AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A molecular sieve-containing protective separator to suppress the shuttle effect of redox mediators in lithium-oxygen batteries

Xinbin Wu1,2,§Huiping Wu1,§Shundong Guan1Ying Liang1Kaihua Wen1Huanchun Wang2Xuanjun Wang2( )Ce-Wen Nan1Liangliang Li1( )
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
High-Tech Institute of Xi’an, Xi’an 710025, China

§ Xinbin Wu and Huiping Wu contributed equally to this work.

Show Author Information

Graphical Abstract

The cycle life of a Li-O2 battery is significantly increased by using a composite protective separator with molecular sieves that can effectively suppress the shuttle effect of redox mediators.

Abstract

Lithium-oxygen (Li-O2) batteries have a great potential in energy storage and conversion due to their ultra-high theoretical specific energy, but their applications are hindered by sluggish redox reaction kinetics in the charge/discharge processes. Redox mediators (RMs), as soluble catalysts, are widely used to facilitate the electrochemical processes in the Li-O2 batteries. A drawback of RMs is the shuttle effect due to their solubility and mobility, which leads to the corrosion of a Li metal anode and the degradation of the electrochemical performance of the batteries. Herein, we synthesize a polymer-based composite protective separator containing molecular sieves. The nanopores with a diameter of 4 Å in the zeolite powder (4A zeolite) are able to physically block the migration of 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) molecules with a larger size; therefore, the shuttle effect of TEMPO is restrained. With the assistance of the zeolite molecular sieves, the cycle life of the Li-O2 batteries is significantly extended from ~ 20 to 170 cycles at a current density of 250 mA·g−1 and a limited capacity of 500 mAh·g−1. Our work provides a highly effective approach to suppress the shuttle effects of RMs and boost the electrochemical performance of Li-O2 batteries.

Electronic Supplementary Material

Download File(s)
12274_2023_5663_MOESM1_ESM.pdf (2.9 MB)

References

[1]

Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1–5.

[2]

Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Aprotic and aqueous Li-O2 batteries. Chem. Rev. 2014, 114, 5611–5640.

[3]

Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

[4]

Liu, T.; Vivek, J. P.; Zhao, E. W.; Lei, J.; Garcia-Araez, N.; Grey, C. P. Current challenges and routes forward for nonaqueous lithium-air batteries. Chem. Rev. 2020, 120, 6558–6625.

[5]

Wang, J.; Yin, Y. B.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Zhang, X. B. Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries. Nano Res. 2018, 11, 3434–3441.

[6]

Wang, B. X.; Liu, C. X.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Defect-induced deposition of manganese oxides on hierarchical carbon nanocages for high-performance lithium-oxygen batteries. Nano Res. 2022, 15, 4132–4136.

[7]

Yu, W.; Wang, H. W.; Qin, L.; Hu, J. Y.; Liu, L.; Li, B. H.; Zhai, D. Y.; Kang, F. Y. Controllable electrochemical fabrication of KO2-decorated binder-free cathodes for rechargeable lithium oxygen batteries. ACS Appl. Mater. Interfaces 2018, 10, 17156–17166.

[8]

Wang, L.; Zhang, Y. T.; Liu, Z. J.; Guo, L. M.; Peng, Z. Q. Understanding oxygen electrochemistry in aprotic Li-O2 batteries. Green Energy Environ. 2017, 2, 186–203.

[9]

Leverick, G.; Tułodziecki, M.; Tatara, R.; Bardé, F.; Shao-Horn, Y. Solvent-dependent oxidizing power of LiI redox couples for Li-O2 batteries. Joule 2019, 3, 1106–1126.

[10]

Chai, A. H.; Ji, C. H.; Yuan, D.; Yin, L. K.; Zhang, Y. S.; Zhuge, X. Q.; Luo, Z. H.; Li, Y. B.; Luo, K. Fluidic Ga-In liquid metal-modified cathode with improved cyclic performance and capacity of Li-O2 batteries. Rare Metals 2022, 41, 2223–2229.

[11]

Zhao, Z. F.; Liu, Y.; Wan, F.; Wang, S.; Zhang, N. N.; Liu, L. L.; Cao, A. Y.; Niu, Z. Q. Free-standing nitrogen doped graphene/Co(OH)2 composite films with superior catalytic activity for aprotic lithium-oxygen batteries. Chin. Chem. Lett. 2021, 32, 594–597.

[12]

Lim, H. D.; Song, H.; Gwon, H.; Park, K. Y.; Kim, J.; Bae, Y.; Kim, H.; Jung, S. K.; Kim, T.; Kim, Y. H. et al. A new catalyst-embedded hierarchical air electrode for high-performance Li-O2 batteries. Energy Environ. Sci. 2013, 6, 3570–3575.

[13]

Chang, Z. W.; Xu, J. J.; Zhang, X. B. Recent progress in electrocatalyst for Li-O2 batteries. Adv. Energy Mater. 2017, 7, 1700875.

[14]

Wu, X. B.; Yu, W.; Xu, W.; Zhang, Y. J.; Guan, S. D.; Zhang, Z.; Li, S. W.; Wang, H. C.; Wang, X. J.; Zhang, L. et al. Balancing oxygen evolution reaction and oxygen reduction reaction processes in Li-O2 batteries through tuning the bond distances of RuO2. Compos. B: Eng. 2022, 234, 109727.

[15]

Wang, P. X.; Shao, L.; Zhang, N. Q.; Sun, K. N. Mesoporous CuCo2O4 nanoparticles as an efficient cathode catalyst for Li-O2 batteries. J. Power Sources 2016, 325, 506–512.

[16]

Li, P. F.; Sun, W.; Yu, Q. L.; Guan, M. J.; Qiao, J. S.; Wang, Z. H.; Rooney, D.; Sun, K. N. An effective three-dimensional ordered mesoporous ZnCo2O4 as electrocatalyst for Li-O2 batteries. Mater. Lett. 2015, 158, 84–87.

[17]

Pham, T. V.; Guo, H. P.; Luo, W. B.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Carbon- and binder-free 3D porous perovskite oxide air electrode for rechargeable lithium-oxygen batteries. J. Mater. Chem. A 2017, 5, 5283–5289.

[18]

Wang, Z. D.; You, Y.; Yuan, J.; Yin, Y. X.; Li, Y. T.; Xin, S.; Zhang, D. W. Nickel-doped La0.8Sr0.2Mn1−xNixO3 nanoparticles containing abundant oxygen vacancies as an optimized bifunctional catalyst for oxygen cathode in rechargeable lithium-air batteries. ACS Appl. Mater. Interfaces 2016, 8, 6520–6528.

[19]

Bergner, B. J.; Schürmann, A.; Peppler, K.; Garsuch, A.; Janek, J. TEMPO: A mobile catalyst for rechargeable Li-O2 batteries. J. Am. Chem. Soc. 2014, 136, 15054–15064.

[20]

Chen, Y. H.; Freunberger, S. A.; Peng, Z. Q.; Fontaine, O.; Bruce, P. G. Charging a Li-O2 battery using a redox mediator. Nat. Chem. 2013, 5, 489–494.

[21]

Gao, X. W.; Chen, Y. H.; Johnson, L.; Bruce, P. G. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 2016, 15, 882–888.

[22]

Sun, D.; Shen, Y.; Zhang, W.; Yu, L.; Yi, Z. Q.; Yin, W.; Wang, D.; Huang, Y. H.; Wang, J.; Wang, D. L. et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 2014, 136, 8941–8946.

[23]

Ryu, W. H.; Gittleson, F. S.; Thomsen, J. M.; Li, J. Y.; Schwab, M. J.; Brudvig, G. W.; Taylor, A. D. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nat. Commun. 2016, 7, 12925.

[24]

Kwak, W. J.; Hirshberg, D.; Sharon, D.; Afri, M.; Frimer, A. A.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Li-O2 cells with LiBr as an electrolyte and a redox mediator. Energy Environ. Sci. 2016, 9, 2334–2345.

[25]

Liang, Z. J.; Lu, Y. C. Critical role of redox mediator in suppressing charging instabilities of lithium-oxygen batteries. J. Am. Chem. Soc. 2016, 138, 7574–7583.

[26]

Wu, X. B.; Yu, W.; Wen, K. H.; Wang, H. C.; Wang, X. J.; Nan, C. W.; Li, L. L. Strategies to suppress the shuttle effect of redox mediators in lithium-oxygen batteries. J. Energy Chem. 2021, 60, 135–149.

[27]

Kwak, W. J.; Kim, H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Review—A comparative evaluation of redox mediators for Li-O2 batteries: A critical review. J. Electrochem. Soc. 2018, 165, A2274–A2293.

[28]

Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Redox mediators for Li-O2 batteries: Status and perspectives. Adv. Mater. 2018, 30, 1704162.

[29]

Xiong, Q.; Huang, G.; Zhang, X. B. High-capacity and stable Li-O2 batteries enabled by a trifunctional soluble redox mediator. Angew. Chem., Int. Ed. 2020, 59, 19311–19319.

[30]

Landa-Medrano, I.; Lozano, I.; Ortiz-Vitoriano, N.; de Larramendi, I. R.; Rojo, T. Redox mediators: A shuttle to efficacy in metal-O2 batteries. J. Mater. Chem. A 2019, 7, 8746–8764.

[31]

Zhang, T.; Liao, K. M.; He, P.; Zhou, H. S. A self-defense redox mediator for efficient lithium-O2 batteries. Energy Environ. Sci. 2016, 9, 1024–1030.

[32]

Liu, J.; Wu, T.; Zhang, S. Q.; Li, D.; Wang, Y.; Xie, H. M.; Yang, J. H.; Sun, G. R. InBr3 as a self-defensed redox mediator for Li-O2 batteries: In situ construction of a stable indium-rich composite protective layer on the Li anode. J. Power Sources 2019, 439, 227095.

[33]

Togasaki, N.; Shibamura, R.; Naruse, T.; Momma, T.; Osaka, T. Prevention of redox shuttle using electropolymerized polypyrrole film in a lithium-oxygen battery. APL Mater. 2018, 6, 047704.

[34]

Park, S. H.; Lee, T. H.; Lee, Y. J.; Park, H. B.; Lee, Y. J. Graphene oxide sieving membrane for improved cycle life in high-efficiency redox-mediated Li-O2 batteries. Small 2018, 14, 1801456.

[35]

Li, D.; Kang, Z. Y.; Sun, H.; Wang, Y.; Xie, H. M.; Liu, J.; Zhu, J. F. A bifunctional MnxCo3−xO4-decorated separator for efficient Li-LiI-O2 batteries: A novel strategy to promote redox coupling and inhibit redox shuttling. Chem. Eng. J. 2022, 428, 131105.

[36]

Shi, L.; Li, Z.; Li, Y. P.; Wang, G.; Wu, M. F.; Wen, Z. Y. Suppressing redox shuttle with MXene-modified separators for Li-O2 batteries. ACS Appl. Mater. Interfaces 2021, 13, 30766–30775.

[37]

Ko, Y.; Park, H.; Lee, K.; Kim, S. J.; Park, H.; Bae, Y.; Kim, J.; Park, S. Y.; Kwon, J. E.; Kang, K. Anchored mediator enabling shuttle-free redox mediation in lithium-oxygen batteries. Angew. Chem., Int. Ed. 2020, 59, 5376–5380.

[38]

Liu, Z. J.; Ma, L. P.; Guo, L. M.; Peng, Z. Q. Promoting solution discharge of Li-O2 batteries with immobilized redox mediators. J. Phys. Chem. Lett. 2018, 9, 5915–5920.

[39]

Zhang, J. Q.; Sun, B.; Zhao, Y. F.; Kretschmer, K.; Wang, G. X. Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O2 batteries. Angew. Chem., Int. Ed. 2017, 56, 8505–8509.

[40]

Zhang, J. Q.; Sun, B.; McDonagh, A. M.; Zhao, Y. F.; Kretschmer, K.; Guo, X.; Wang, G. X. A multi-functional gel co-polymer bridging liquid electrolyte and solid cathode nanoparticles: An efficient route to Li-O2 batteries with improved performance. Energy Storage Mater. 2017, 7, 1–7.

[41]

Xu, C. Y.; Xu, G. Y.; Zhang, Y. D.; Fang, S.; Nie, P.; Wu, L. Y.; Zhang, X. G. Bifunctional redox mediator supported by an anionic surfactant for long-cycle Li-O2 batteries. ACS Energy Lett. 2017, 2, 2659–2666.

[42]

Kwak, W. J.; Park, S. J.; Jung, H. G.; Sun, Y. K. Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li-O2 batteries. Adv. Energy Mater. 2018, 8, 1702258.

[43]

Kim, M. C.; Choi, S.; Kim, H.; Han, S. B.; Moon, S. H.; Kim, E. S.; Kim, Y. S.; Park, K. W. Polymeric redox mediator as a stable cathode catalyst for lithium-O2 batteries. J. Power Sources 2020, 453, 227850.

[44]

Yu, W.; Wu, X. B.; Liu, S. J.; Nishihara, H.; Li, L. L.; Nan, C. W. A volatile redox mediator boosts the long-cycle performance of lithium-oxygen batteries. Energy Storage Mater. 2021, 38, 571–580.

[45]

Yoo, E.; Zhou, H. S. LiF protective layer on a Li anode: Toward improving the performance of Li-O2 batteries with a redox mediator. ACS Appl. Mater. Interfaces 2020, 12, 18490–18495.

[46]

Wang, Y.; Li, D.; Zhang, S. Q.; Kang, Z. Y.; Xie, H. M.; Liu, J. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)- decorated separator in Li-O2 batteries: Suppressing the shuttle effect of dual redox mediators by Coulombic interactions. J. Power Sources 2020, 466, 228336.

[47]

Qiao, Y.; He, Y. B.; Wu, S. C.; Jiang, K. Z.; Li, X.; Guo, S. H.; He, P.; Zhou, H. S. MOF-based separator in Li-O2 battery: An effective strategy to restrain the shuttling of dual redox mediators. ACS Energy Lett. 2018, 3, 463–468.

[48]

Liu, K. L.; Sun, H. G.; Dong, S. M.; Lu, C. L.; Li, Y.; Cheng, J. M.; Zhang, J. J.; Wang, X. G.; Chen, X.; Cui, G. L. A rational design of high-performance sandwich-structured quasisolid state Li-O2 battery with redox mediator. Adv. Mater. Interfaces 2017, 4, 1700693.

[49]

Chen, Z. F.; Lin, X. D.; Xia, H.; Hong, Y. H.; Liu, X. Y.; Cai, S. R.; Duan, J. N.; Yang, J. J.; Zhou, Z. Y.; Chang, J. K. et al. A functionalized membrane for lithium-oxygen batteries to suppress the shuttle effect of redox mediators. J. Mater. Chem. A 2019, 7, 14260–14270.

[50]

Yu, W.; Xue, C. J.; Hu, B. K.; Xu, B. Q.; Li, L. L.; Nan, C. W. Oxygen- and dendrite-resistant ultra-dry polymer electrolytes for solid-state Li-O2 batteries. Energy Storage Mater. 2020, 27, 244–251.

[51]

Yu, W.; Wang, H. W.; Hu, J.; Yang, W.; Qin, L.; Liu, R. L.; Li, B. H.; Zhai, D. Y.; Kang, F. Y. Molecular sieve induced solution growth of Li2O2 in the Li-O2 battery with largely enhanced discharge capacity. ACS Appl. Mater. Interfaces 2018, 10, 7989–7995.

[52]

Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.

[53]

Lee, D. J.; Lee, H.; Kim, Y. J.; Park, J. K.; Kim, H. T. Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode. Adv. Mater. 2016, 28, 857–863.

[54]

Bergner, B. J.; Hofmann, C.; Schürmann, A.; Schröder, D.; Peppler, K.; Schreiner, P. R.; Janek, J. Understanding the fundamentals of redox mediators in Li-O2 batteries: A case study on nitroxides. Phys. Chem. Chem. Phys. 2015, 17, 31769–31779.

[55]

Fish, J. R.; Swarts, S. G.; Sevilla, M. D.; Malinski, T. Electrochemistry and spectroelectrochemistry of nitroxyl free radicals. J. Phys. Chem. 1988, 92, 3745–3751.

[56]

Tebben, L.; Studer, A. Nitroxides: Applications in synthesis and in polymer chemistry. Angew. Chem., Int. Ed. 2011, 50, 5034–5068.

[57]

Suga, T.; Yoshimura, K.; Nishide, H. Nitroxide-substituted polyether as a new material for batteries. Macromol. Symp. 2006, 245–246, 416–422.

[58]

Kobayashi, H.; Ueda, T.; Miyakubo, K.; Toyoda, J.; Eguchi, T.; Tani, A. Preparation and characterization of a new inclusion compound with a 1D molecular arrangement of organic radicals using a one-dimensional organic homogeneous nanochannel template. J. Mater. Chem. 2005, 15, 872–879.

[59]

Lo, C. H.; Liao, K. S.; Hung, W. S.; De Guzman, M.; Hu, C. C.; Lee, K. R.; Lai, J. Y. Investigation on positron annihilation characteristics of CO2-exposed zeolite. Microporous Mesoporous Mater. 2011, 141, 140–145.

[60]

Tuyen, L. A.; Szilágyi, E.; Kótai, E.; Lázár, K.; Bottyán, L.; Dung, T. Q.; Cuong, L. C.; Khiem, D. D.; Phuc, P. T.; Nguyen, L. L. et al. Structural effects induced by 2.5 MeV proton beam on zeolite 4A: Positron annihilation and X-ray diffraction study. Radiat. Phys. Chem. 2015, 106, 355–359.

[61]

Kaushik, V. K.; Vijayalakshmi, R. P.; Choudary, N. V.; Bhat, S. G. T. XPS studies on cation exchanged zeolite A. Microporous Mesoporous Mater. 2002, 51, 139–144.

[62]

Zhang, X.; Han, J.; Niu, X. F.; Xin, C. Z.; Xue, C. J.; Wang, S.; Shen, Y.; Zhang, L.; Li, L. L.; Nan, C. W. High cycling stability for solid-state Li metal batteries via regulating solvation effect in poly(vinylidene fluoride)-based electrolytes. Batter. Supercaps 2020, 3, 876–883.

[63]

Andrews, R. E.; Gawarkiewicz, J. J.; Winterkorn, H. F. Comparison of the interaction of three clay minerals with water, dimethyl sulfoxide and dimethyl formamide. Highw. Res. Rec. 1967, 209, 66–78.

Nano Research
Pages 9453-9460
Cite this article:
Wu X, Wu H, Guan S, et al. A molecular sieve-containing protective separator to suppress the shuttle effect of redox mediators in lithium-oxygen batteries. Nano Research, 2023, 16(7): 9453-9460. https://doi.org/10.1007/s12274-023-5663-5
Topics:

972

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 20 December 2022
Revised: 20 February 2023
Accepted: 12 March 2023
Published: 11 April 2023
© Tsinghua University Press 2023
Return