[50]

Niu, S. M.; Liu, Y.; Chen, X. Y.; Wang, S. H.; Zhou, Y. S.; Lin, L.; Xie, Y. N.; Wang, Z. L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774.

[51]

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

[52]

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576.

[53]

Guo, H. Y.; Chen, J.; Tian, L.; Leng, Q.; Xi, Y.; Hu, C. G. Airflow-induced triboelectric nanogenerator as a self-powered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 2014, 6, 17184–17189.

[54]

Zhou, Q. T.; Lee, K.; Kim, K. N.; Park, J. G.; Pan, J.; Bae, J.; Baik, J. M.; Kim, T. High humidity- and contamination-resistant triboelectric nanogenerator with superhydrophobic interface. Nano Energy 2019, 57, 903–910.

[55]

Li, L. Z.; Wang, X. L.; Zhu, P. Z.; Li, H. Q.; Wang, F.; Wu, J. The electron transfer mechanism between metal and amorphous polymers in humidity environment for triboelectric nanogenerator. Nano Energy 2020, 70, 104476.

[56]

Jang, D.; Kim, Y.; Kim, T. Y.; Koh, K.; Jeong, U.; Cho, J. Force-assembled triboelectric nanogenerator with high-humidity-resistant electricity generation using hierarchical surface morphology. Nano Energy 2016, 20, 283–293.

[57]

Chun, J.; Kim, J. W.; Jung, W. S.; Kang, C. Y.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 2015, 8, 3006–3012.

[58]

Mule, A. R.; Dudem, B.; Graham, S. A.; Yu, J. S. Humidity sustained wearable pouch-type triboelectric nanogenerator for harvesting mechanical energy from human activities. Adv. Funct. Mater. 2019, 29, 1807779.

[59]

Zhu, H. R.; Wang, N.; Xu, Y.; Chen, S. W.; Willander, M.; Cao, X.; Wang, Z. L. Triboelectric nanogenerators based on melamine and self-powered high-sensitive sensors for melamine detection. Adv. Funct. Mater. 2016, 26, 3029–3035.

[60]

Uddin, A. S. M. I.; Yaqoob, U.; Chung, G. S. Improving the working efficiency of a triboelectric nanogenerator by the semimetallic PEDOT:PSS hole transport layer and its application in self-powered active acetylene gas sensing. ACS Appl. Mater. Interfaces 2016, 8, 30079–30089.

[61]

Jiang, P.; Zhang, L.; Guo, H. Y.; Chen, C. Y.; Wu, C. S.; Zhang, S.; Wang, Z. L. Signal output of triboelectric nanogenerator at oil–water–solid multiphase interfaces and its application for dual-signal chemical sensing. Adv. Mater. 2019, 31, e1902793.

[62]

Lin, S. Q.; Xu, L.; Tang, W.; Chen, X. Y.; Wang, Z. L. Electron transfer in nano-scale contact electrification: Atmosphere effect on the surface states of dielectrics. Nano Energy 2019, 65, 103956.

[63]

Cui, S. W.; Zheng, Y. B.; Zhang, T. T.; Wang, D. A.; Zhou, F.; Liu, W. M. Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator. Nano Energy 2018, 49, 31–39.

[64]

Lin, Z. H.; Zhu, G.; Zhou, Y. S.; Yang, Y.; Bai, P.; Chen, J.; Wang, Z. L. A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem., Int. Ed. 2013, 52, 5065–5069.

[65]

Li, Z. L.; Chen, J.; Yang, J.; Su, Y. J.; Fan, X.; Wu, Y.; Yu, C. W.; Wang, Z. L. β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 2015, 8, 887–896.

[66]

Guan, Q. B.; Dai, Y. H.; Yang, Y. Q.; Bi, X. Y.; Wen, Z.; Pan, Y. Near-infrared irradiation induced remote and efficient self-healable triboelectric nanogenerator for potential implantable electronics. Nano Energy 2018, 51, 333–339.

[67]

Dai, X. Y.; Huang, L. B.; Du, Y. Z.; Han, J. C.; Zheng, Q. Q.; Kong, J.; Hao, J. H. Self-healing, flexible, and tailorable triboelectric nanogenerators for self-powered sensors based on thermal effect of infrared radiation. Adv. Funct. Mater. 2020, 30, 1910723.

[68]

Prateek; Thakur, V. K.; Gupta, R. K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260–4317.

[69]

Lin, S. Q.; Xu, L.; Zhu, L. P.; Chen, X. Y.; Wang, Z. L. Electron transfer in nanoscale contact electrification: Photon excitation effect. Adv. Mater. 2019, 31, e1901418.

[70]

Li, S. Y.; Fan, Y.; Chen, H. Q.; Nie, J. H.; Liang, Y. X.; Tao, X. L.; Zhang, J.; Chen, X. Y.; Fu, E. G.; Wang, Z. L. Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy Environ. Sci. 2020, 13, 896–907.

[71]

Hager, M. D.; Greil, P.; Leyens, C.; van der Zwaag, S.; Schubert, U. S. Self-healing materials. Adv. Mater. 2010, 22, 5424–5430.

[72]

Parida, K.; Xiong, J. Q.; Zhou, X. R.; Lee, P. S. Progress on triboelectric nanogenerator with stretchability, self-healability, and bio-compatibility. Nano Energy 2019, 59, 237–257.

[73]

Deng, J. N.; Kuang, X.; Liu, R. Y.; Ding, W. B.; Wang, A. C.; Lai, Y. C.; Dong, K.; Wen, Z.; Wang, Y. X.; Wang, L. L. et al. Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater. 2018, 30, e1705918.

[74]

Park, J. H.; Park, K. J.; Jiang, T.; Sun, Q. J.; Huh, J. H.; Wang, Z. L.; Lee, S.; Cho, J. H. Light-transformable and -healable triboelectric nanogenerators. Nano Energy 2017, 38, 412–418.

[75]

Lai, Y. C.; Wu, H. M.; Lin, H. C.; Chang, C. L.; Chou, H. H.; Hsiao, Y. C.; Wu, Y. C. Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. 2019, 29, 1904626.

[76]

Niu, H. D.; Du, X. Y.; Zhao, S. Y.; Yuan, Z. Q.; Zhang, X. L.; Cao, R.; Yin, Y. Y.; Zhang, C.; Zhou, T.; Li, C. J. Polymer nanocomposite-enabled high-performance triboelectric nanogenerator with self-healing capability. RSC Adv. 2018, 8, 30661–30668.

[77]

Chen, Y. H.; Pu, X.; Liu, M. M.; Kuang, S. Y.; Zhang, P. P.; Hua, Q. L.; Cong, Z. F.; Guo, W. B.; Hu, W. G.; Wang, Z. L. Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid–solid contact electrification. ACS Nano 2019, 13, 8936–8945.

[78]

Parida, K.; Kumar, V.; Jiangxin, W.; Bhavanasi, V.; Bendi, R.; Lee, P. S. Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv. Mater. 2017, 29, 1702181.

[79]

Sun, J. M.; Pu, X.; Liu, M. M.; Yu, A. F.; Du, C. H.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 2018, 12, 6147–6155.

[80]

White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797.

[81]

Yang, Y.; Urban, M. W. Self-healing polymeric materials. Chem. Soc. Rev. 2013, 42, 7446–7467.

[82]

Xu, W.; Huang, L. B.; Hao, J. H. Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode. Nano Energy 2017, 40, 399–407.

[83]

Arisawa, M.; Yamaguchi, M. Rhodium-catalyzed disulfide exchange reaction. J. Am. Chem. Soc. 2003, 125, 6624–6625.

[84]

Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–980.

[85]

Xun, X. C.; Zhang, Z.; Zhao, X.; Zhao, B.; Gao, F. F.; Kang, Z.; Liao, Q. L.; Zhang, Y. Highly robust and self-powered electronic skin based on tough conductive self-healing elastomer. ACS Nano 2020, 14, 9066–9072.

[86]

Martin, R.; Rekondo, A.; Ruiz de Luzuriaga, A.; Cabañero, G.; Grande, H. J.; Odriozola, I. The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges. J. Mater. Chem. A 2014, 2, 5710.

[87]

Rekondo, A.; Martin, R.; Ruiz de Luzuriaga, A.; Cabañero, G.; Grande, H. J.; Odriozola, I. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 2014, 1, 237–240.

[88]

Shi, F.; Niu, J.; Liu, J.; Liu, F.; Wang, Z.; Feng, X. Q.; Zhang, X. Towards understanding why a superhydrophobic coating is needed by water striders. Adv. Mater. 2007, 19, 2257–2261.

[89]

Jiang, L.; Zhao, Y.; Zhai, J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem., Int. Ed. 2004, 43, 4338–4341.

[90]

Bhushan, B.; Her, E. K. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir 2010, 26, 8207–8217.

[91]

Sun, M. H.; Luo, C. X.; Xu, L. P.; Ji, H.; Ouyang, Q.; Yu, D. P.; Chen, Y. Artificial lotus leaf by nanocasting. Langmuir 2005, 21, 8978–8981.

[92]

Gao, X. F.; Jiang, L. Biophysics: Water-repellent legs of water striders. Nature 2004, 432, 36.

[93]

Li, X. M.; Reinhoudt, D.; Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007, 36, 1350–1368.

[94]

Jeon, S. B.; Kim, D.; Yoon, G. W.; Yoon, J. B.; Choi, Y. K. Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight. Nano Energy 2015, 12, 636–645.

[95]

Zhang, Q.; Liang, Q. J.; Liao, Q. L.; Ma, M. Y.; Gao, F. F.; Zhao, X.; Song, Y. D.; Song, L. J.; Xun, X. C.; Zhang, Y. An amphiphobic hydraulic triboelectric nanogenerator for a self-cleaning and self-charging power system. Adv. Funct. Mater. 2018, 28, 1803117.

[96]

Lee, Y.; Cha, S. H.; Kim, Y. W.; Choi, D.; Sun, J. Y. Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat. Commun. 2018, 9, 1804.

[97]

Nie, S. X.; Guo, H. Y.; Lu, Y. X.; Zhuo, J. T.; Mo, J. L.; Wang, Z. L. Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Adv. Mater. Technol. 2020, 5, 2000454.

[98]

Li, J.; Fu, J.; Cong, Y.; Wu, Y.; Xue, L. J.; Han, Y. C. Macroporous fluoropolymeric films templated by silica colloidal assembly: A possible route to super-hydrophobic surfaces. Appl. Surf. Sci. 2006, 252, 2229–2234.

[99]

Kim, S. H.; Kim, J. H.; Kang, B. K.; Uhm, H. S. Superhydrophobic CFx coating via in-line atmospheric RF plasma of He-CF4-H2. Langmuir 2005, 21, 12213–12217.

[100]

Zhang, G.; Wang, D. Y.; Gu, Z. Z.; Möhwald, H. Fabrication of superhydrophobic surfaces from binary colloidal assembly. Langmuir 2005, 21, 9143–9148.

[101]

Soeno, T.; Inokuchi, K.; Shiratori, S. Ultra-water-repellent surface: Fabrication of complicated structure of SiO2 nanoparticles by electrostatic self-assembled films. Appl. Surf. Sci. 2004, 237, 539–543.

[102]

Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H. S. Superhydrophobic perpendicular nanopin film by the bottom–up process. J. Am. Chem. Soc. 2005, 127, 13458–13459.

[103]

Han, J. T.; Zheng, Y. L.; Cho, J. H.; Xu, X. R.; Cho, K. Stable superhydrophobic organic–inorganic hybrid films by electrostatic self-assembly. J. Phys. Chem. B 2005, 109, 20773–20778.

[104]

Ming, W.; Wu, D.; van Benthem, R.; de With, G. Superhydrophobic films from raspberry-like particles. Nano Lett. 2005, 5, 2298–2301.

[105]

Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994.

[106]

Lee, W.; Jin, M. K.; Yoo, W. C.; Lee, J. K. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir 2004, 20, 7665–7669.

[107]

Lee, K. Y.; Chun, J.; Lee, J. H.; Kim, K. N.; Kang, N. R.; Kim, J. Y.; Kim, M. H.; Shin, K. S.; Gupta, M. K.; Baik, J. M. et al. Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 2014, 26, 5037–5042.

[108]

Parvez Mahmud, M. A.; Huda, N.; Farjana, S. H.; Asadnia, M.; Lang, C. Recent advances in nanogenerator-driven self-powered implantable biomedical devices. Adv. Energy Mater. 2018, 8, 1701210.

[109]

Zheng, Q.; Tang, Q. Z.; Wang, Z. L.; Li, Z. Self-powered cardiovascular electronic devices and systems. Nat. Rev. Cardiol. 2021, 18, 7–21.

[110]

Liu, Z. R.; Nie, J. H.; Miao, B.; Li, J. D.; Cui, Y. B.; Wang, S.; Zhang, X. D.; Zhao, G. R.; Deng, Y. B.; Wu, Y. H. et al. Self-powered intracellular drug delivery by a biomechanical energy-driven triboelectric nanogenerator. Adv. Mater. 2019, 31, e1807795.

[111]

Zheng, Q.; Zhang, H.; Shi, B. J.; Xue, X.; Liu, Z.; Jin, Y. M.; Ma, Y.; Zou, Y.; Wang, X. X.; An, Z. et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 2016, 10, 6510–6518.

[112]

Zheng, Q.; Shi, B. J.; Fan, F. R.; Wang, X. X.; Yan, L.; Yuan, W. W.; Wang, S. H.; Liu, H.; Li, Z.; Wang, Z. L. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 2014, 26, 5851–5856.

[113]

Liu, Z.; Ma, Y.; Ouyang, H.; Shi, B. J.; Li, N.; Jiang, D. J.; Xie, F.; Qu, D.; Zou, Y.; Huang, Y. et al. Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Funct. Mater. 2019, 29, 1807560.

[114]

Li, J.; Kang, L.; Long, Y.; Wei, H.; Yu, Y. H.; Wang, Y. Z.; Ferreira, C. A.; Yao, G.; Zhang, Z. Y.; Carlos, C. et al. Implanted battery-free direct-current micro-power supply from in vivo breath energy harvesting. ACS Appl. Mater. Interfaces 2018, 10, 42030–42038.

[115]

Jiang, D. J.; Shi, B. J.; Ouyang, H.; Fan, Y. B.; Wang, Z. L.; Li, Z. Emerging implantable energy harvesters and self-powered implantable medical electronics. ACS Nano 2020, 14, 6436–6448.

[116]

Ouyang, H.; Tian, J. J.; Sun, G. L.; Zou, Y.; Liu, Z.; Li, H.; Zhao, L. M.; Shi, B. J.; Fan, Y. B.; Fan, Y. F. et al. Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv. Mater. 2017, 29, 1703456.

[117]

Ma, Y.; Zheng, Q.; Liu, Y.; Shi, B. J.; Xue, X.; Ji, W. P.; Liu, Z.; Jin, Y. M.; Zou, Y.; An, Z. et al. Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett. 2016, 16, 6042–6051.

[118]

Wu, C. S.; Jiang, P.; Li, W.; Guo, H. Y.; Wang, J.; Chen, J.; Prausnitz, M. R.; Wang, Z. L. Self-powered iontophoretic transdermal drug delivery system driven and regulated by biomechanical motions. Adv. Funct. Mater. 2020, 30, 1907378.

[119]

Tang, W.; Tian, J. J.; Zheng, Q.; Yan, L.; Wang, J. X.; Li, Z.; Wang, Z. L. Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts’ proliferation and differentiation. ACS Nano 2015, 9, 7867–7873.

[120]

Zhao, C. C.; Feng, H. Q.; Zhang, L. J.; Li, Z.; Zou, Y.; Tan, P. C.; Ouyang, H.; Jiang, D. J.; Yu, M.; Wang, C. et al. Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator. Adv. Funct. Mater. 2019, 29, 1808640.

[121]

Han, O. Y.; Liu, Z.; Li, N.; Shi, B. J.; Zou, Y.; Xie, F.; Ma, Y.; Li, Z.; Li, H.; Zheng, Q. et al. Symbiotic cardiac pacemaker. Nat. Commun. 2019, 10, 1821.

[122]

Hwang, S. W.; Tao, H.; Kim, D. H.; Cheng, H. Y.; Song, J. K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y. S. et al. A physically transient form of silicon electronics. Science 2012, 337, 1640–1644.

[123]

Pan, R. Z.; Xuan, W. P.; Chen, J. K.; Dong, S. R.; Jin, H.; Wang, X. Z.; Li, H. L.; Luo, J. K. Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 2018, 45, 193–202.

[124]

Li, Z.; Feng, H. Q.; Zheng, Q.; Li, H.; Zhao, C. C.; Ouyang, H.; Noreen, S.; Yu, M.; Su, F.; Liu, R. P. et al. Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing. Nano Energy 2018, 54, 390–399.

[125]

Kim, K. N.; Chun, J.; Chae, S. A.; Ahn, C. W.; Kim, I. W.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles. Nano Energy 2015, 14, 87–94.

[126]

Hwang, S. W.; Lee, C. H.; Cheng, H. Y.; Jeong, J. W.; Kang, S. K.; Kim, J. H.; Shin, J.; Yang, J.; Liu, Z. J.; Ameer, G. A. et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 2015, 15, 2801–2808.

[127]

Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H. Y.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y. G.; Rogers, J. A. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905–3911.

[128]

Hannan, M. A.; Mutashar, S.; Samad, S. A.; Hussain, A. Energy harvesting for the implantable biomedical devices: Issues and challenges. BioMed. Eng. OnLine 2014, 13, 79.

[129]

Li, Z.; Li, C.; Deng, Y. L. Bioresorbable pressure sensor and its applications in abnormal respiratory event identification. ACS Appl. Electron. Mater. 2023, 5, 1761–1769.

[130]

Jiang, W.; Li, H.; Liu, Z.; Li, Z.; Tian, J. J.; Shi, B. J.; Zou, Y.; Ouyang, H.; Zhao, C. C.; Zhao, L. M. et al. Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv. Mater. 2018, 30, e1801895.

[131]

Wang, R. X.; Gao, S. J.; Yang, Z.; Li, Y. L.; Chen, W. N.; Wu, B. X.; Wu, W. Z. Engineered and laser-processed chitosan biopolymers for sustainable and biodegradable triboelectric power generation. Adv. Mater. 2018, 30, 1706267.

[132]

Yao, C. H.; Yin, X.; Yu, Y. H.; Cai, Z. Y.; Wang, X. D. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 2017, 27, 1700794.

[133]

Yao, C. H.; Hernandez, A.; Yu, Y. H.; Cai, Z. Y.; Wang, X. D. Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 2016, 30, 103–108.

[134]

Haward, M. Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance. Nat. Commun. 2018, 9, 667.

[135]

Fu, K. K.; Wang, Z. Y.; Dai, J. Q.; Carter, M.; Hu, L. B. Transient electronics: Materials and devices. Chem. Mater. 2016, 28, 3527–3539.

[136]

Xun, X. C.; Zhao, X.; Li, Q.; Zhao, B.; Ouyang, T.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Zhang, Y. Tough and degradable self-healing elastomer from synergistic soft–hard segments design for biomechano-robust artificial skin. ACS Nano 2021, 15, 20656–20665.

[137]

Liu, G. L.; Guo, H. Y.; Xu, S. X.; Hu, C. G.; Wang, Z. L. Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 2019, 9, 1900801.

[138]

Chen, G. Y.; Xu, L.; Zhang, P. P.; Chen, B. D.; Wang, G. X.; Ji, J. H.; Pu, X.; Wang, Z. L. Seawater degradable triboelectric nanogenerators for blue energy. Adv. Mater. Technol. 2020, 5, 2000455.

[139]

Liang, Q. J.; Zhang, Q.; Yan, X. Q.; Liao, X. Q.; Han, L. H.; Yi, F.; Ma, M. Y.; Zhang, Y. Recyclable and green triboelectric nanogenerator. Adv. Mater. 2017, 29, 1604961.

[140]

Lu, Y. C.; Li, X. J.; Ping, J. F.; He, J. S.; Wu, J. A flexible, recyclable, and high-performance pullulan-based triboelectric nanogenerator (TENG). Adv. Mater. Technol. 2020, 5, 1900905.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 February 2023
Revised: 18 March 2023
Accepted: 07 April 2023
Published: 24 May 2023
Issue date: September 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFA0703500), the National Natural Science Foundation of China (Nos. 52232006, 52188101, 52102153, 52072029, 51991340, and 51991342), the Overseas Expertise Introduction Projects for Discipline Innovation (No. B14003), the China Postdoctoral Science Foundation (No. 2021M700379), and the Fundamental Research Funds for Central Universities (No. FRF-TP-18-001C1).

Return