Journal Home > Volume 16 , Issue 7

Delivering light to the nanoscale using a flexible and easily integrated fiber platform holds potential in various fields of quantum science and bioscience. However, rigorous optical alignment, sophisticated fabrication process, and low spatial resolution of the fiber-based nanoconcentrators limit the practical applications. Here, a broadband azimuthal plasmon interference nanofocusing technique on a fiber-coupled spiral tip is demonstrated for fiber-based near-field optical nanoimaging. The spiral plasmonic fiber tip fabricated through a robust and reproducible process can reverse the polarization and modulate the mode field of the surface plasmon polaritons in three-dimensionally azimuthal direction, resulting in polarization-insensitive, broad-bandwidth, and azimuthal interference nanofocusing. By integrating this with a basic scanning near-field optical microscopy, a high optical resolution of 31 nm and beyond is realized. The high performance and the easy incorporation with various existing measurement platforms offered by this fiber-based nanofocusing technique have great potential in near-field optics, tip-enhanced Raman spectroscopy, nonlinear spectroscopy, and quantum sensing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polarization-insensitive plasmon nanofocusing with broadband interference modulation for optical nanoimaging

Show Author's information Shaobo Li1Fei Wang1Ze Zhang1Shuhao Zhao1Chengsheng Xia1Peirui Ji1Xiaomin Wang1Guofeng Zhang1Tao Liu1Feng Chen2Shuming Yang1( )
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Delivering light to the nanoscale using a flexible and easily integrated fiber platform holds potential in various fields of quantum science and bioscience. However, rigorous optical alignment, sophisticated fabrication process, and low spatial resolution of the fiber-based nanoconcentrators limit the practical applications. Here, a broadband azimuthal plasmon interference nanofocusing technique on a fiber-coupled spiral tip is demonstrated for fiber-based near-field optical nanoimaging. The spiral plasmonic fiber tip fabricated through a robust and reproducible process can reverse the polarization and modulate the mode field of the surface plasmon polaritons in three-dimensionally azimuthal direction, resulting in polarization-insensitive, broad-bandwidth, and azimuthal interference nanofocusing. By integrating this with a basic scanning near-field optical microscopy, a high optical resolution of 31 nm and beyond is realized. The high performance and the easy incorporation with various existing measurement platforms offered by this fiber-based nanofocusing technique have great potential in near-field optics, tip-enhanced Raman spectroscopy, nonlinear spectroscopy, and quantum sensing.

Keywords: near-field scanning optical microscopy, azimuthal asymmetries, plasmonic nanoconcentrator, fiber-based plasmonic tip

References(40)

[1]

Tuniz, A.; Schmidt, M. A. Interfacing optical fibers with plasmonic nanoconcentrators. Nanophotonics 2018, 7, 1279–1298.

[2]

Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.

[3]

Gramotnev, D. K.; Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91.

[4]

Kawata, S.; Inouye, Y.; Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics 2009, 3, 388–394.

[5]

Lee, S. Y.; Kim, K.; Kim, S. J.; Park, H.; Kim, K. Y.; Lee, B. Plasmonic meta-slit: Shaping and controlling near-field focus. Optica 2015, 2, 6–13.

[6]

Tai, Y. H.; Wei, P. K. Sensitive liquid refractive index sensors using tapered optical fiber tips. Opt. Lett. 2010, 35, 944–946.

[7]

Qiao, Z.; Xue, M. F.; Zhao, Y. Q.; Huang, Y. D.; Zhang, M.; Chang, C.; Chen, J. N. Infrared nanoimaging of nanoscale sliding dislocation of collagen fibrils. Nano Res. 2022, 15, 2355–2361.

[8]

Umakoshi, T.; Tanaka, M.; Saito, Y.; Verma, P. White nanolight source for optical nanoimaging. Sci. Adv. 2020, 6, 4179.

[9]

Wang, F.; Yang, S. M.; Li, S. B.; Zhao, S. H.; Cheng, B. Y.; Xia, C. S. High resolution and high signal-to-noise ratio imaging with near-field high-order optical signals. Nano Res. 2022, 15, 8345–8350.

[10]

Chen, C.; Hayazawa, N.; Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 2014, 5, 3312.

[11]

Jiang, S.; Zhang, Y.; Zhang, R.; Hu, C. R.; Liao, M. H.; Luo, Y.; Yang, J. L.; Dong, Z. C.; Hou, J. G. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat. Nanotechnol. 2015, 10, 865–869.

[12]

Wang, H. L.; You, E. M.; Panneerselvam, R.; Ding, S. Y.; Tian, Z. Q. Advances of surface-enhanced Raman and IR spectroscopies: From nano/microstructures to macro-optical design. Light: Sci. Appl. 2021, 10, 161.

[13]

Kravtsov, V.; Ulbricht, R.; Atkin, J. M.; Raschke, M. B. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 2016, 11, 459–464.

[14]

Tuniz, A.; Bickerton, O.; Diaz, F. J.; Käsebier, T.; Kley, E. B.; Kroker, S.; Palomba, S.; De Sterke, C. M. Modular nonlinear hybrid plasmonic circuit. Nat. Commun. 2020, 11, 2413.

[15]

Bertoncini, A.; Liberale, C. 3D printed waveguides based on photonic crystal fiber designs for complex fiber-end photonic devices. Optica 2020, 7, 1487–1494.

[16]

Liu, X. J.; Wu, Y. K.; Qi, X. Z.; Lu, L.; Li, M.; Zou, C. L.; Ren, S. Y.; Guo, G. P.; Guo, G. C.; Zhu, W. G. et al. Near-field modulation of differently oriented single photon emitters with a plasmonic probe. Nano Lett. 2022, 22, 2244–2250.

[17]

Xu, D.; Xiong, X.; Wu, L.; Ren, X. F.; Png, C. E.; Guo, G. C.; Gong, Q. H.; Xiao, Y. F. Quantum plasmonics: New opportunity in fundamental and applied photonics. Adv. Opt. Photon. 2018, 10, 703–756.

[18]

Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 2004, 93, 137404.

[19]

Janunts, N. A.; Baghdasaryan, K. S.; Nerkararyan, K. V.; Hecht, B. Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Opt. Commun. 2005, 253, 118–124.

[20]

Kumar, S.; Park, H.; Cho, H.; Siddique, R. H.; Narasimhan, V.; Yang, D.; Choo, H. Overcoming evanescent field decay using 3D-tapered nanocavities for on-chip targeted molecular analysis. Nat. Commun. 2020, 11, 2930.

[21]

Hou, Y. P.; Ma, C. F.; Wang, W. T.; Chen, Y. H. A dual-use probe for nano-metric photoelectric characterization using a confined light field generated by photonic crystals in the cantilever. Nano Res. 2021, 14, 3848–3853.

[22]

Tuniz, A.; Chemnitz, M.; Dellith, J.; Weidlich, S.; Schmidt, M. A. Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber. Nano Lett. 2017, 17, 631–637.

[23]

Li, S. B.; Yang, S. M. Nanofocusing of a novel plasmonic fiber tip coupling with nanograting resonance. J. Phys. D Appl. Phys. 2020, 53, 215102.

[24]

Tugchin, B. N.; Janunts, N.; Klein, A. E.; Steinert, M.; Fasold, S.; Diziain, S.; Sison, M.; Kley, E. B.; Tünnermann, A.; Pertsch, T. Plasmonic tip based on excitation of radially polarized conical surface Plasmon polariton for detecting longitudinal and transversal fields. ACS Photonics 2015, 2, 1468–1475.

[25]

Liu, M.; Lu, F. F.; Zhang, W. D.; Huang, L. G.; Liang, S. H.; Mao, D.; Gao, F.; Mei, T.; Zhao, J. L. Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach. Nanophotonics 2019, 8, 921–929.

[26]

Bao, W.; Melli, M.; Caselli, N.; Riboli, F.; Wiersma, D. S.; Staffaroni, M.; Choo, H.; Ogletree, D. F.; Aloni, S.; Bokor, J. et al. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 2012, 338, 1317–1321.

[27]

Choo, H.; Kim, M. K.; Staffaroni, M.; Seok, T. J.; Bokor, J.; Cabrini, S.; Schuck, P. J.; Wu, M. C.; Yablonovitch, E. Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photonics 2012, 6, 838–844.

[28]

Kim, S.; Yu, N.; Ma, X. Z.; Zhu, Y. Z.; Liu, Q. S.; Liu, M.; Yan, R. X. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nat. Photonics 2019, 13, 636–643.

[29]

Wu, Y. K.; Lu, L.; Chen, Y.; Feng, L. T.; Qi, X. Z.; Ren, H. L.; Guo, G. C.; Ren, X. F. Excitation and analyzation of different surface Plasmon modes on a suspended Ag nanowire. Nanoscale 2019, 11, 22475–22481.

[30]

Kihm, H. W.; Kim, J.; Koo, S.; Ahn, J.; Ahn, K.; Lee, K.; Park, N.; Kim, D. S. Optical magnetic field mapping using a subwavelength aperture. Opt. Express 2013, 21, 5625–5633.

[31]

Hecht, B.; Sick, B.; Wild, U. P.; Deckert, V.; Zenobi, R.; Martin, O. J. F.; Pohl, D. W. Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. J. Chem. Phys. 2000, 112, 7761–7774.

[32]

Lindquist, N. C.; Nagpal, P.; Lesuffleur, A.; Norris, D. J.; Oh, S. H. Three-dimensional plasmonic nanofocusing. Nano Lett. 2010, 10, 1369–1373.

[33]

Cherukulappurath, S.; Johnson, T. W.; Lindquist, N. C.; Oh, S. H. Template-stripped asymmetric metallic pyramids for tunable plasmonic nanofocusing. Nano Lett. 2013, 13, 5635–5641.

[34]

Lotito, V.; Sennhauser, U.; Hafner, C.; Bona, G. L. Fully metal-coated scanning near-field optical microscopy probes with spiral corrugations for superfocusing under arbitrarily oriented linearly polarised excitation. Plasmonics 2011, 6, 327–336.

[35]

Li, J. F.; Mu, J. J.; Wang, B. L.; Ding, W.; Liu, J.; Guo, H. L.; Li, W. X.; Gu, C. Z.; Li, Z. Y. Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing. Laser Photon. Rev. 2014, 8, 602–609.

[36]

Li, S. B.; Yang, S. M.; Wang, F.; Liu, Q.; Cheng, B. Y.; Rosenwaks, Y. Plasmonic interference modulation for broadband nanofocusing. Nanophotonics 2021, 10, 4113–4123.

[37]

Becker, S. F.; Esmann, M.; Yoo, K.; Gross, P.; Vogelgesang, R.; Park, N.; Lienau, C. Gap-plasmon-enhanced nanofocusing near-field microscopy. ACS Photonics 2016, 3, 223–232.

[38]

Sadiq, D.; Shirdel, J.; Lee, J. S.; Selishcheva, E.; Park, N.; Lienau, C. Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles. Nano Lett. 2011, 11, 1609–1613.

[39]

Ropers, C.; Neacsu, C. C.; Elsaesser, T.; Albrecht, M.; Raschke, M. B.; Lienau, C. Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source. Nano Lett. 2007, 7, 2784–2788.

[40]

Neacsu, C. C.; Berweger, S.; Olmon, R. L.; Saraf, L. V.; Ropers, C.; Raschke, M. B. Near-field localization in plasmonic superfocusing: A nanoemitter on a tip. Nano Lett. 2010, 10, 592–596.

File
12274_2023_5525_MOESM1_ESM.pdf (535.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 November 2022
Revised: 06 January 2023
Accepted: 22 January 2023
Published: 14 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors would like to acknowledge the support by the National Science Fund for Distinguished Young Scholars (No. 52225507), the National Key Research and Development Program of China (No. 2021YFF0700402), and the Key Research and Development Program of Shaanxi Province (No. 2021GXLH-Z-029).

Return