Journal Home > Volume 16 , Issue 7

Two-dimensional (2D) transition metal dichalcogenides (TMDCs), due to their unique physical properties, have a wide range of applications in the next generation of electronics, optoelectronics, and valleytronics. Large-scale preparation of high-quality TMDCs films is critical to realize these potential applications. Here we report a study on metal-organic chemical vapor deposition (MOCVD) growth of wafer-scale MoSe2 films guided by the crystalline step edges of miscut sapphire wafers. We established that the nucleation density and growth rate of MoSe2 films were positively correlated with the step-edge density and negatively with the growth temperature. At a certain temperature, the MoSe2 domains on the substrate with high step-edge density grow faster than that with low density. As a result, wafer-scale and continuous MoSe2 films can be formed in a short duration (30 min). The MoSe2 films are of high crystalline quality, as confirmed by systematic Raman and photoluminescence (PL) measurements. The results provide an important methodology for the rapid growth of wafer-scale TMDCs, which may promote the application of 2D semiconductors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Step-edge controlled fast growth of wafer-scale MoSe2 films by MOCVD

Show Author's information Rui Ji1,§Jing Liao2,§Lintao Li2Rongji Wen2Mengjie Liu2Yifeng Ren2Jianghua Wu2Yunrui Song3,4Minru Qi3,4Zhixing Qiao3,5Liwei Liu6Chengbing Qin3,4( )Yu Deng2( )Yongtao Tian1( )Suotang Jia3,4Yufeng Hao2( )
Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China

§ Rui Ji and Jing Liao contributed equally to this work.

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDCs), due to their unique physical properties, have a wide range of applications in the next generation of electronics, optoelectronics, and valleytronics. Large-scale preparation of high-quality TMDCs films is critical to realize these potential applications. Here we report a study on metal-organic chemical vapor deposition (MOCVD) growth of wafer-scale MoSe2 films guided by the crystalline step edges of miscut sapphire wafers. We established that the nucleation density and growth rate of MoSe2 films were positively correlated with the step-edge density and negatively with the growth temperature. At a certain temperature, the MoSe2 domains on the substrate with high step-edge density grow faster than that with low density. As a result, wafer-scale and continuous MoSe2 films can be formed in a short duration (30 min). The MoSe2 films are of high crystalline quality, as confirmed by systematic Raman and photoluminescence (PL) measurements. The results provide an important methodology for the rapid growth of wafer-scale TMDCs, which may promote the application of 2D semiconductors.

Keywords: metal-organic chemical vapor deposition (MOCVD), transition metal dichalcogenides, wafer-scale, MoSe2, two-dimensional (2D) semiconductor, nucleation density

References(52)

[1]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[2]

Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.

[3]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197–200.

[4]

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

[5]

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

[6]

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

[7]

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

[8]

Zhao, Z. J.; Hou, T. Y.; Wu, N. N.; Jiao, S. P.; Zhou, K.; Yin, J.; Suk, J. W.; Cui, X.; Zhang, M. F.; Li, S. P. et al. Polycrystalline few-layer graphene as a durable anticorrosion film for copper. Nano Lett. 2021, 21, 1161–1168.

[9]

Zhu, L.; Tang, J.; Li, B. C.; Hou, T. Y.; Zhu, Y.; Zhou, J. D.; Wang, Z.; Zhu, X. R.; Yao, Z. P.; Cui, X. et al. Artificial neuron networks enabled identification and characterizations of 2D materials and van der Waals heterostructures. ACS Nano 2022, 16, 2721–2729.

[10]

Huang, Y.; Wang, Y. K.; Huang, X. Y.; Zhang, G. H.; Han, X.; Yang, Y.; Gao, Y. N.; Meng, L.; Wang, Y. S.; Geng, G. Z. et al. An efficient route to prepare suspended monolayer for feasible optical and electronic characterizations of two-dimensional materials. InfoMat 2022, 4, e12274.

[11]

Xiong, Y. F.; Wang, Y. S.; Zhu, R. Z.; Xu, H. T.; Wu, C. H.; Chen, J. H.; Ma, Y.; Liu, Y.; Chen, Y.; Watanabe, K. et al. Twisted black phosphorus-based van der Waals stacks for fiber-integrated polarimeters. Sci. Adv. 2022, 8, eabo0375.

[12]

Hao, Y.; Wang, L.; Liu, Y.; Chen, H.; Wang, X.; Tan, C.; Nie, S.; Suk, J. W.; Jiang, T.; Liang, T.; Xiao, J.; Ye, W.; Dean, C. R.; Yakobson, B. I.; McCarty, K. F.; Kim, P.; Hone, J.; Colombo, L.; Ruoff, R. S. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016, 11, 426–431.

[13]

Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

[14]

Zeng, M. Q.; Liu, J. X.; Zhou, L.; Mendes, R. G.; Dong, Y. Q.; Zhang, M. Y.; Cui, Z. H.; Cai, Z. H.; Zhang, Z.; Zhu, D. M. et al. Bandgap tuning of two-dimensional materials by sphere diameter engineering. Nat. Mater. 2020, 19, 528–533.

[15]

Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

[16]

Li, Z. W.; Xiao, Y. D.; Gong, Y. J.; Wang, Z. P.; Kang, Y. M.; Zu, S.; Ajayan, P. M.; Nordlander, P.; Fang, Z. Y. Active light control of the MoS2 monolayer exciton binding energy. ACS Nano 2015, 9, 10158–10164.

[17]

Wan, X.; Miao, X.; Yao, J.; Wang, S.; Shao, F.; Xiao, S. Q.; Zhan, R. Z.; Chen, K.; Zeng, X. L.; Gu, X. F. et al. In situ ultrafast and patterned growth of transition metal dichalcogenides from inkjet-printed aqueous precursors. Adv. Mater. 2021, 33, 2100260.

[18]

Chang, Y. H.; Zhang, W. J.; Zhu, Y. H.; Han, Y.; Pu, J.; Chang, J. K.; Hsu, W. T.; Huang, J. K.; Hsu, C. L.; Chiu, M. H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8, 8582–8590.

[19]

Chen, M. W.; Ovchinnikov, D.; Lazar, S.; Pizzochero, M.; Whitwick, M. B.; Surrente, A.; Baranowski, M.; Sanchez, O. L.; Gillet, P.; Plochocka, P. et al. Highly oriented atomically thin ambipolar MoSe2 grown by molecular beam epitaxy. ACS Nano 2017, 11, 6355–6361.

[20]

Lu, X.; Utama, M. I. B.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S. T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett. 2014, 14, 2419–2425.

[21]

Velický, M.; Donnelly, G. E.; Hendren, W. R.; McFarland, S.; Scullion, D.; DeBenedetti, W. J. I.; Correa, G. C.; Han, Y. M.; Wain, A. J.; Hines, M. A. et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 2018, 12, 10463–10472.

[22]

Lee, H.; Koo, M.; Park, C.; Patel, M.; Han, H.; Park, T. H.; Kumar, P.; Koh, W. G.; Park, C. Zwitterion-assisted transition metal dichalcogenide nanosheets for scalable and biocompatible inkjet printing. Nano Res. 2020, 13, 2726–2734.

[23]

Poh, S. M.; Zhao, X. X.; Tan, S. J. R.; Fu, D. Y.; Fei, W. W.; Chu, L. Q.; Jiadong, D.; Zhou, W.; Pennycook, S. J.; Castro Neto, A. H. et al. Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano 2018, 12, 7562–7570.

[24]

Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

[25]

Wang, J. H.; Xu, X. Z.; Cheng, T.; Gu, L. H.; Qiao, R. X.; Liang, Z. H.; Ding, D. D.; Hong, H.; Zheng, P. M.; Zhang, Z. B. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 2022, 17, 33–38.

[26]

Wazir, N.; Zhang, M. R.; Li, L. Y.; Ji, R.; Li, Y.; Wang, Y. S.; Ma, Y.; Ullah, R.; Aziz, T.; Cheng, B. C. et al. Three-terminal photodetectors based on chemical vapor deposition-grown triangular MoSe2 flakes. FlatChem 2022, 34, 100399.

[27]

Zhang, D. Z.; Wen, C. Y.; Mcclimon, J. B.; Masih Das, P.; Zhang, Q. C.; Leone, G. A.; Mandyam, S. V.; Drndić, M.; Johnson, A. T. C.; Zhao, M. Q. Rapid growth of monolayer MoSe2 films for large-area electronics. Adv. Electron. Mater. 2021, 7, 2001219.

[28]

Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

[29]

Park, J. H.; Lu, A. Y.; Shen, P. C.; Shin, B. G.; Wang, H. Z.; Mao, N. N.; Xu, R. J.; Jung, S. J.; Ham, D.; Kern, K. et al. Synthesis of high-performance monolayer molybdenum disulfide at low temperature. Small Methods 2021, 5, 2000720.

[30]

Kim, M.; Seo, J.; Kim, J.; Moon, J. S.; Lee, J.; Kim, J. H.; Kang, J.; Park, H. High-crystalline monolayer transition metal dichalcogenides films for wafer-scale electronics. ACS Nano 2021, 15, 3038–3046.

[31]

Li, J. W.; Wang, S. P.; Li, L.; Wei, Z.; Wang, Q. Q.; Sun, H. C.; Tian, J. P.; Guo, Y. T.; Liu, J. Y.; Yu, H. et al. Chemical vapor deposition of 4 inch wafer-scale monolayer MoSe2. Small Sci. 2022, 2, 2200062.

[32]

Seol, M.; Lee, M. H.; Kim, H.; Shin, K. W.; Cho, Y.; Jeon, I.; Jeong, M.; Lee, H. I.; Park, J.; Shin, H. J. High-throughput growth of wafer-scale monolayer transition metal dichalcogenide via vertical ostwald ripening. Adv. Mater. 2020, 32, 2003542.

[33]

Zhang, X. T.; Choudhury, T. H.; Chubarov, M.; Xiang, Y.; Jariwala, B.; Zhang, F.; Alem, N.; Wang, G. C.; Robinson, J. A.; Redwing, J. M. Diffusion-controlled epitaxy of large area coalesced WSe2 monolayers on sapphire. Nano Lett. 2018, 18, 1049–1056.

[34]

Lin, Y. C.; Jariwala, B.; Bersch, B. M.; Xu, K.; Nie, Y. F.; Wang, B. M.; Eichfeld, S. M.; Zhang, X. T.; Choudhury, T. H.; Pan, Y. et al. Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 2018, 12, 965–975.

[35]

Liu, M.; Liao, J.; Liu, Y.; Li, L.; Wen, R.; Hou, T.; Ji, R.; Wang, K.; Xing, Z.; Zheng, D.; Yuan, J.; Hu, F.; Tian, Y.; Wang, X.; Zhang, Y.; Bachmatiuk, A.; Rümmeli, M. H.; Zuo, R.; Hao, Y. Periodical Ripening for MOCVD Growth of Large 2D Transition Metal Dichalcogenide Domains. Adv. Funct. Mater. 2023, 2212773.

[36]

Nguyen, V. L.; Shin, B. G.; Duong, D. L.; Kim, S. T.; Perello, D.; Lim, Y. J.; Yuan, Q. H.; Ding, F.; Jeong, H. Y.; Shin, H. S. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 2015, 27, 1376–1382.

[37]

Yang, P. F.; Zhang, S. Q.; Pan, S. Y.; Tang, B.; Liang, Y.; Zhao, X. X.; Zhang, Z. P.; Shi, J. P.; Huan, Y. H.; Shi, Y. P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au (111). ACS Nano 2020, 14, 5036–5045.

[38]

Chubarov, M.; Choudhury, T. H.; Hickey, D. R.; Bachu, S.; Zhang, T. Y.; Sebastian, A.; Bansal, A.; Zhu, H. Y.; Trainor, N.; Das, S. et al. Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 2021, 15, 2532–2541.

[39]

Chen, L.; Liu, B. L.; Ge, M. Y.; Ma, Y. Q.; Abbas, A. N.; Zhou, C. W. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano 2015, 9, 8368–8375.

[40]

Liu, L.; Li, T. T.; Ma, L.; Li, W. S.; Gao, S.; Sun, W. J.; Dong, R. K.; Zou, X. L.; Fan, D. X.; Shao, L. W. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 2022, 605, 69–75.

[41]

Kim, H.; Mattevi, C.; Calvo, M. R.; Oberg, J. C.; Artiglia, L.; Agnoli, S.; Hirjibehedin, C. F.; Chhowalla, M.; Saiz, E. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 2012, 6, 3614–3623.

[42]

Wan, Y.; Fu, J. H.; Chuu, C. P.; Tung, V.; Shi, Y. M.; Li, L. J. Wafer-scale single-orientation 2D layers by atomic edge-guided epitaxial growth. Chem. Soc. Rev. 2022, 51, 803–811.

[43]

Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

[44]

Li, Y.; Zhang, K. L.; Wang, F.; Feng, Y. L.; Li, Y.; Han, Y. M.; Tang, D. X.; Zhang, B. J. Scalable synthesis of highly crystalline MoSe2 and its ambipolar behavior. ACS Appl. Mater. Interfaces 2017, 9, 36009–36016.

[45]

Liu, E. F.; Van Baren, J.; Lu, Z. G.; Taniguchi, T.; Watanabe, K.; Smirnov, D.; Chang, Y. C.; Lui, C. H. Exciton-polaron rydberg states in monolayer MoSe2 and WSe2. Nat. Commun. 2021, 12, 6131.

[46]

Wang, Y. L.; Cong, C. X.; Qiu, C. Y.; Yu, T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 2013, 9, 2857–2861.

[47]

Ye, G. L.; Gong, Y. J.; Lin, J. H.; Li, B.; He, Y. M.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2016, 16, 1097–1103.

[48]

Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged and free excitons. Sci. Rep. 2013, 3, 2657.

[49]

Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.

[50]

Pacuski, W.; Grzeszczyk, M.; Nogajewski, K.; Bogucki, A.; Oreszczuk, K.; Kucharek, J.; Połczyńska, K. E.; Seredyński, B.; Rodek, A.; Bożek, R. et al. Narrow excitonic lines and large-scale homogeneity of transition-metal dichalcogenide monolayers grown by molecular beam epitaxy on hexagonal boron nitride. Nano Lett. 2020, 20, 3058–3066.

[51]

Singh, A.; Moody, G.; Wu, S. F.; Wu, Y. W.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Xu, X. D.; Li, X. Q. Coherent electronic coupling in atomically thin MoSe2. Phys. Rev. Lett. 2014, 112, 216804.

[52]

Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

File
12274_2023_5560_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 December 2022
Revised: 30 January 2023
Accepted: 09 February 2023
Published: 10 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We thank Yuefeng Nie and Haoying Sun for technical help. This work was supported by the National Key Research and Development Project (Nos. 2018YFA0305800, 2019YFB2205402, and 2022YFA1404201), the National Natural Science Foundation of China (Nos. 51772145, 62222509, and U22A2091), and the Technology Innovation Fund of Nanjing University.

Return