Journal Home > Volume 16 , Issue 9

The Moore’s law in silicone-based electronics is reaching its limit and the energy efficiency of the most sophisticated electronics to mimic the iontronic logic circuit in single-celled organisms is still inferior to their natural counterpart. Unlike electronics, iontronics is widely present in nature, and provides the fundamentals for many life activities through the transmission and conversion of information and energy via ions.

Moreover, as nanotechnology and fabrication processes continue to advance, highly efficient iontronics could be enabled by creation of asymmetry from nano-confined unipolar ion transport through various nanohierarchical structures of materials. The introduction of bionic design and nanostructures has made it possible for ions to demonstrate numerous anomalous behaviours and entirely new mechanisms, which are governed by complex interfacial interactions. In this review, we discuss the origins, development, mechanism, and applications of bionic iontronics and analyze the unique benefits as well as the practicality of iontronics from a variety of perspectives. Iontronics, as an emerging field of research with innumerable challenges and opportunities for exploring the theory and applications of ions as transport carriers, promises to provide new insights in many subjects covering energy and sensing, etc., and establishes a new paradigm in investigating the ionic-electric signal transduction interface for futuristic iontronic logic circuit and neuromorphic computing.


menu
Abstract
Full text
Outline
About this article

Bionic iontronics based on nano-confined structures

Show Author's information Han Qian1,2Di Wei1( )Zhong Lin Wang1,3( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

The Moore’s law in silicone-based electronics is reaching its limit and the energy efficiency of the most sophisticated electronics to mimic the iontronic logic circuit in single-celled organisms is still inferior to their natural counterpart. Unlike electronics, iontronics is widely present in nature, and provides the fundamentals for many life activities through the transmission and conversion of information and energy via ions.

Moreover, as nanotechnology and fabrication processes continue to advance, highly efficient iontronics could be enabled by creation of asymmetry from nano-confined unipolar ion transport through various nanohierarchical structures of materials. The introduction of bionic design and nanostructures has made it possible for ions to demonstrate numerous anomalous behaviours and entirely new mechanisms, which are governed by complex interfacial interactions. In this review, we discuss the origins, development, mechanism, and applications of bionic iontronics and analyze the unique benefits as well as the practicality of iontronics from a variety of perspectives. Iontronics, as an emerging field of research with innumerable challenges and opportunities for exploring the theory and applications of ions as transport carriers, promises to provide new insights in many subjects covering energy and sensing, etc., and establishes a new paradigm in investigating the ionic-electric signal transduction interface for futuristic iontronic logic circuit and neuromorphic computing.

Keywords: asymmetry, electronics, nanofluidic, iontronics, nano-confined ion transport

References(143)

[1]

Zhang, Y. F.; Duan, L. F.; Zhang, Y. Z.; Wang, J.; Geng, H. J.; Zhang, Q. Advances in conceptual electronic nanodevices based on 0D and 1D nanomaterials. Nano-Micro Lett. 2014, 6, 1–19.

[2]

Sarpeshkar, R. Analog versus digital: Extrapolating from electronics to neurobiology. Neural Comput. 1998, 10, 1601–1638.

[3]

Chau, R.; Doyle, B.; Datta, S.; Kavalieros, J.; Zhang, K. Integrated nanoelectronics for the future. Nat. Mater. 2007, 6, 810–812.

[4]

Chun, H.; Chung, T. D. Iontronics. Annu. Rev. Anal. Chem. 2015, 8, 441–462.

[5]

Goldhaber-Gordon, D.; Montemerlo, M. S.; Love, J. C.; Opiteck, G. J.; Ellenbogen, J. C. Overview of nanoelectronic devices. Proc. IEEE 1997, 85, 521–540.

[6]

Cohen-Cory, S. The developing synapse: Construction and modulation of synaptic structures and circuits. Science 2002, 298, 770–776.

[7]

Onoda, M. Bioinspired electrochemical devices toward organic iontronics. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 320–334.

[8]

Hou, Y. Q.; Hou, X. Bioinspired nanofluidic iontronics: Electrolytes in planar nanochannels are predicted to function as nanofluidic memristors. Science 2021, 373, 628–629.

[9]

Li, T. M.; Xiao, K. Solid-state iontronic devices: Mechanisms and applications. Adv. Mater. Technol. 2022, 7, 2200205.

[10]
Onoda, M. Ionic carriers in organic electronics—Lean of the ion. In Proceedings of 2014 International Symposium on Electrical Insulating Materials; Niigata, Japan, 2014; pp 515–518.
DOI
[11]
Leger, J.; Berggren, M.; Carter, S. A. Iontronics: Ionic Carriers in Organic Electronic Materials and Devices; CRC Press: Boca Raton, 2011.
[12]

Ouyang, J. Y. Recent advances of intrinsically conductive polymers. Acta Phys. -Chim. Sin. 2018, 34, 1211–1220.

[13]

Zhang, P. P.; Guo, W. B.; Guo, Z. H.; Ma, Y.; Gao, L.; Cong, Z. F.; Zhao, X. J.; Qiao, L. J.; Pu, X.; Wang, Z. L. Dynamically crosslinked dry ion-conducting elastomers for soft iontronics. Adv. Mater. 2021, 33, 2101396.

[14]

Zhang, J. R.; Liu, W. C.; Dai, J. Q.; Xiao, K. Nanoionics from biological to artificial systems: An alternative beyond nanoelectronics. Adv. Sci. 2022, 9, 2200534.

[15]

Yu, J. R.; Wang, Y. F.; Qin, S. S.; Gao, G. Y.; Xu, C.; Lin Wang, Z.; Sun, Q. J. Bioinspired interactive neuromorphic devices. Mater. Today 2022, 60, 158–182.

[16]

Lee, Y.; Park, J.; Choe, A.; Cho, S.; Kim, J.; Ko, H. Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 2020, 30, 1904523.

[17]

Yang, C. H.; Suo, Z. G. Hydrogel ionotronics. Nat. Rev. Mater. 2018, 3, 125–142.

[18]

Zhang, A. Q.; Lieber, C. M. Nano-bioelectronics. Chem. Rev. 2016, 116, 215–257.

[19]

Wan, C. J.; Xiao, K.; Angelin, A.; Antonietti, M.; Chen, X. D. The rise of bioinspired ionotronics. Adv. Intell. Syst. 2019, 1, 1900073.

[20]

Raidongia, K.; Huang, J. X. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 2012, 134, 16528–16531.

[21]

Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.

[22]

Zhou, Y.; Liao, X. W.; Han, J.; Chen, T. T.; Wang, C. Ionic current rectification in asymmetric nanofluidic devices. Chin. Chem. Lett. 2020, 31, 2414–2422.

[23]

Koltonow, A. R.; Huang, J. X. Two-dimensional nanofluidics: Restacked exfoliated sheets create interconnected nanofluidic channels for ion transport. Science 2016, 351, 1395–1396.

[24]

Zhong, J. J.; Alibakhshi, M. A.; Xie, Q.; Riordon, J.; Xu, Y.; Duan, C. H.; Sinton, D. Exploring anomalous fluid behavior at the nanoscale: Direct visualization and quantification via nanofluidic devices. Acc. Chem. Res. 2020, 53, 347–357.

[25]

Yang, L.; Yang, F. Y.; Liu, X.; Li, K.; Zhou, Y. N.; Wang, Y. J.; Yu, T. H.; Zhong, M. J.; Xu, X. B.; Zhang, L. J. et al. A moisture-enabled fully printable power source inspired by electric eels. Proc. Natl. Acad. Sci. USA 2021, 118, e2023164118.

[26]

Schroeder, T. B. H.; Guha, A.; Lamoureux, A.; VanRenterghem, G.; Sept, D.; Shtein, M.; Yang, J.; Mayer, M. An electric-eel-inspired soft power source from stacked hydrogels. Nature 2017, 552, 214–218.

[27]

Yang, J. L.; Tu, B.; Zhang, G. J.; Liu, P. C.; Hu, K.; Wang, J. R.; Yan, Z.; Huang, Z. W.; Fang, M. N.; Hou, J. J. et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 2022, 17, 622–628.

[28]

Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 2013, 494, 455–458.

[29]

Xin, W. W.; Zhang, Z.; Huang, X. D.; Hu, Y. H.; Zhou, T.; Zhu, C. C.; Kong, X. Y.; Jiang, L.; Wen, L. P. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat. Commun. 2019, 10, 3876.

[30]
Yu, L. J.; Wang, M.; Li, X. P.; Hou, X. Thermally responsive ionic transport system reinforced by aligned functional carbon nanotubes backbone. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.107785.
DOI
[31]

Xiao, K.; Xie, G. H.; Li, P.; Liu, Q.; Hou, G. L.; Zhang, Z.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L. A biomimetic multi-stimuli-response ionic gate using a hydroxypyrene derivation-functionalized asymmetric single nanochannel. Adv. Mater. 2014, 26, 6560–6565.

[32]

Hou, G. L.; Wang, D. Y.; Xiao, K.; Zhang, H. C.; Zheng, S.; Li, P.; Tian, Y.; Jiang, L. Magnetic gated biomimetic artificial nanochannels for controllable ion transportation inspired by homing pigeon. Small 2018, 14, 1703369.

[33]

Xiao, K.; Wu, K.; Chen, L.; Kong, X. Y.; Zhang, Y. Q.; Wen, L. P.; Jiang, L. Biomimetic peptide-gated nanoporous membrane for on-demand molecule transport. Angew. Chem., Int. Ed. 2018, 57, 151–155.

[34]

Wang, M.; Meng, H. Q.; Wang, D.; Yin, Y. J.; Stroeve, P.; Zhang, Y. M.; Sheng, Z. Z.; Chen, B. Y.; Zhan, K.; Hou, X. Dynamic curvature nanochannel-based membrane with anomalous ionic transport behaviors and reversible rectification switch. Adv. Mater. 2019, 31, 1805130.

[35]

Nakanishi, H.; Walker, D. A.; Bishop, K. J. M.; Wesson, P. J.; Yan, Y.; Soh, S.; Swaminathan, S.; Grzybowski, B. A. Dynamic internal gradients control and direct electric currents within nanostructured materials. Nat. Nanotechnol. 2011, 6, 740–746.

[36]

Siwy, Z. S. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 2006, 16, 735–746.

[37]

Chen, L.; Shi, G. S.; Shen, J.; Peng, B. Q.; Zhang, B. W.; Wang, Y. Z.; Bian, F. G.; Wang, J. J.; Li, D. Y.; Qian, Z. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017, 550, 380–383.

[38]

Sheng, F. M.; Wu, B.; Li, X. Y.; Xu, T. T.; Shehzad, M. A.; Wang, X. X.; Ge, L.; Wang, H. T.; Xu, T. W. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Adv. Mater. 2021, 33, 2104404.

[39]

Wen, Q.; Yan, D. X.; Liu, F.; Wang, M.; Ling, Y.; Wang, P. F.; Kluth, P.; Schauries, D.; Trautmann, C.; Apel, P. et al. Highly selective ionic transport through subnanometer pores in polymer films. Adv. Funct. Mater. 2016, 26, 5796–5803.

[40]

Richards, L. A.; Schäfer, A. I.; Richards, B. S.; Corry, B. The importance of dehydration in determining ion transport in narrow pores. Small 2012, 8, 1701–1709.

[41]

Xiao, J.; Zhan, H. L.; Wang, X.; Xu, Z. Q.; Xiong, Z. Y.; Zhang, K.; Simon, G. P.; Liu, J. Z.; Li, D. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 2020, 15, 683–689.

[42]

Feng, G.; Cummings, P. T. Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size. J. Phys. Chem. Lett. 2011, 2, 2859–2864.

[43]

Yang, X. X.; Han, J.; Yu, J. R.; Chen, Y. H.; Zhang, H.; Ding, M.; Jia, C. K.; Sun, J.; Sun, Q. J.; Wang, Z. L. Versatile triboiontronic transistor via proton conductor. ACS Nano 2020, 14, 8668–8677.

[44]

Yu, J. R.; Qin, S. S.; Zhang, H.; Wei, Y. C.; Zhu, X. X.; Yang, Y.; Sun, Q. J. Fiber-shaped triboiontronic electrochemical transistor. Research 2021, 2021, 9840918.

[45]

Gao, G. Y.; Yu, J. R.; Yang, X. X.; Pang, Y. K.; Zhao, J.; Pan, C. F.; Sun, Q. J.; Wang, Z. L. Triboiontronic transistor of MoS2. Adv. Mater. 2019, 31, 1806905.

[46]

Tan, F. X.; Xiong, Y.; Yu, J. R.; Wang, Y. F.; Li, Y. H.; Wei, Y. C.; Sun, J.; Xie, X. Y.; Sun, Q. J.; Wang, Z. L. Triboelectric potential tuned dual-gate IGZO transistor for versatile sensory device. Nano Energy 2021, 90, 106617.

[47]

Han, S. H.; Kwon, S. R.; Baek, S.; Chung, T. D. Ionic circuits powered by reverse electrodialysis for an ultimate iontronic system. Sci. Rep. 2017, 7, 14068.

[48]

Han, S. H.; Kim, S. I.; Lee, H. R.; Lim, S. M.; Yeon, S. Y.; Oh, M. A.; Lee, S.; Sun, J. Y.; Joo, Y. C.; Chung, T. D. Hydrogel-based iontronics on a polydimethylsiloxane microchip. ACS Appl. Mater. Interfaces 2021, 13, 6606–6614.

[49]

Yao, Y.; Huang, W.; Chen, J. H.; Wang, G.; Chen, H. M.; Zhuang, X. M.; Ying, Y. B.; Ping, J. F.; Marks, T. J.; Facchetti, A. Flexible complementary circuits operating at sub-0.5 V via hybrid organic-inorganic electrolyte-gated transistors. Proc. Natl. Acad. Sci. USA 2021, 118, e2111790118.

[50]

Stein, D.; Kruithof, M.; Dekker, C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 2004, 93, 035901.

[51]

Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713–720.

[52]

Gogotsi, Y. Moving ions confined between graphene sheets. Nat. Nanotechnol. 2018, 13, 625–627.

[53]

Xiao, K.; Jiang, L.; Antonietti, M. Ion transport in nanofluidic devices for energy harvesting. Joule 2019, 3, 2364–2380.

[54]

Wang, M.; Hou, X. Building artificial aligned nanochannels for highly efficient ion transport. Joule 2023, 7, 251–253.

[55]

Lin, S. Q.; Xu, L.; Chi Wang, A.; Wang, Z. L. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat. Commun. 2020, 11, 399.

[56]

Lin, S. Q.; Chen, X. Y.; Wang, Z. L. Contact electrification at the liquid-solid interface. Chem. Rev. 2022, 122, 5209–5232.

[57]

Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

[58]

Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G. S.; Zhao, Y. L.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Bioinspired neuron-like electronics. Nat. Mater. 2019, 18, 510–517.

[59]

Zhou, Y. H.; Jiang, L. Bioinspired nanoporous membrane for salinity gradient energy harvesting. Joule 2020, 4, 2244–2248.

[60]

Kim, Y.; Chortos, A.; Xu, W. T.; Liu, Y. X.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C. X.; Lee, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998–1003.

[61]

Keene, S. T.; Lubrano, C.; Kazemzadeh, S.; Melianas, A.; Tuchman, Y.; Polino, G.; Scognamiglio, P.; Cinà, L.; Salleo, A.; van de Burgt, Y. et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 2020, 19, 969–973.

[62]

Zhao, F.; Meng, H.; Yan, L.; Wang, B.; Zhao, Y. L. Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Sci. Bull. 2015, 60, 3–20.

[63]

Gadsby, D. C. Ion channels versus ion pumps: The principal difference, in principle. Nat. Rev. Mol. Cell Biol. 2009, 10, 344–352.

[64]

Glancy, B.; Balaban, R. S. Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry 2012, 51, 2959–2973.

[65]

McEvoy, E.; Han, Y. L.; Guo, M.; Shenoy, V. B. Gap junctions amplify spatial variations in cell volume in proliferating tumor spheroids. Nat. Commun. 2020, 11, 6148.

[66]

Giorgi, C.; Marchi, S.; Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 2018, 19, 713–730.

[67]

Shen, Y. G.; Wang, X.; Lei, J. M.; Wang, S. L.; Hou, Y. Q.; Hou, X. Catalytic confinement effects in nanochannels: From biological synthesis to chemical engineering. Nanoscale Adv. 2022, 4, 1517–1526.

[68]

Devine, M. J.; Kittler, J. T. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 2018, 19, 63–80.

[69]

Abe, K.; Irie, K.; Nakanishi, H.; Suzuki, H.; Fujiyoshi, Y. Crystal structures of the gastric proton pump. Nature 2018, 556, 214–218.

[70]

Hill, R. Z.; Loud, M. C.; Dubin, A. E.; Peet, B.; Patapoutian, A. PIEZO1 transduces mechanical itch in mice. Nature 2022, 607, 104–110.

[71]

Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A. L.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69–77.

[72]

Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191, 144–148.

[73]

Elston, T.; Wang, H. Y.; Oster, G. Energy transduction in ATP synthase. Nature 1998, 391, 510–513.

[74]

Gouaux, E.; MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 2005, 310, 1461–1465.

[75]

Burgoyne, R. D. Neuronal calcium sensor proteins: Generating diversity in neuronal Ca2+ signalling. Nat. Rev. Neurosci. 2007, 8, 182–193.

[76]

James, P.; Inui, M.; Tada, M.; Chiesi, M.; Carafoli, E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 1989, 342, 90–92.

[77]

Liu, Q.; Xiao, K.; Wen, L. P.; Lu, H.; Liu, Y. H.; Kong, X. Y.; Xie, G. H.; Zhang, Z.; Bo, Z. S.; Jiang, L. Engineered ionic gates for ion conduction based on sodium and potassium activated nanochannels. J. Am. Chem. Soc. 2015, 137, 11976–11983.

[78]

Wu, K.; Xiao, K.; Chen, L.; Zhou, R.; Niu, B.; Zhang, Y. Q.; Wen, L. P. Biomimetic voltage-gated ultrasensitive potassium-activated nanofluidic based on a solid-state nanochannel. Langmuir 2017, 33, 8463–8467.

[79]

Xiao, K.; Wan, C. J.; Jiang, L.; Chen, X. D.; Antonietti, M. Bioinspired ionic sensory systems: The successor of electronics. Adv. Mater. 2020, 32, 2000218.

[80]

Zhan, K.; Li, Z. Y.; Chen, J.; Hou, Y. Q.; Zhang, J.; Sun, R. Q.; Bu, Z. X.; Wang, L. Y.; Wang, M.; Chen, X. Y. et al. Tannic acid modified single nanopore with multivalent metal ions recognition and ultra-trace level detection. Nano Today 2020, 33, 100868.

[81]

Xue, Y. H.; Xia, Y.; Yang, S.; Alsaid, Y.; Fong, K. Y.; Wang, Y.; Zhang, X. Atomic-scale ion transistor with ultrahigh diffusivity. Science 2021, 372, 501–503.

[82]

Wang, M.; Hou, Y. Q.; Yu, L. J.; Hou, X. Anomalies of ionic/molecular transport in nano and sub-nano confinement. Nano Lett. 2020, 20, 6937–6946.

[83]

Daiguji, H. Ion transport in nanofluidic channels. Chem. Soc. Rev. 2010, 39, 901–911.

[84]

Zhan, H. L.; Xiong, Z. Y.; Cheng, C.; Liang, Q. H.; Liu, J. Z.; Li, D. Solvation-involved nanoionics: New opportunities from 2D nanomaterial laminar membranes. Adv. Mater. 2020, 32, 1904562.

[85]

Feng, J. D.; Liu, K.; Graf, M.; Dumcenco, D.; Kis, A.; Di Ventra, M.; Radenovic, A. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 2016, 15, 850–855.

[86]

Zhang, Z.; Kong, X. Y.; Xiao, K.; Xie, G. H.; Liu, Q.; Tian, Y.; Zhang, H. C.; Ma, J.; Wen, L. P.; Jiang, L. A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Adv. Mater. 2016, 28, 144–150.

[87]

Zhang, H. C.; Hou, X.; Zeng, L.; Yang, F.; Li, L.; Yan, D. D.; Tian, Y.; Jiang, L. Bioinspired artificial single ion pump. J. Am. Chem. Soc. 2013, 135, 16102–16110.

[88]

Xie, G. H.; Li, P.; Zhao, Z. J.; Zhu, Z. P.; Kong, X. Y.; Zhang, Z.; Xiao, K.; Wen, L. P.; Jiang, L. Light- and electric-field-controlled wetting behavior in nanochannels for regulating nanoconfined mass transport. J. Am. Chem. Soc. 2018, 140, 4552–4559.

[89]

Qian, T. Y.; Zhang, H. C.; Li, X. Y.; Hou, J.; Zhao, C.; Gu, Q. F.; Wang, H. T. Efficient gating of ion transport in three-dimensional metal-organic framework sub-nanochannels with confined light-responsive azobenzene molecules. Angew. Chem., Int. Ed. 2020, 59, 13051–13056.

[90]

Xiao, K.; Zhou, Y. H.; Kong, X. Y.; Xie, G. H.; Li, P.; Zhang, Z.; Wen, L. P.; Jiang, L. Electrostatic-charge- and electric-field-induced smart gating for water transportation. ACS Nano 2016, 10, 9703–9709.

[91]

Chen, K. X.; Yao, L. N.; Su, B. Bionic thermoelectric response with nanochannels. J. Am. Chem. Soc. 2019, 141, 8608–8615.

[92]

Li, P.; Kong, X. Y.; Xie, G. H.; Xiao, K.; Zhang, Z.; Wen, L. P.; Jiang, L. Adenosine-activated nanochannels inspired by G-protein-coupled receptors. Small 2016, 12, 1854–1858.

[93]

Liu, Q.; Xiao, K.; Wen, L. P.; Dong, Y.; Xie, G. H.; Zhang, Z.; Bo, Z. S.; Jiang, L. A fluoride-driven ionic gate based on a 4-aminophenylboronic acid-functionalized asymmetric single nanochannel. ACS Nano 2014, 8, 12292–12299.

[94]

Mei, T. T.; Zhang, H. J.; Xiao, K. Bioinspired artificial ion pumps. ACS Nano 2022, 16, 13323–13338.

[95]

Zhang, Z.; Kong, X. Y.; Xiao, K.; Liu, Q.; Xie, G. H.; Li, P.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L. Engineered asymmetric heterogeneous membrane: A concentration-gradient-driven energy harvesting device. J. Am. Chem. Soc. 2015, 137, 14765–14772.

[96]

Siwy, Z.; Fuliński, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 2002, 89, 198103.

[97]

Zhang, Q. Q.; Liu, Z. Y.; Wang, K. F.; Zhai, J. Organic/inorganic hybrid nanochannels based on polypyrrole-embedded alumina nanopore arrays: pH- and light-modulated ion transport. Adv. Funct. Mater. 2015, 25, 2091–2098.

[98]

Hille, B.; Armstrong, C. M.; MacKinnon, R. Ion channels: From idea to reality. Nat. Med. 1999, 5, 1105–1109.

[99]

Abraham, J.; Vasu, K. S.; Williams, C. D.; Gopinadhan, K.; Su, Y.; Cherian, C. T.; Dix, J.; Prestat, E.; Haigh, S. J.; Grigorieva, I. V. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 2017, 12, 546–550.

[100]

Chen, L.; Tu, B.; Lu, X. B.; Li, F.; Jiang, L.; Antonietti, M.; Xiao, K. Unidirectional ion transport in nanoporous carbon membranes with a hierarchical pore architecture. Nat. Commun. 2021, 12, 4650.

[101]

Li, X. Y.; Zhang, H. C.; Yu, H.; Xia, J.; Zhu, Y. B.; Wu, H. A.; Hou, J.; Lu, J.; Ou, R. W.; Easton, C. D. et al. Unidirectional and selective proton transport in artificial heterostructured nanochannels with nano-to-subnano confined water clusters. Adv. Mater. 2020, 32, 2001777.

[102]

Sumikama, T.; Saito, S.; Ohmine, I. Mechanism of ion permeation in a model channel: Free energy surface and dynamics of K+ ion transport in an anion-doped carbon nanotube. J. Phys. Chem. B 2006, 110, 20671–20677.

[103]

Segalini, J.; Iwama, E.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Steric effects in adsorption of ions from mixed electrolytes into microporous carbon. Electrochem. Commun. 2012, 15, 63–65.

[104]

Huang, J. S.; Sumpter, B. G.; Meunier, V. Theoretical model for nanoporous carbon supercapacitors. Angew. Chem., Int. Ed. 2008, 47, 520–524.

[105]

Huang, J. S.; Sumpter, B. G.; Meunier, V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem. –Eur. J. 2008, 14, 6614–6626.

[106]

Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem., Int. Ed. 2008, 47, 3392–3395.

[107]

Kondrat, S.; Kornyshev, A. Superionic state in double-layer capacitors with nanoporous electrodes. J. Phys.: Condens. Matter 2011, 23, 022201.

[108]

Futamura, R.; Iiyama, T.; Takasaki, Y.; Gogotsi, Y.; Biggs, M. J.; Salanne, M.; Ségalini, J.; Simon, P.; Kaneko, K. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater. 2017, 16, 1225–1232.

[109]

Jiang, D. E.; Jin, Z. H.; Wu, J. Z. Oscillation of capacitance inside nanopores. Nano Lett. 2011, 11, 5373–5377.

[110]

Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.

[111]

Macha, M.; Marion, S.; Nandigana, V. V. R.; Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 2019, 4, 588–605.

[112]

Ji, J. Z.; Kang, Q.; Zhou, Y.; Feng, Y. P.; Chen, X.; Yuan, J. Y.; Guo, W.; Wei, Y.; Jiang, L. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 2017, 27, 1603623.

[113]

Cheng, C.; Jiang, G. P.; Garvey, C. J.; Wang, Y. Y.; Simon, G. P.; Liu, J. Z.; Li, D. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2016, 2, e1501272.

[114]

Kim, S.; Choi, S.; Lee, H. G.; Jin, D. N.; Kim, G.; Kim, T.; Lee, J. S.; Shim, W. Neuromorphic van der Waals crystals for substantial energy generation. Nat. Commun. 2021, 12, 47.

[115]

Zhen, Z.; Li, Z. C.; Zhao, X. L.; Zhong, Y. J.; Huang, M. R.; Zhu, H. W. A non-covalent cation-π interaction-based humidity-driven electric nanogenerator prepared with salt decorated wrinkled graphene. Nano Energy 2019, 62, 189–196.

[116]

Guo, W.; Cheng, C.; Wu, Y. Z.; Jiang, Y. A.; Gao, J.; Li, D.; Jiang, L. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv. Mater. 2013, 25, 6064–6068.

[117]

Wei, D.; Yang, F. Y.; Jiang, Z. H.; Wang, Z. L. Flexible iontronics based on 2D nanofluidic material. Nat. Commun. 2022, 13, 4965.

[118]

Zhang, Z.; Yang, S.; Zhang, P. P.; Zhang, J.; Chen, G. B.; Feng, X. L. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 2019, 10, 2920.

[119]

Ding, L.; Zheng, M. T.; Xiao, D.; Zhao, Z. H.; Xue, J.; Zhang, S. Q.; Caro, J.; Wang, H. H. Bioinspired Ti3C2Tx MXene-based ionic diode membrane for high-efficient osmotic energy conversion. Angew. Chem., Int. Ed. 2022, 61, e202206152.

[120]

Feng, J. D.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A. Single-layer MoS2 nanopores as nanopower generators. Nature 2016, 536, 197–200.

[121]

Jia, P.; Wang, L. L.; Zhang, Y. H.; Yang, Y. T.; Jin, X. Y.; Zhou, M.; Quan, D.; Jia, M. J.; Cao, L. X.; Long, R. et al. Harnessing ionic power from equilibrium electrolyte solution via photoinduced active ion transport through van-der-Waals-like heterostructures. Adv. Mater. 2021, 33, 2007529.

[122]

Chen, C.; Liu, D.; He, L.; Qin, S.; Wang, J. M.; Razal, J. M.; Kotov, N. A.; Lei, W. W. Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 2020, 4, 247–261.

[123]

Zhang, M. C.; Guan, K. C.; Ji, Y. F.; Liu, G. P.; Jin, W. Q.; Xu, N. P. Controllable ion transport by surface-charged graphene oxide membrane. Nat. Commun. 2019, 10, 1253.

[124]

Graf, M.; Lihter, M.; Unuchek, D.; Sarathy, A.; Leburton, J. P.; Kis, A.; Radenovic, A. Light-enhanced blue energy generation using MoS2 nanopores. Joule 2019, 3, 1549–1564.

[125]

Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R. Conical-nanotube ion-current rectifiers:  The role of surface charge. J. Am. Chem. Soc. 2004, 126, 10850–10851.

[126]

Hong, S.; El-Demellawi, J. K.; Lei, Y.; Liu, Z.; Marzooqi, F. A.; Arafat, H. A.; Alshareef, H. N. Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano 2022, 16, 792–800.

[127]

Zhang, Z.; He, L.; Zhu, C. C.; Qian, Y. C.; Wen, L. P.; Jiang, L. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 2020, 11, 875.

[128]

Zhang, Z.; Wen, L. P.; Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 2021, 6, 622–639.

[129]

Zhang, H.; Yu, J. R.; Yang, X. X.; Gao, G. Y.; Qin, S. S.; Sun, J.; Ding, M.; Jia, C. K.; Sun, Q. J.; Wang, Z. L. Ion gel capacitively coupled tribotronic gating for multiparameter distance sensing. ACS Nano 2020, 14, 3461–3468.

[130]

Gao, G. Y.; Wan, B. S.; Liu, X. Q.; Sun, Q. J.; Yang, X. N.; Wang, L. F.; Pan, C. F.; Wang, Z. L. Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus. Adv. Mater. 2018, 30, 1705088.

[131]

Sangwan, V. K.; Hersam, M. C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 2020, 15, 517–528.

[132]

Yu, J. R.; Gao, G. Y.; Huang, J. R.; Yang, X. X.; Han, J.; Zhang, H.; Chen, Y. H.; Zhao, C. L.; Sun, Q. J.; Wang, Z. L. Contact-electrification-activated artificial afferents at femtojoule energy. Nat. Commun. 2021, 12, 1581.

[133]

Yu, J. R.; Yang, X. X.; Gao, G. Y.; Xiong, Y.; Wang, Y. F.; Han, J.; Chen, Y. H.; Zhang, H.; Sun, Q. J.; Wang, Z. L. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 2021, 7, eabd9117.

[134]

Arbring Sjöström, T.; Berggren, M.; Gabrielsson, E. O.; Janson, P.; Poxson, D. J.; Seitanidou, M.; Simon, D. T. A decade of iontronic delivery devices. Adv. Mater. Technol. 2018, 3, 1700360.

[135]

Zhang, Z.; Li, P.; Kong, X. Y.; Xie, G. H.; Qian, Y. C.; Wang, Z. Q.; Tian, Y.; Wen, L. P.; Jiang, L. Bioinspired heterogeneous ion pump membranes: Unidirectional selective pumping and controllable gating properties stemming from asymmetric ionic group distribution. J. Am. Chem. Soc. 2018, 140, 1083–1090.

[136]

Wen, L. P.; Zhang, X. Q.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China Mater. 2018, 61, 1027–1032.

[137]

Song, B.; Jiang, L. A four-dimensional model for the information storage/output model of life. Nano Res. 2023, 16, 2630–2634.

[138]

Song, Y. A.; Melik, R.; Rabie, A. N.; Ibrahim, A. M. S.; Moses, D.; Tan, A.; Han, J.; Lin, S. J. Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes. Nat. Mater. 2011, 10, 980–986.

[139]

Simon, D. T.; Kurup, S.; Larsson, K. C.; Hori, R.; Tybrandt, K.; Goiny, M.; Jager, E. W. H.; Berggren, M.; Canlon, B.; Richter-Dahlfors, A. Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat. Mater. 2009, 8, 742–746.

[140]

Isaksson, J.; Kjäll, P.; Nilsson, D.; Robinson, N.; Berggren, M.; Richter-Dahlfors, A. Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater. 2007, 6, 673–679.

[141]

Williamson, A.; Rivnay, J.; Kergoat, L.; Jonsson, A.; Inal, S.; Uguz, I.; Ferro, M.; Ivanov, A.; Sjöström, T. A.; Simon, D. T. et al. Controlling epileptiform activity with organic electronic ion pumps. Adv. Mater. 2015, 27, 3138–3144.

[142]

Dobashi, Y.; Yao, D.; Petel, Y.; Nguyen, T. N.; Sarwar, M. S.; Thabet, Y.; Ng, C. L. W.; Scabeni Glitz, E.; Nguyen, G. T. M.; Plesse, C. et al. Piezoionic mechanoreceptors: Force-induced current generation in hydrogels. Science 2022, 376, 502–507.

[143]

Pérez-Mitta, G.; Albesa, A. G.; Trautmann, C.; Toimil-Molares, M. E.; Azzaroni, O. Bioinspired integrated nanosystems based on solid-state nanopores: “Iontronic” transduction of biological, chemical and physical stimuli. Chem. Sci. 2017, 8, 890–913.

Publication history
Copyright
Acknowledgements

Publication history

Received: 27 January 2023
Revised: 16 March 2023
Accepted: 02 April 2023
Published: 06 May 2023
Issue date: September 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors appreciate the support from Beijing Institute of Nanoenergy and Nanosystems.

Return