Journal Home > Volume 16 , Issue 7

Lithium-oxygen (Li-O2) batteries have a great potential in energy storage and conversion due to their ultra-high theoretical specific energy, but their applications are hindered by sluggish redox reaction kinetics in the charge/discharge processes. Redox mediators (RMs), as soluble catalysts, are widely used to facilitate the electrochemical processes in the Li-O2 batteries. A drawback of RMs is the shuttle effect due to their solubility and mobility, which leads to the corrosion of a Li metal anode and the degradation of the electrochemical performance of the batteries. Herein, we synthesize a polymer-based composite protective separator containing molecular sieves. The nanopores with a diameter of 4 Å in the zeolite powder (4A zeolite) are able to physically block the migration of 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) molecules with a larger size; therefore, the shuttle effect of TEMPO is restrained. With the assistance of the zeolite molecular sieves, the cycle life of the Li-O2 batteries is significantly extended from ~ 20 to 170 cycles at a current density of 250 mA·g−1 and a limited capacity of 500 mAh·g−1. Our work provides a highly effective approach to suppress the shuttle effects of RMs and boost the electrochemical performance of Li-O2 batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A molecular sieve-containing protective separator to suppress the shuttle effect of redox mediators in lithium-oxygen batteries

Show Author's information Xinbin Wu1,2,§Huiping Wu1,§Shundong Guan1Ying Liang1Kaihua Wen1Huanchun Wang2Xuanjun Wang2( )Ce-Wen Nan1Liangliang Li1( )
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
High-Tech Institute of Xi’an, Xi’an 710025, China

§ Xinbin Wu and Huiping Wu contributed equally to this work.

Abstract

Lithium-oxygen (Li-O2) batteries have a great potential in energy storage and conversion due to their ultra-high theoretical specific energy, but their applications are hindered by sluggish redox reaction kinetics in the charge/discharge processes. Redox mediators (RMs), as soluble catalysts, are widely used to facilitate the electrochemical processes in the Li-O2 batteries. A drawback of RMs is the shuttle effect due to their solubility and mobility, which leads to the corrosion of a Li metal anode and the degradation of the electrochemical performance of the batteries. Herein, we synthesize a polymer-based composite protective separator containing molecular sieves. The nanopores with a diameter of 4 Å in the zeolite powder (4A zeolite) are able to physically block the migration of 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) molecules with a larger size; therefore, the shuttle effect of TEMPO is restrained. With the assistance of the zeolite molecular sieves, the cycle life of the Li-O2 batteries is significantly extended from ~ 20 to 170 cycles at a current density of 250 mA·g−1 and a limited capacity of 500 mAh·g−1. Our work provides a highly effective approach to suppress the shuttle effects of RMs and boost the electrochemical performance of Li-O2 batteries.

Keywords: lithium-oxygen batteries, zeolite, shuttle effects, protective separators, molecular sieves, redox mediators

References(63)

[1]

Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1–5.

[2]

Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Aprotic and aqueous Li-O2 batteries. Chem. Rev. 2014, 114, 5611–5640.

[3]

Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

[4]

Liu, T.; Vivek, J. P.; Zhao, E. W.; Lei, J.; Garcia-Araez, N.; Grey, C. P. Current challenges and routes forward for nonaqueous lithium-air batteries. Chem. Rev. 2020, 120, 6558–6625.

[5]

Wang, J.; Yin, Y. B.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Zhang, X. B. Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries. Nano Res. 2018, 11, 3434–3441.

[6]

Wang, B. X.; Liu, C. X.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Defect-induced deposition of manganese oxides on hierarchical carbon nanocages for high-performance lithium-oxygen batteries. Nano Res. 2022, 15, 4132–4136.

[7]

Yu, W.; Wang, H. W.; Qin, L.; Hu, J. Y.; Liu, L.; Li, B. H.; Zhai, D. Y.; Kang, F. Y. Controllable electrochemical fabrication of KO2-decorated binder-free cathodes for rechargeable lithium oxygen batteries. ACS Appl. Mater. Interfaces 2018, 10, 17156–17166.

[8]

Wang, L.; Zhang, Y. T.; Liu, Z. J.; Guo, L. M.; Peng, Z. Q. Understanding oxygen electrochemistry in aprotic Li-O2 batteries. Green Energy Environ. 2017, 2, 186–203.

[9]

Leverick, G.; Tułodziecki, M.; Tatara, R.; Bardé, F.; Shao-Horn, Y. Solvent-dependent oxidizing power of LiI redox couples for Li-O2 batteries. Joule 2019, 3, 1106–1126.

[10]

Chai, A. H.; Ji, C. H.; Yuan, D.; Yin, L. K.; Zhang, Y. S.; Zhuge, X. Q.; Luo, Z. H.; Li, Y. B.; Luo, K. Fluidic Ga-In liquid metal-modified cathode with improved cyclic performance and capacity of Li-O2 batteries. Rare Metals 2022, 41, 2223–2229.

[11]

Zhao, Z. F.; Liu, Y.; Wan, F.; Wang, S.; Zhang, N. N.; Liu, L. L.; Cao, A. Y.; Niu, Z. Q. Free-standing nitrogen doped graphene/Co(OH)2 composite films with superior catalytic activity for aprotic lithium-oxygen batteries. Chin. Chem. Lett. 2021, 32, 594–597.

[12]

Lim, H. D.; Song, H.; Gwon, H.; Park, K. Y.; Kim, J.; Bae, Y.; Kim, H.; Jung, S. K.; Kim, T.; Kim, Y. H. et al. A new catalyst-embedded hierarchical air electrode for high-performance Li-O2 batteries. Energy Environ. Sci. 2013, 6, 3570–3575.

[13]

Chang, Z. W.; Xu, J. J.; Zhang, X. B. Recent progress in electrocatalyst for Li-O2 batteries. Adv. Energy Mater. 2017, 7, 1700875.

[14]

Wu, X. B.; Yu, W.; Xu, W.; Zhang, Y. J.; Guan, S. D.; Zhang, Z.; Li, S. W.; Wang, H. C.; Wang, X. J.; Zhang, L. et al. Balancing oxygen evolution reaction and oxygen reduction reaction processes in Li-O2 batteries through tuning the bond distances of RuO2. Compos. B: Eng. 2022, 234, 109727.

[15]

Wang, P. X.; Shao, L.; Zhang, N. Q.; Sun, K. N. Mesoporous CuCo2O4 nanoparticles as an efficient cathode catalyst for Li-O2 batteries. J. Power Sources 2016, 325, 506–512.

[16]

Li, P. F.; Sun, W.; Yu, Q. L.; Guan, M. J.; Qiao, J. S.; Wang, Z. H.; Rooney, D.; Sun, K. N. An effective three-dimensional ordered mesoporous ZnCo2O4 as electrocatalyst for Li-O2 batteries. Mater. Lett. 2015, 158, 84–87.

[17]

Pham, T. V.; Guo, H. P.; Luo, W. B.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Carbon- and binder-free 3D porous perovskite oxide air electrode for rechargeable lithium-oxygen batteries. J. Mater. Chem. A 2017, 5, 5283–5289.

[18]

Wang, Z. D.; You, Y.; Yuan, J.; Yin, Y. X.; Li, Y. T.; Xin, S.; Zhang, D. W. Nickel-doped La0.8Sr0.2Mn1−xNixO3 nanoparticles containing abundant oxygen vacancies as an optimized bifunctional catalyst for oxygen cathode in rechargeable lithium-air batteries. ACS Appl. Mater. Interfaces 2016, 8, 6520–6528.

[19]

Bergner, B. J.; Schürmann, A.; Peppler, K.; Garsuch, A.; Janek, J. TEMPO: A mobile catalyst for rechargeable Li-O2 batteries. J. Am. Chem. Soc. 2014, 136, 15054–15064.

[20]

Chen, Y. H.; Freunberger, S. A.; Peng, Z. Q.; Fontaine, O.; Bruce, P. G. Charging a Li-O2 battery using a redox mediator. Nat. Chem. 2013, 5, 489–494.

[21]

Gao, X. W.; Chen, Y. H.; Johnson, L.; Bruce, P. G. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 2016, 15, 882–888.

[22]

Sun, D.; Shen, Y.; Zhang, W.; Yu, L.; Yi, Z. Q.; Yin, W.; Wang, D.; Huang, Y. H.; Wang, J.; Wang, D. L. et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 2014, 136, 8941–8946.

[23]

Ryu, W. H.; Gittleson, F. S.; Thomsen, J. M.; Li, J. Y.; Schwab, M. J.; Brudvig, G. W.; Taylor, A. D. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nat. Commun. 2016, 7, 12925.

[24]

Kwak, W. J.; Hirshberg, D.; Sharon, D.; Afri, M.; Frimer, A. A.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Li-O2 cells with LiBr as an electrolyte and a redox mediator. Energy Environ. Sci. 2016, 9, 2334–2345.

[25]

Liang, Z. J.; Lu, Y. C. Critical role of redox mediator in suppressing charging instabilities of lithium-oxygen batteries. J. Am. Chem. Soc. 2016, 138, 7574–7583.

[26]

Wu, X. B.; Yu, W.; Wen, K. H.; Wang, H. C.; Wang, X. J.; Nan, C. W.; Li, L. L. Strategies to suppress the shuttle effect of redox mediators in lithium-oxygen batteries. J. Energy Chem. 2021, 60, 135–149.

[27]

Kwak, W. J.; Kim, H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Review—A comparative evaluation of redox mediators for Li-O2 batteries: A critical review. J. Electrochem. Soc. 2018, 165, A2274–A2293.

[28]

Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Redox mediators for Li-O2 batteries: Status and perspectives. Adv. Mater. 2018, 30, 1704162.

[29]

Xiong, Q.; Huang, G.; Zhang, X. B. High-capacity and stable Li-O2 batteries enabled by a trifunctional soluble redox mediator. Angew. Chem., Int. Ed. 2020, 59, 19311–19319.

[30]

Landa-Medrano, I.; Lozano, I.; Ortiz-Vitoriano, N.; de Larramendi, I. R.; Rojo, T. Redox mediators: A shuttle to efficacy in metal-O2 batteries. J. Mater. Chem. A 2019, 7, 8746–8764.

[31]

Zhang, T.; Liao, K. M.; He, P.; Zhou, H. S. A self-defense redox mediator for efficient lithium-O2 batteries. Energy Environ. Sci. 2016, 9, 1024–1030.

[32]

Liu, J.; Wu, T.; Zhang, S. Q.; Li, D.; Wang, Y.; Xie, H. M.; Yang, J. H.; Sun, G. R. InBr3 as a self-defensed redox mediator for Li-O2 batteries: In situ construction of a stable indium-rich composite protective layer on the Li anode. J. Power Sources 2019, 439, 227095.

[33]

Togasaki, N.; Shibamura, R.; Naruse, T.; Momma, T.; Osaka, T. Prevention of redox shuttle using electropolymerized polypyrrole film in a lithium-oxygen battery. APL Mater. 2018, 6, 047704.

[34]

Park, S. H.; Lee, T. H.; Lee, Y. J.; Park, H. B.; Lee, Y. J. Graphene oxide sieving membrane for improved cycle life in high-efficiency redox-mediated Li-O2 batteries. Small 2018, 14, 1801456.

[35]

Li, D.; Kang, Z. Y.; Sun, H.; Wang, Y.; Xie, H. M.; Liu, J.; Zhu, J. F. A bifunctional MnxCo3−xO4-decorated separator for efficient Li-LiI-O2 batteries: A novel strategy to promote redox coupling and inhibit redox shuttling. Chem. Eng. J. 2022, 428, 131105.

[36]

Shi, L.; Li, Z.; Li, Y. P.; Wang, G.; Wu, M. F.; Wen, Z. Y. Suppressing redox shuttle with MXene-modified separators for Li-O2 batteries. ACS Appl. Mater. Interfaces 2021, 13, 30766–30775.

[37]

Ko, Y.; Park, H.; Lee, K.; Kim, S. J.; Park, H.; Bae, Y.; Kim, J.; Park, S. Y.; Kwon, J. E.; Kang, K. Anchored mediator enabling shuttle-free redox mediation in lithium-oxygen batteries. Angew. Chem., Int. Ed. 2020, 59, 5376–5380.

[38]

Liu, Z. J.; Ma, L. P.; Guo, L. M.; Peng, Z. Q. Promoting solution discharge of Li-O2 batteries with immobilized redox mediators. J. Phys. Chem. Lett. 2018, 9, 5915–5920.

[39]

Zhang, J. Q.; Sun, B.; Zhao, Y. F.; Kretschmer, K.; Wang, G. X. Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O2 batteries. Angew. Chem., Int. Ed. 2017, 56, 8505–8509.

[40]

Zhang, J. Q.; Sun, B.; McDonagh, A. M.; Zhao, Y. F.; Kretschmer, K.; Guo, X.; Wang, G. X. A multi-functional gel co-polymer bridging liquid electrolyte and solid cathode nanoparticles: An efficient route to Li-O2 batteries with improved performance. Energy Storage Mater. 2017, 7, 1–7.

[41]

Xu, C. Y.; Xu, G. Y.; Zhang, Y. D.; Fang, S.; Nie, P.; Wu, L. Y.; Zhang, X. G. Bifunctional redox mediator supported by an anionic surfactant for long-cycle Li-O2 batteries. ACS Energy Lett. 2017, 2, 2659–2666.

[42]

Kwak, W. J.; Park, S. J.; Jung, H. G.; Sun, Y. K. Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li-O2 batteries. Adv. Energy Mater. 2018, 8, 1702258.

[43]

Kim, M. C.; Choi, S.; Kim, H.; Han, S. B.; Moon, S. H.; Kim, E. S.; Kim, Y. S.; Park, K. W. Polymeric redox mediator as a stable cathode catalyst for lithium-O2 batteries. J. Power Sources 2020, 453, 227850.

[44]

Yu, W.; Wu, X. B.; Liu, S. J.; Nishihara, H.; Li, L. L.; Nan, C. W. A volatile redox mediator boosts the long-cycle performance of lithium-oxygen batteries. Energy Storage Mater. 2021, 38, 571–580.

[45]

Yoo, E.; Zhou, H. S. LiF protective layer on a Li anode: Toward improving the performance of Li-O2 batteries with a redox mediator. ACS Appl. Mater. Interfaces 2020, 12, 18490–18495.

[46]

Wang, Y.; Li, D.; Zhang, S. Q.; Kang, Z. Y.; Xie, H. M.; Liu, J. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)- decorated separator in Li-O2 batteries: Suppressing the shuttle effect of dual redox mediators by Coulombic interactions. J. Power Sources 2020, 466, 228336.

[47]

Qiao, Y.; He, Y. B.; Wu, S. C.; Jiang, K. Z.; Li, X.; Guo, S. H.; He, P.; Zhou, H. S. MOF-based separator in Li-O2 battery: An effective strategy to restrain the shuttling of dual redox mediators. ACS Energy Lett. 2018, 3, 463–468.

[48]

Liu, K. L.; Sun, H. G.; Dong, S. M.; Lu, C. L.; Li, Y.; Cheng, J. M.; Zhang, J. J.; Wang, X. G.; Chen, X.; Cui, G. L. A rational design of high-performance sandwich-structured quasisolid state Li-O2 battery with redox mediator. Adv. Mater. Interfaces 2017, 4, 1700693.

[49]

Chen, Z. F.; Lin, X. D.; Xia, H.; Hong, Y. H.; Liu, X. Y.; Cai, S. R.; Duan, J. N.; Yang, J. J.; Zhou, Z. Y.; Chang, J. K. et al. A functionalized membrane for lithium-oxygen batteries to suppress the shuttle effect of redox mediators. J. Mater. Chem. A 2019, 7, 14260–14270.

[50]

Yu, W.; Xue, C. J.; Hu, B. K.; Xu, B. Q.; Li, L. L.; Nan, C. W. Oxygen- and dendrite-resistant ultra-dry polymer electrolytes for solid-state Li-O2 batteries. Energy Storage Mater. 2020, 27, 244–251.

[51]

Yu, W.; Wang, H. W.; Hu, J.; Yang, W.; Qin, L.; Liu, R. L.; Li, B. H.; Zhai, D. Y.; Kang, F. Y. Molecular sieve induced solution growth of Li2O2 in the Li-O2 battery with largely enhanced discharge capacity. ACS Appl. Mater. Interfaces 2018, 10, 7989–7995.

[52]

Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.

[53]

Lee, D. J.; Lee, H.; Kim, Y. J.; Park, J. K.; Kim, H. T. Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode. Adv. Mater. 2016, 28, 857–863.

[54]

Bergner, B. J.; Hofmann, C.; Schürmann, A.; Schröder, D.; Peppler, K.; Schreiner, P. R.; Janek, J. Understanding the fundamentals of redox mediators in Li-O2 batteries: A case study on nitroxides. Phys. Chem. Chem. Phys. 2015, 17, 31769–31779.

[55]

Fish, J. R.; Swarts, S. G.; Sevilla, M. D.; Malinski, T. Electrochemistry and spectroelectrochemistry of nitroxyl free radicals. J. Phys. Chem. 1988, 92, 3745–3751.

[56]

Tebben, L.; Studer, A. Nitroxides: Applications in synthesis and in polymer chemistry. Angew. Chem., Int. Ed. 2011, 50, 5034–5068.

[57]

Suga, T.; Yoshimura, K.; Nishide, H. Nitroxide-substituted polyether as a new material for batteries. Macromol. Symp. 2006, 245–246, 416–422.

[58]

Kobayashi, H.; Ueda, T.; Miyakubo, K.; Toyoda, J.; Eguchi, T.; Tani, A. Preparation and characterization of a new inclusion compound with a 1D molecular arrangement of organic radicals using a one-dimensional organic homogeneous nanochannel template. J. Mater. Chem. 2005, 15, 872–879.

[59]

Lo, C. H.; Liao, K. S.; Hung, W. S.; De Guzman, M.; Hu, C. C.; Lee, K. R.; Lai, J. Y. Investigation on positron annihilation characteristics of CO2-exposed zeolite. Microporous Mesoporous Mater. 2011, 141, 140–145.

[60]

Tuyen, L. A.; Szilágyi, E.; Kótai, E.; Lázár, K.; Bottyán, L.; Dung, T. Q.; Cuong, L. C.; Khiem, D. D.; Phuc, P. T.; Nguyen, L. L. et al. Structural effects induced by 2.5 MeV proton beam on zeolite 4A: Positron annihilation and X-ray diffraction study. Radiat. Phys. Chem. 2015, 106, 355–359.

[61]

Kaushik, V. K.; Vijayalakshmi, R. P.; Choudary, N. V.; Bhat, S. G. T. XPS studies on cation exchanged zeolite A. Microporous Mesoporous Mater. 2002, 51, 139–144.

[62]

Zhang, X.; Han, J.; Niu, X. F.; Xin, C. Z.; Xue, C. J.; Wang, S.; Shen, Y.; Zhang, L.; Li, L. L.; Nan, C. W. High cycling stability for solid-state Li metal batteries via regulating solvation effect in poly(vinylidene fluoride)-based electrolytes. Batter. Supercaps 2020, 3, 876–883.

[63]

Andrews, R. E.; Gawarkiewicz, J. J.; Winterkorn, H. F. Comparison of the interaction of three clay minerals with water, dimethyl sulfoxide and dimethyl formamide. Highw. Res. Rec. 1967, 209, 66–78.

File
12274_2023_5663_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2022
Revised: 20 February 2023
Accepted: 12 March 2023
Published: 11 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U21A2080 and 51788104), Beijing Natural Science Foundation (No. L223008), and National Key Research and Development Program of China (No. 2022YFB2404403).

Return