Journal Home > Volume 16 , Issue 7

Engineering the structure and composition of electrode materials is one of the essential means for achieving excellent electrochemical performance. The rational design of Na+ host materials is still a massive challenge for sodium ion batteries (SIBs). Herein, MoSe2/TiO2 heterostructure is integrated with N-doped carbon nanosheets to assemble into hierarchical flower-like porous core–shell microspheres (MoSe2/TiO2@N-C), which is firstly reported by room-temperature stirring coupled with vulcanization treatment. The cavity of the core–shell structure could provide enough storage space for Na+ and alleviate the volume expansion during charge/discharge processes. The apertures between nanosheets provide a guarantee for the rapid penetration of electrolyte to enhance the utilization rate of electrode materials. Furthermore, building heterostructures by combining different phase structures can facilitate electron transfer and accelerate reaction kinetics. Benefiting from the synergistic contributions of structure and composition, MoSe2/TiO2@N-C as SIBs anode material shows better reversible capacities of 302.5 mAh·g−1 at 1 A·g−1 for 400 cycles and 217.4 mAh·g−1 at 4 A·g−1 for 900 cycles. Strikingly, the reversible capacities can be restored entirely to the initial level after a high current density cycle.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

MoSe2/TiO2 heterostructure integrated in N-doped carbon nanosheets assembled porous core–shell microspheres for enhanced sodium storage

Show Author's information Nianxiang Shi1( )Guangzeng Liu1Baojuan Xi2Xuguang An3Changhui Sun1Xinzheng Liu1Shenglin Xiong2( )
School of Chemistry and Chemistry Engineering, Qilu Normal University, Jinan 250200, China
School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
School of Mechanical Engineering, Chengdu University, Chengdu 610106, China

Abstract

Engineering the structure and composition of electrode materials is one of the essential means for achieving excellent electrochemical performance. The rational design of Na+ host materials is still a massive challenge for sodium ion batteries (SIBs). Herein, MoSe2/TiO2 heterostructure is integrated with N-doped carbon nanosheets to assemble into hierarchical flower-like porous core–shell microspheres (MoSe2/TiO2@N-C), which is firstly reported by room-temperature stirring coupled with vulcanization treatment. The cavity of the core–shell structure could provide enough storage space for Na+ and alleviate the volume expansion during charge/discharge processes. The apertures between nanosheets provide a guarantee for the rapid penetration of electrolyte to enhance the utilization rate of electrode materials. Furthermore, building heterostructures by combining different phase structures can facilitate electron transfer and accelerate reaction kinetics. Benefiting from the synergistic contributions of structure and composition, MoSe2/TiO2@N-C as SIBs anode material shows better reversible capacities of 302.5 mAh·g−1 at 1 A·g−1 for 400 cycles and 217.4 mAh·g−1 at 4 A·g−1 for 900 cycles. Strikingly, the reversible capacities can be restored entirely to the initial level after a high current density cycle.

Keywords: heterostructure, sodium ion batteries, MoSe2/TiO2, flower-like hierarchical porous core–shell microspheres

References(45)

[1]

Li, Y.; Wu, F.; Li, Y.; Liu, M. Q.; Feng, X.; Bai, Y.; Wu, C. Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 2022, 51, 4484–4536.

[2]

Zhang, W. C.; Lu, J.; Guo, Z. P. Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Mater. Today 2021, 50, 400–417.

[3]

Kim, K. H.; Hong, S. H. Manganese tetraphosphide (MnP4) as a high capacity anode for lithium-ion and sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2003609.

[4]

Tan, M. D.; Han, S. H.; Li, Z. B.; Cui, H.; Lei, D. N.; Wang, C. X. Compact Sn/C composite realizes long-life sodium-ion batteries. Nano Res. 2023, 16, 3804–3813.

[5]

Zhu, Z. X.; Pei, Z. B.; Liu, B.; Sun, D.; Fang, Y. Y.; Lei, X.; Liu, X. M.; Niu, S. W.; Pan, H. G.; Zhou, J. B. et al. Hierarchical ion/electron networks enable efficient red phosphorus anode with high mass loading for sodium ion batteries. Adv. Funct. Mater. 2022, 32, 2110444.

[6]

Fang, L. B.; Bahlawane, N.; Sun, W. P.; Pan, H. G.; Xu, B. B.; Yan, M.; Jiang, Y. Z. Conversion-alloying anode materials for sodium ion batteries. Small 2021, 17, 2101137.

[7]

Wang, J. J.; Yue, X. Y.; Xie, Z. K.; Abudula, A.; Guan, G. Q. MOFs-derived transition metal sulfide composites for advanced sodium ion batteries. Energy Storage Mater. 2021, 41, 404–426.

[8]

Liang, Y. Z.; Song, N.; Zhang, Z. C. Y.; Chen, W. H.; Feng, J. K.; Xi, B. J.; Xiong, S. L. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv. Mater. 2022, 34, 2202673.

[9]

Shi, N. X.; Chu, Y. T.; Xi, B. J.; Huang, M.; Chen, W. H.; Duan, B.; Zhang, C. H.; Feng, J. K.; Xiong, S. L. Sandwich structures constructed by ZnSe⊂N-C@MoSe2 located in graphene for efficient sodium storage. Adv. Energy Mater. 2020, 10, 2002298.

[10]

Guo, J.; Yang, J.; Guan, J. P.; Chen, X. H.; Zhu, Y.; Fu, H.; Liu, Q.; Wei, B.; Geng, H. B. Interface and electronic structure dual-engineering on MoSe2 with multi-ion/electron transportation channels for boosted sodium-ion half/full batteries. Chem. Eng. J. 2022, 450, 138007.

[11]

Zhao, C. C.; Song, H.; Zhuang, Q. Y.; Ma, Q. N.; Liang, J.; Peng, H. R.; Mao, C. M.; Zhang, Z. H.; Li, G. C. Self-polymerized hollow Mo-dopamine complex-induced functional MoSe2/N-doped carbon electrodes with enhanced lithium/sodium storage properties. Inorg. Chem. Front. 2018, 5, 1026–1032.

[12]

Ma, M. Z.; Zhang, S. P.; Yao, Y.; Wang, H. Y.; Huang, H. J.; Xu, R.; Wang, J. W.; Zhou, X. F.; Yang, W. J.; Peng, Z. Q. et al. Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon: Superior potassium-ion storage and insight into potassium storage mechanism. Adv. Mater. 2020, 32, 2000958.

[13]

Fan, H. N.; Zhang, Q.; Gu, Q. F.; Li, Y.; Luo, W. B.; Liu, H. K. Exploration of the sodium ion ordered transfer mechanism in a MoSe2@Graphene composite for superior rate and lifespan performance. J. Mater. Chem. A 2019, 7, 13736–13742.

[14]

Yousaf, M.; Wang, Y. S.; Chen, Y. J.; Wang, Z. P.; Firdous, A.; Ali, Z.; Mahmood, N.; Zou, R. Q.; Guo, S. J.; Han, R. P. S. A 3D trilayered CNT/MoSe2/C heterostructure with an expanded MoSe2 interlayer spacing for an efficient sodium storage. Adv. Energy Mater. 2019, 9, 1900567.

[15]

Liu, H.; Guo, H.; Liu, B. H.; Liang, M. F.; Lv, Z. L.; Adair, K. R.; Sun, X. L. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707480.

[16]

Zhang, X. Q.; Xiong, Y. L.; Dong, M. F.; Hou, Z. G.; Qian, Y. T. Construction of hierarchical MoSe2@C hollow nanospheres for efficient lithium/sodium ion storage. Inorg. Chem. Front. 2020, 7, 1691–1698.

[17]

Kang, W. P.; Wang, Y. Y.; Cao, D. W.; Kang, Z. X.; Sun, D. F. In-situ transformation into MoSe2/MoO3 heterogeneous nanostructures with enhanced electrochemical performance as anode material for sodium ion battery. J. Alloys Compd. 2018, 743, 410–418.

[18]

Chen, J.; Pan, A. Q.; Wang, Y. P.; Cao, X. X.; Zhang, W. C.; Kong, X. Z.; Su, Q.; Lin, J. D.; Cao, G. Z.; Liang, S. Q. Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications. Energy Storage Mater. 2019, 21, 97–106.

[19]

Huang, M.; Xi, B. J.; Shi, N. XX.; Feng, J. K.; Qian, Y. T.; Xue, D. F.; Xiong, S. L. Quantum-matter Bi/TiO2 heterostructure embedded in N-doped porous carbon nanosheets for enhanced sodium storage. Small Struct. 2020, 2, 2000085.

[20]

Zhu, G. Y.; Ma, L. B.; Lin, H. N.; Zhao, P. Y.; Wang, L.; Hu, Y.; Chen, R. P.; Chen, T.; Wang, Y. R.; Tie, Z. et al. High-performance Li-ion capacitor based on black-TiO2−x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Res. 2019, 12, 1713–1719.

[21]

Le, Z. Y.; Liu, F.; Nie, P.; Li, X. R.; Liu, X. Y.; Bian, Z. F.; Chen, G.; Wu, H. B.; Lu, Y. F. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables highperformance sodium-ion capacitors. ACS Nano 2017, 11, 2952–2960.

[22]

Zheng, Y.; Zhou, T. F.; Zhang, C. F.; Mao, J. F.; Liu, H. K.; Guo, Z. P. Boosted charge transfer in SnS/SnO2 heterostructures: Toward high rate capability for sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 3408–3413.

[23]

Chang, X. X.; Wang, T.; Zhang, P.; Zhang, J. J.; Li, A.; Gong, J. L. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 2015, 137, 8356–8359.

[24]

Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096–1101.

[25]

An, Y. L.; Tian, Y.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano 2021, 15, 15259–15273.

[26]

Huang, M.; Chu, Y. T.; Xi, B. J.; Shi, N. X.; Duan, B.; Zhang, C. H.; Chen, W. H.; Feng, J. K.; Xiong, S. L. TiO2-based heterostructures with different mechanism: A general synergistic effect toward high-performance sodium storage. Small 2020, 16, 2004054.

[27]

Liu, P.; Han, J.; Zhu, K. J.; Dong, Z. H.; Jiao, L. F. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage. Adv. Energy Mater. 2020, 10, 2000741.

[28]

Wang, T.; Yao, K.; Hua, Y. B.; Shankar, E. G.; Shanthappa, R.; Yu, J. S. Rational design of MXene-MoS2 heterostructure with rapid ion transport rate as an advanced anode for sodium-ion batteries. Chem. Eng. J. 2023, 457, 141363.

[29]

Zheng, Z. M.; Wu, H. H.; Liu, H. D.; Zhang, Q. B.; He, X.; Yu, S. C.; Petrova, V.; Feng, J.; Kostecki, R.; Liu, P. et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano 2020, 14, 9545–9561.

[30]

Wang, F.; Zhang, W. L.; Zhou, H. H.; Chen, H.; Huang, Z. Y.; Yan, Z. H.; Jiang, R. J.; Wang, C. Q.; Tan, Z.; Kuang, Y. F. Preparation of porous FeS2-C/RG composite for sodium ion batteries. Chem. Eng. J. 2020, 380, 122549.

[31]

Zhao, W. X.; Ci, S. Q.; Hu, X.; Chen, J. X.; Wen, Z. H. Highly dispersed ultrasmall NiS2 nanoparticles in porous carbon nanofiber anodes for sodium ion batteries. Nanoscale 2019, 11, 4688–4695.

[32]

Huang, Y.; Gong, Q. F.; Song, X. N.; Feng, K.; Nie, K. Q.; Zhao, F. P.; Wang, Y. Y.; Zeng, M.; Zhong, J.; Li, Y. G. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 2016, 10, 11337–11343.

[33]

Shi, N. X.; Xi, B. J.; Huang, M.; Tian, F.; Chen, W. H.; Li, H. B.; Feng, J. K.; Xiong, S. L. One-step construction of MoS0.74Se1.26/N-doped carbon flower-like hierarchical microspheres with enhanced sodium storage. ACS Appl. Mater. Interfaces 2019, 11, 44342–44351.

[34]

Wu, Y. C.; Liu, W. R. Few-layered MoSe2 ultrathin nanosheets as anode materials for lithium ion batteries. J. Alloys Compd. 2020, 813, 152074.

[35]

Ge, X. L.; Li, Z. Q.; Yin, L. W. Metal-organic frameworks derived porous core/shell CoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 2017, 32, 117–124.

[36]

Li, B. S.; Xi, B. J.; Feng, Z. Y.; Lin, Y.; Liu, J. C.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage. Adv. Mater. 2018, 30, 1705788.

[37]

Niu, F. E.; Yang, J.; Wang, N. N.; Zhang, D. P.; Fan, W. L.; Yang, J.; Qian, Y. T. MoSe2-covered N,P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700522.

[38]

Wang, X. X.; Tian, J. H.; Cheng, X.; Na, R.; Wang, D. D.; Shan, Z. Q. Chitosan-induced synthesis of hierarchical flower ridge-like MoS2/N-doped carbon composites with enhanced lithium storage. ACS Appl. Mater. Interfaces 2018, 10, 35953–35962.

[39]

Pan, X. N.; Xi, B. J.; Lu, H. B.; Zhang, Z. C. Y.; An, X. G.; Liu, J.; Feng, J. K.; Xiong, S. L. Molybdenum oxynitride atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical microspheres for efficient sodium storage. Nano-Micro Lett. 2022, 14, 163.

[40]

Jia, G. C.; Wang, H. W.; Chao, D. L.; He, H. Y.; Tiep, N. H.; Zhang, Y. Q.; Zhang, Z.; Fan, H. J. Ultrathin MoSe2@N-doped carbon composite nanospheres for stable Na-ion storage. Nanotechnology 2017, 28, 42LT01.

[41]

Xie, D.; Tang, W. J.; Wang, Y. D.; Xia, X. H.; Zhong, Y.; Zhou, D.; Wang, D. H.; Wang, X. L.; Tu, J. P. Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Res. 2016, 9, 1618–1629.

[42]

Wang, P. Y.; Lu, X. X.; Boyjoo, Y.; Wei, X. R.; Zhang, Y. H.; Guo, D. J.; Sun, S. M.; Liu, J. Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries. J. Power Sources 2020, 451, 227756.

[43]

Liang, J. M.; Zhang, L. J.; Xili, D. G.; Kang, J. Rational design of hollow tubular SnO2@TiO2 nanocomposites as anode of sodium ion batteries. Electrochim. Acta 2020, 341, 136030.

[44]

Hwang, J. Y.; Du, H. L.; Yun, B. N.; Jeong, M. G.; Kim, J. S.; Kim, H.; Jung, H. G.; Sun, Y. K. Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS Energy Lett. 2019, 4, 494–501.

[45]

Wang, H. M.; Xiong, J.; Cheng, X.; Chen, G.; Kups, T.; Wang, D.; Schaaf, P. N-doped TiO2 with a disordered surface layer fabricated via plasma treatment as an anode with clearly enhanced performance for rechargeable sodium ion batteries. Sustainable Energy Fuels 2019, 3, 2688–2696.

File
12274_2023_5604_MOESM1_ESM.pdf (5.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 December 2022
Revised: 20 February 2023
Accepted: 22 February 2023
Published: 22 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U21A2077), the Taishan Scholar Project Foundation of Shandong Province (No. ts20190908), and the Natural Science Foundation of Shandong Province (Nos. ZR2021ZD05 and ZR2022QB200).

Return