Journal Home > Volume 16 , Issue 7

Complex hydride LiAlH4, as a hydrogen storage material, possesses high theoretical hydrogen storage capacity (10.5 wt.%). However, highly efficient additives are urgently required to modify its thermal stability and sluggish kinetics. Some additives exhibit unique morphology-dependent characteristics. Herein, the efficient rare earth oxide nano-CeO2 additives with different morphologies (nanoparticles, nanocubes, and nanorods) are prepared by the hydrothermal method, and the intrinsic properties are characterized. The three different morphologies of nano-CeO2, which are different in the Ce3+ content and specific surface area, are added to LiAlH4 to improve the dehydrogenation behavior. The LiAlH4-CeO2-nanorod composite exhibits the optimal dehydrogenation behavior, which begins to desorb hydrogen at 76.6 °C with a hydrogen capacity of 7.17 wt.%, and 3.83 wt.% hydrogen is desorbed within 30 min at 140 °C. The dehydrogenation process of the composites demonstrates that hydrogen release is facilitated by the in-situ formed CeH2.73 and the facile transition between the oxidation states of Ce4+ and Ce3+. Combined with density functional theory calculations, the addition of nano-CeO2 can weaken the Al–H bond and accelerate the decomposition of [AlH4]4− tetrahedron, which is consistent with the reduction of the decomposition activation energy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dehydrogenation behavior and mechanism of LiAlH4 adding nano-CeO2 with different morphologies

Show Author's information Chunmin Zhang1,2Long Liang1,2Shaolei Zhao1,2Zhijian Wu1,2Shaohua Wang3,4Dongming Yin1Qingshuang Wang5Limin Wang1,2Chunli Wang1( )Yong Cheng1( )
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei 230023, China
National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, GRINM Group Co., Ltd., Beijing 100088, China
GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China

Abstract

Complex hydride LiAlH4, as a hydrogen storage material, possesses high theoretical hydrogen storage capacity (10.5 wt.%). However, highly efficient additives are urgently required to modify its thermal stability and sluggish kinetics. Some additives exhibit unique morphology-dependent characteristics. Herein, the efficient rare earth oxide nano-CeO2 additives with different morphologies (nanoparticles, nanocubes, and nanorods) are prepared by the hydrothermal method, and the intrinsic properties are characterized. The three different morphologies of nano-CeO2, which are different in the Ce3+ content and specific surface area, are added to LiAlH4 to improve the dehydrogenation behavior. The LiAlH4-CeO2-nanorod composite exhibits the optimal dehydrogenation behavior, which begins to desorb hydrogen at 76.6 °C with a hydrogen capacity of 7.17 wt.%, and 3.83 wt.% hydrogen is desorbed within 30 min at 140 °C. The dehydrogenation process of the composites demonstrates that hydrogen release is facilitated by the in-situ formed CeH2.73 and the facile transition between the oxidation states of Ce4+ and Ce3+. Combined with density functional theory calculations, the addition of nano-CeO2 can weaken the Al–H bond and accelerate the decomposition of [AlH4]4− tetrahedron, which is consistent with the reduction of the decomposition activation energy.

Keywords: morphology, hydrogen storage, LiAlH4, nano-CeO2

References(75)

[1]

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

[2]

Luo, L. X.; Fu, C. H.; Wu, A. M.; Zhuang, Z. C.; Zhu, F. J.; Jiang, F. L.; Shen, S. Y.; Cai, X. Y.; Kang, Q.; Zheng, Z. F. et al. Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res. 2022, 15, 1892–1900.

[3]

Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.

[4]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[5]

Luo, Y.; Wang, Q.; Li, J.; Xu, F.; Sun, L.; Zou, Y.; Chu, H.; Li, B.; Zhang, K. Enhanced hydrogen storage/sensing of metal hydrides by nanomodification. Mater. Today Nano 2020, 9, 100071.

[6]

He, T.; Wang, X. H.; Liu, H. Z.; Gao, S. C.; Wang, Y. Y.; Li, S. Q.; Yan, M. Enhanced hydrogen desorption/absorption properties of magnesium hydride with CeF3@Gn. Int. J. Hydrogen Energy 2020, 45, 4754–4764.

[7]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[8]

Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

[9]

Huang, X.; Xiao, X. Z.; Wang, X. C.; Yao, Z. D.; Wang, C. T.; Fan, X. L.; Chen, L. X. Highly synergetic catalytic mechanism of Ni@g-C3N4 on the superior hydrogen storage performance of Li-Mg-B-H system. Energy Storage Mater. 2018, 13, 199–206.

[10]

Ley, M. B.; Jepsen, L. H.; Lee, Y. S.; Cho, Y. W.; von Colbe, J. M. B.; Dornheim, M.; Rokni, M.; Jensen, J. O.; Sloth, M.; Filinchuk, Y. et al. Complex hydrides for hydrogen storage-new perspectives. Mater. Today 2014, 17, 122–128.

[11]

Schneemann, A.; White, J. L.; Kang, S.; Jeong, S.; Wan, L. F.; Cho, E. S.; Heo, T. W.; Prendergast, D.; Urban, J. J.; Wood, B. C. et al. Nanostructured metal hydrides for hydrogen storage. Chem. Rev. 2018, 118, 10775–10839.

[12]

Jia, Y.; Sun, C. H.; Shen, S. H.; Zou, J.; Mao, S. S.; Yao, X. D. Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage. Renew. Sust. Energy Rev. 2015, 44, 289–303.

[13]

Zhu, Y. Y.; Ouyang, L. Z.; Zhong, H.; Liu, J. W.; Wang, H.; Shao, H. Y.; Huang, Z. G.; Zhu, M. Closing the loop for hydrogen storage: Facile regeneration of NaBH4 from its hydrolytic product. Angew. Chem., Int. Ed. 2020, 59, 8623–8629.

[14]

Wang, Y. R.; Chen, X. W.; Zhang, H. Y.; Xia, G. L.; Sun, D. L.; Yu, X. B. Heterostructures built in metal hydrides for advanced hydrogen storage reversibility. Adv. Mater. 2020, 32, 2002647.

[15]

Lu, X.; Zhang, L. T.; Yu, H. J.; Lu, Z. Y.; He, J. H.; Zheng, J. G.; Wu, F. Y.; Chen, L. X. Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes. Chem. Eng. J. 2021, 422, 130101.

[16]

Wei, S.; Liu, J. X.; Xia, Y. P.; Zhang, H. Z.; Cheng, R. G.; Sun, L. X.; Xu, F.; Bu, Y. T.; Liu, Z. Y.; Huang, P. R. et al. Enhanced hydrogen storage properties of LiAlH4 by excellent catalytic activity of XTiO3@h-BN (X = Co, Ni). Adv. Funct. Mater. 2022, 32, 2110180.

[17]

Ismail, M.; Sazelee, N. A.; Ali, N. A.; Suwarno, S. Catalytic effect of SrTiO3 on the dehydrogenation properties of LiAlH4. J. Alloys Compd. 2021, 855, 157475.

[18]

Liu, X. F.; Langmi, H. W.; Beattie, S. D.; Azenwi, F. F.; McGrady, G. S.; Jensen, C. M. Ti-doped LiAlH4 for hydrogen storage: Synthesis, catalyst loading and cycling performance. J. Am. Chem. Soc. 2011, 133, 15593–15597.

[19]

Li, L.; Xu, Y. N.; Wang, Y.; Wang, Y. J.; Qiu, F. Y.; An, C. H.; Jiao, L. F.; Yuan, H. T. NbN nanoparticles as additive for the high dehydrogenation properties of LiAlH4. Dalton Trans. 2014, 43, 1806–1813.

[20]

Rangsunvigit, P.; Purasaka, P.; Chaisuwan, T.; Kitiyanan, B.; Kulprathipanja, S. Effects of carbon-based materials and catalysts on the hydrogen desorption/absorption of LiAlH4. Chem. Lett. 2012, 41, 1368–1370.

[21]

Andreasen, A.; Vegge, T.; Pedersen, A. S. Dehydrogenation kinetics of as-received and ball-milled LiAlH4. J. Solid State Chem. 2005, 178, 3672–3678.

[22]

Sazelee, N. A.; Ismail, M. Recent advances in catalyst-enhanced LiAlH4 for solid-state hydrogen storage: A review. Int. J. Hydrogen Energy 2021, 46, 9123–9141.

[23]

Cho, Y.; Li, S.; Snider, J. L.; Marple, M. A. T.; Strange, N. A.; Sugar, J. D.; El Gabaly, F.; Schneemann, A.; Kang, S.; Kang, M. H. et al. Reversing the irreversible: Thermodynamic stabilization of LiAlH4 nanoconfined within a nitrogen-doped carbon host. ACS Nano 2021, 15, 10163–10174.

[24]

Zhao, Y. R.; Han, M.; Wang, H. X.; Chen, C. C.; Chen, J. LiAlH4 supported on TiO2/hierarchically porous carbon nanocomposites with enhanced hydrogen storage properties. Inorg. Chem. Front. 2016, 3, 1536–1542.

[25]

Wang, L.; Rawal, A.; Quadir, Z.; Aguey-Zinsou, K. F. Nanoconfined lithium aluminium hydride (LiAlH4) and hydrogen reversibility. Int. J. Hydrogen Energy 2017, 42, 14144–14153.

[26]

Zang, L.; Liu, S.; Guo, H. N.; Chang, X. Y.; Xu, X. Q.; Jiao, L. F.; Yuan, H. T.; Wang, Y. J. In situ synthesis of 3D flower-like nanocrystalline Ni/C and its effect on hydrogen storage properties of LiAlH4. Chem. -Asian J. 2018, 13, 350–357.

[27]

Ismail, M.; Zhao, Y.; Yu, X. B.; Dou, S. X. Effects of NbF5 addition on the hydrogen storage properties of LiAlH4. Int. J. Hydrogen Energy 2010, 35, 2361–2367.

[28]

Ali, N. A.; Idris, N. H.; Sazelee, N. A.; Yahya, M. S.; Yap, F. A. H.; Ismail, M. Catalytic effects of MgFe2O4 addition on the dehydrogenation properties of LiAlH4. Int. J. Hydrogen Energy 2019, 44, 28227–28234.

[29]

Cheng, H.; Zheng, J. G.; Xiao, X. Z.; Liu, Z.; Ren, X. J.; Wang, X. C.; Li, S. Q.; Chen, L. X. Ultra-fast dehydrogenation behavior at low temperature of LiAlH4 modified by fluorographite. Int. J. Hydrogen Energy 2020, 45, 28123–28133.

[30]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[31]

Plerdsranoy, P.; Javadian, P.; Jensen, N. D.; Nielsen, U. G.; Jensen, T. R.; Utke, R. Compaction of LiBH4-LiAlH4 nanoconfined in activated carbon nanofibers: Dehydrogenation kinetics, reversibility, and mechanical stability during cycling. Int. J. Hydrogen Energy 2017, 42, 1036–1047.

[32]

Zhang, Y. W.; Xiao, X. Z.; Luo, B. S.; Huang, X.; Liu, M. J.; Chen, L. X. Synergistic effect of LiBH4 and LiAlH4 additives on improved hydrogen storage properties of unexpected high capacity magnesium hydride. J. Phys. Chem. C 2018, 122, 2528–2538.

[33]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[34]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[35]

Zheng, X. P.; Li, P.; An, F. Q.; Wang, G. Q.; Qu, X. H. Effects of Ti and Fe additives on hydrogen release from lithium alanate. Rare Met. Mater. Eng. 2008, 37, 400–403.

[36]

Cao, Z. J.; Ma, X. B.; Wang, H. L.; Ouyang, L. Z. Catalytic effect of ScCl3 on the dehydrogenation properties of LiAlH4. J. Alloys Compd. 2018, 762, 73–79.

[37]

Zang, L.; Cai, J. X.; Zhao, L. P.; Gao, W. H.; Liu, J.; Wang, Y. J. Improved hydrogen storage properties of LiAlH4 by mechanical milling with TiF3. J. Alloys Compd. 2015, 647, 756–762.

[38]

Liu, S. S.; Li, Z. B.; Jiao, C. L.; Si, X. L.; Yang, L. N.; Zhang, J.; Zhou, H. Y.; Huang, F. L.; Gabelica, Z.; Schick, C. et al. Improved reversible hydrogen storage of LiAlH4 by nano-sized TiH2. Int. J. Hydrogen Energy 2013, 38, 2770–2777.

[39]

Varin, R. A.; Parviz, R. The effects of the nanometric interstitial compounds TiC, ZrC and TiN on the mechanical and thermal dehydrogenation and rehydrogenation of the nanocomposite lithium alanate (LiAlH4) hydride. Int. J. Hydrogen Energy 2014, 39, 2575–2586.

[40]

Ismail, M.; Zhao, Y.; Yu, X. B.; Ranjbar, A.; Dou, S. X. Improved hydrogen desorption in lithium alanate by addition of SWCNT-metallic catalyst composite. Int. J. Hydrogen Energy 2011, 36, 3593–3599.

[41]

Wang, X. G.; Wang, L.; Zhang, H. L.; Shi, B.; Zheng, X. P. Dehydrogenation properties of LiAlH4 doped with rare earth oxides. Rare Met. Mater. Eng. 2014, 43, 799–802.

[42]

Ismail, M.; Zhao, Y.; Yu, X. B.; Nevirkovets, I. P.; Dou, S. X. Significantly improved dehydrogenation of LiAlH4 catalysed with TiO2 nanopowder. Int. J. Hydrogen Energy 2011, 36, 8327–8334.

[43]

Rafi-ud-din; Qu, X. H.; Li, P.; Lin, Z.; Ahmad, M. Hydrogen sorption improvement of LiAlH4 catalyzed by Nb2O5 and Cr2O3 nanoparticles. J. Phys. Chem. C 2011, 115, 13088–13099.

[44]

Ma, Z. L.; Liu, J. C.; Zhu, Y. F.; Zhao, Y. Y.; Lin, H. J.; Zhang, Y.; Li, H. W.; Zhang, J. G.; Liu, Y. N.; Gao, W. T. et al. Crystal-facet-dependent catalysis of anatase TiO2 on hydrogen storage of MgH2. J. Alloys Compd. 2020, 822, 153553.

[45]

Sun, Y. H.; Shen, C. Q.; Lai, Q. W.; Liu, W.; Wang, D. W.; Aguey-Zinsou, K. F. Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art. Energy Storage Mater. 2018, 10, 168–198.

[46]

Zhang, J. G.; Li, S. Y.; Zhu, Y. F.; Lin, H. J.; Liu, Y. N.; Zhang, Y.; Ma, Z. L.; Li, L. Q. Controllable fabrication of Ni-based catalysts and their enhancement on desorption properties of MgH2. J. Alloys Compd. 2017, 715, 329–336.

[47]

Jun, Y. W.; Choi, J. S.; Cheon, J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem., Int. Ed. 2006, 45, 3414–3439.

[48]

Qiao, Z. A.; Wu, Z. L.; Dai, S. Shape-controlled ceria-based nanostructures for catalysis applications. ChemSusChem 2013, 6, 1821–1833.

[49]

Deng, W. L.; Flytzani-Stephanopoulos, M. On the issue of the deactivation of Au-ceria and Pt-ceria water-gas shift catalysts in practical fuel-cell applications. Angew. Chem., Int. Ed. 2006, 45, 2285–2289.

[50]

Izu, N.; Shin, W.; Matsubara, I.; Murayama, N. The effects of the particle size and crystallite size on the response time for resistive oxygen gas sensor using cerium oxide thick film. Sensor Actuat. B: Chem. 2003, 94, 222–227.

[51]

Si, R.; Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem., Int. Ed. 2008, 47, 2884–2887.

[52]

Nolan, M.; Watson, G. W. The surface dependence of CO adsorption on ceria. J. Phys. Chem. B 2006, 110, 16600–16606.

[53]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

[54]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[55]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[56]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[57]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[58]

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

[59]

Wu, Q.; Zhang, F.;Xiao, P.; Tao, H. S.; Wang, X. Z.; Hu, Z.; Lü, Y. N. Great influence of anions for controllable synthesis of CeO2 nanostructures: From nanorods to nanocubes. J. Phys. Chem. C 2008, 112, 17076–17080.

[60]

Phokha, S.; Limwichean, S.; Horprathum, M.; Patthanasettakul, V.; Chananonnawathorn, C.; Eiamchai, P.; Chanlek, N.; Maensiri, S. Effect of annealing temperature on the structural and magnetic properties of CeO2 thin films. Thin Solid Films 2020, 704, 138001.

[61]

Zhang, W.; Niu, X. Y.; Chen, L. Q.; Yuan, F. L.; Zhu, Y. J. Soot combustion over nanostructured ceria with different morphologies. Sci. Rep. 2016, 6, 29062.

[62]

Wei, X. J.; Rang, X. D.; Zhu, W. H.; Xiang, M.; Deng, Y. Y.; Jiang, F. H.; Mao, R.; Zhang, Z. W.; Kong, X. Q.; Wang, F. Morphology effect of CeO2 on Ni/CeO2 catalysts for selective hydrogenation of cinnamaldehyde. Chem. Phys. 2021, 542, 111079.

[63]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[64]

Ma, X. J.; Lu, P.; Wu, P. Effect of structure distortion and oxygen vacancy on ferromagnetism in hydrothermally synthesized CeO2 with isovalent Zr4+ doping. Ceram. Int. 2018, 44, 15989–15994.

[65]

Chen, Z.; Chen, L. L.; Jiang, M.; Gao, X. Y.; Huang, M. L.; Li, Y. X.; Ren, L. P.; Yang, Y.; Yang, Z. Z. Controlled synthesis of CeO2 nanorods and their promotional effect on catalytic activity and aging resistibility for diesel soot oxidation. Appl. Surf. Sci. 2020, 510, 145401.

[66]

Qin, Y.; Liu, X. L.; Zhu, T. L.; Zhu, T. Y. Catalytic oxidation of ethyl acetate over silver catalysts supported on CeO2 with different morphologies. Mater. Chem. Phys. 2019, 229, 32–38.

[67]

Zhao, S. L.; Liang, L.; Liu, B. Z.; Wang, L. M.; Liang, F. Superior dehydrogenation performance of α-AlH3 catalyzed by Li3N: Realizing 8.0 wt.% capacity at 100 °C. Small 2022, 18, 2107983.

[68]

Wei, S.; Xue, S. S.; Huang, C. S.; Che, B. Y.; Zhang, H. Z.; Sun, L. X.; Xu, F.; Xia, Y. P.; Cheng, R. G.; Zhang, C. C. et al. Multielement synergetic effect of NiFe2O4 and h-BN for improving the dehydrogenation properties of LiAlH4. Inorg. Chem. Front. 2021, 8, 3111–3126.

[69]

Xia, Y. P.; Wei, S.; Huang, Q.; Li, J. Q.; Cen, X. H.; Zhang, H. Z.; Chu, H. L.; Sun, L. X.; Xu, F.; Huang, P. R. Facile synthesis of NiCo2O4-anchored reduced graphene oxide nanocomposites as efficient additives for improving the dehydrogenation behavior of lithium alanate. Inorg. Chem. Front. 2020, 7, 1257–1272.

[70]

Gabis, I.; Dobrotvorskiy, M.; Evard, E.; Voyt, A. Kinetics of dehydrogenation of MgH2 and AlH3. J. Alloys Compd. 2011, 509, S671–S674.

[71]

Lin, H. J.; Tang, J. J.; Yu, Q.; Wang, H.; Ouyang, L. Z.; Zhao, Y. J.; Liu, J. W.; Wang, W. H.; Zhu, M. Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump. Nano Energy 2014, 9, 80–87.

[72]

Zhang, Y.; Zhao, S. N.; Feng, J.; Song, S. Y.; Shi, W. D.; Wang, D.; Zhang, H. J. Unraveling the physical chemistry and materials science of CeO2-based nanostructures. Chem 2021, 7, 2022–2059.

[73]

Xia, Y.; Zhang, H.; Sun, Y.; Sun, L.; Xu, F.; Sun, S.; Zhang, G.; Huang, P.; Du, Y.; Wang, J. et al. Dehybridization effect in improved dehydrogenation of LiAlH4 by doping with two-dimensional Ti3C2. Mater. Today Nano 2019, 8, 100054.

[74]

Liang, L.; Wang, C. L.; Ren, M. G.; Li, S. L.; Wu, Z. J.; Wang, L. M.; Liang, F. Unraveling the synergistic catalytic effects of TiO2 and Pr6O11 on superior dehydrogenation performances of α-AlH3. ACS Appl. Mater. Interfaces 2021, 13, 26998–27005.

[75]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

File
12274_2023_5636_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 February 2023
Revised: 27 February 2023
Accepted: 02 March 2023
Published: 20 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2021YFB4000604), National Science and Technology Major Project (No. 2020YFE0204500), Youth Growth Science and Technology Program of Jilin Province (No. 20220508001RC), Major Science and Technology Project of Inner Mongolia (No. 2021ZD0029), Youth Innovation Promotion Association CAS (Nos. 2021225 and 2022225), and Independent Research Project of the State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (No. 110000RL86).

Return