Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
High-temperature polymer dielectrics with high energy density are urgently needed for capacitive energy storage fields. However, the huge conduction loss at elevated temperatures makes the capacitive performance of polymers degrade sharply, limiting the application of them. Herein, the polymer dots (PDs) with high-electron-affinity were introduced into high-temperature polymers to prepare all-organic nanocomposite dielectrics by solution casting. It is found that polymer dots capture injected electrons via strong electrostatic attraction and impede charges transport and accumulation inside composites, thus reducing leakage current density and improving high-temperature energy storage performance. Consequently, the high-temperature capacitance performance of nanocomposites was improved significantly and reached over 2.5 times that of the pristine polymers, e.g., the energy density of polyetherimide (PEI)/PD reached 3.24 J·cm−3 with excellent electrical fatigue reliability over 20,000 times. This work addresses the current problem of poor discharged energy density of polymer dielectrics at high temperatures with a simple and universal method.
Li, Q.; Chen, L.; Gadinski, M. R.; Zhang, S. H.; Zhang, G. Z.; Li, H. U.; Iagodkine, E.; Haque, A.; Chen, L. Q.; Jackson, T. N. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576–579.
Li, Q.; Yao, F. Z.; Liu, Y.; Zhang, G. Z.; Wang, H.; Wang, Q. High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 2018, 48, 219–243.
Yuan, Q. B.; Yao, F. Z.; Cheng, S. D.; Wang, L. X.; Wang, Y. F.; Mi, S. B.; Wang, Q.; Wang, X. H.; Wang, H. Bioinspired hierarchically structured all-inorganic nanocomposites with significantly improved capacitive performance. Adv. Funct. Mater. 2020, 30, 2000191.
Kim, J.; Saremi, S.; Acharya, M.; Velarde, G.; Parsonnet, E.; Donahue, P.; Qualls, A.; Garcia, D.; Martin, L. W. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 2020, 369, 81–84.
Luo, H.; Zhou, X. F.; Ellingford, C.; Zhang, Y.; Chen, S.; Zhou, K. C.; Zhang, D.; Bowen, C. R.; Wan, C. Y. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 2019, 48, 4424–4465.
Zhang, M.; Li, B.; Wang, J. J.; Huang, H. B.; Zhang, L.; Chen, L. Q. Polymer dielectrics with simultaneous ultrahigh energy density and low loss. Adv. Mater. 2021, 33, 2008198.
Luo, S. B.; Yu, J. Y.; Yu, S. H.; Sun, R.; Cao, L. Q.; Liao, W. H.; Wong, C. P. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv. Energy Mater. 2019, 9, 1803204.
Pan, Z. B.; Yao, L. M.; Zhai, J. W.; Yao, X.; Chen, H. Interfacial coupling effect in organic/inorganic nanocomposites with high energy density. Adv. Mater. 2018, 30, 1705662.
Pan, H.; Ma, J.; Ma, J.; Zhang, Q. H.; Liu, X. Z.; Guan, B.; Gu, L.; Zhang, X.; Zhang, Y. J.; Li, L. L. et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 2018, 9, 1813.
Li, H.; Liu, F. H.; Fan, B. Y.; Ai, D.; Peng, Z. R.; Wang, Q. Nanostructured ferroelectric-polymer composites for capacitive energy storage. Small Methods 2018, 2, 1700399.
Ho, J. S.; Greenbaum, S. G. Polymer capacitor dielectrics for high temperature applications. ACS Appl. Mater. Interfaces 2018, 10, 29189–29218.
Fan, B. Y.; Liu, F. H.; Yang, G.; Li, H.; Zhang, G. Z.; Lin, S. L.; Wang, Q. Dielectric materials for high-temperature capacitors. IET Nanodielectr. 2018, 1, 32–40.
Dong, J. F.; Hu, R. C.; Xu, X. W.; Chen, J.; Niu, Y. J.; Wang, F.; Hao, J. Y.; Wu, K.; Wang, Q.; Wang, H. A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance. Adv. Funct. Mater. 2021, 31, 2102644.
Mannodi-Kanakkithodi, A.; Treich, G. M.; Huan, T. D.; Ma, R.; Tefferi, M.; Cao, Y.; Sotzing, G. A.; Ramprasad, R. Rational co-design of polymer dielectrics for energy storage. Adv. Mater. 2016, 28, 6277–6291.
Thakur, Y.; Zhang, T.; Iacob, C.; Yang, T. N.; Bernholc, J.; Chen, L. Q.; Runt, J.; Zhang, Q. M. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale 2017, 9, 10992–10997.
Zhou, Y.; Li, Q.; Dang, B.; Yang, Y.; Shao, T.; Li, H.; Hu, J.; Zeng, R.; He, J. L.; Wang, Q. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv. Mater. 2018, 30, 1805672.
Shen, Z. H.; Wang, J. J.; Jiang, J. Y.; Huang, S. X.; Lin, Y. H.; Nan, C. W.; Chen, L. Q.; Shen, Y. Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nat. Commun. 2019, 10, 1843.
Xu, W. H.; Liu, J.; Chen, T. W.; Jiang, X. Y.; Qian, X. S.; Zhang, Y.; Jiang, Z. H.; Zhang, Y. H. Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small 2019, 15, 1901582.
Su, L. Y.; Ma, X. Y.; Zhou, J. L.; Liu, X. C.; Du, F. L.; Teng, C. Large-scale preparation of high-performance boron nitride/aramid nanofiber dielectric composites. Nano Res. 2022, 15, 8648–8655.
Zhang, T.; Chen, X.; Thakur, Y.; Lu, B.; Zhang, Q. Y.; Runt, J.; Zhang, Q. M. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 2020, 6, eaax6622.
Li, H.; Ai, D.; Ren, L. L.; Yao, B.; Han, Z. B.; Shen, Z. H.; Wang, J. J.; Chen, L. Q.; Wang, Q. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 2019, 31, 1900875.
Zhou, Y.; Yuan, C.; Wang, S. J.; Zhu, Y. J.; Cheng, S.; Yang, X.; Yang, Y.; Hu, J.; He, J. L.; Li, Q. Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Storage Mater. 2020, 28, 255–263.
Zhu, Y. K.; Zhu, Y. J.; Huang, X. Y.; Chen, J.; Li, Q.; He, J. L.; Jiang, P. K. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 2019, 9, 1901826.
Liu, J.; Shen, Z. H.; Xu, W. H.; Zhang, Y.; Qian, X. S.; Jiang, Z. H.; Zhang, Y. H. Interface-strengthened polymer nanocomposites with reduced dielectric relaxation exhibit high energy density at elevated temperatures utilizing a facile dual crosslinked network. Small 2020, 16, 2000714.
Yuan, C.; Zhou, Y.; Zhu, Y. J.; Liang, J. J.; Wang, S. J.; Peng, S. M.; Li, Y. S.; Cheng, S.; Yang, M. C.; Hu, J. et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 2020, 11, 3919.
Ren, W. B.; Yang, M. Z.; Zhou, L.; Fan, Y. J.; He, S.; Pan, J. Y.; Tang, T. X.; Xiao, Y.; Nan, C. W.; Shen, Y. Scalable ultrathin all-organic polymer dielectric films for high-temperature capacitive energy storage. Adv. Mater. 2022, 34, 2207421.
Tao, S. Y.; Feng, T. L.; Zheng, C. Y.; Zhu, S. J.; Yang, B. Carbonized polymer dots: A brand new perspective to recognize luminescent carbon-based nanomaterials. J. Phys. Chem. Lett. 2019, 10, 5182–5188.
Xia, C. L.; Zhu, S. J.; Feng, T. L.; Yang, M. X.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316.
Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.
Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.
Ji, T. J.; Guo, B.; Liu, F. Y.; Zeng, Q. S.; Yu, C. Z.; Du, X. H.; Jin, G.; Feng, T. L.; Zhu, S. J.; Li, F. H. et al. Cathode and anode interlayers based on polymer carbon dots via work function regulation for efficient polymer solar cells. Adv. Mater. Interfaces 2018, 5, 1701519.
Wang, B. Y.; Song, H. Q.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Ethanol-derived white emissive carbon dots: The formation process investigation and multi-color/white LEDs preparation. Nano Res. 2022, 15, 942–949.
Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.
Zhang, B.; Chen, X. M.; Pan, Z.; Liu, P.; Mao, M. M.; Song, K. X.; Mao, Z.; Sun, R.; Wang, D. W.; Zhang, S. J. Superior high-temperature energy density in molecular semiconductor/polymer all-organic composites. Adv. Funct. Mater. 2022, 33, 2210050.