Journal Home > Volume 16 , Issue 7

Atomic-thick two-dimensional (2D) graphene oxide (GO) has emerged as an ideal building block in developing ultrathin 2D membranes for separating substances. However, due to the negative charge of GO sheets when hydrated, electrostatic repulsion causes GO membranes to disintegrate easily in water, limiting their wide application in aqueous solutions. Here, we introduce and apply the concept of localized gluing by designing ultra-small supramolecular-assembled nanoparticles as nano-adhesives (NPA) to construct robust GO membranes with a thickness of only 24 nm. The supramolecular-assembled NPA were synthesized by cyclodextrin (CD) and tannic acid (TA) with a uniform size distribution of about 4.5 nm, and exposed surface pyrogallols that could strongly interact with GO sheets. The physical sizing of the NPA confines the interlayer spacing and maintains the nanochannel, while the natural molecular properties of the NPA enhance the connection between adjacent layers and inhibit swelling detachment. The fabricated ultrathin 2D membranes show a remarkable two times enhancement of water permeance over pristine GO membranes and exhibit excellent durability with record-breaking stability for 720 h immersion in water. This strategy provides meaningful insights into the design and fabrication of robust ultrathin membranes for practical application.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Constructing 2D ultrathin graphene oxide membranes with supramolecular-assembled nano-adhesives for enhancing water stability

Show Author's information Wei Liu1,§Yuan Li1,§Rujing Li1Hui Xu1Xinling Lu1Weibing Dong2Zhen Zhang1( )Yong Wang1( )
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
School of chemistry and chemical engineering, Qinghai Nationalities University, Xining 810007, China

§ Wei Liu and Yuan Li contributed equally to this work.

Abstract

Atomic-thick two-dimensional (2D) graphene oxide (GO) has emerged as an ideal building block in developing ultrathin 2D membranes for separating substances. However, due to the negative charge of GO sheets when hydrated, electrostatic repulsion causes GO membranes to disintegrate easily in water, limiting their wide application in aqueous solutions. Here, we introduce and apply the concept of localized gluing by designing ultra-small supramolecular-assembled nanoparticles as nano-adhesives (NPA) to construct robust GO membranes with a thickness of only 24 nm. The supramolecular-assembled NPA were synthesized by cyclodextrin (CD) and tannic acid (TA) with a uniform size distribution of about 4.5 nm, and exposed surface pyrogallols that could strongly interact with GO sheets. The physical sizing of the NPA confines the interlayer spacing and maintains the nanochannel, while the natural molecular properties of the NPA enhance the connection between adjacent layers and inhibit swelling detachment. The fabricated ultrathin 2D membranes show a remarkable two times enhancement of water permeance over pristine GO membranes and exhibit excellent durability with record-breaking stability for 720 h immersion in water. This strategy provides meaningful insights into the design and fabrication of robust ultrathin membranes for practical application.

Keywords: aqueous stability, water purification, supramolecular assembly, graphene oxide membranes, nano-adhesives

References(40)

[1]

You, X. D.; Wu, H.; Zhang, R. N.; Su, Y. L.; Cao, L.; Yu, Q. Q.; Yuan, J. Q.; Xiao, K.; He, M. R.; Jiang, Z. Y. Metal-coordinated sub-10 nm membranes for water purification. Nat. Commun. 2019, 10, 4160.

[2]

Deng, Y.; Wang, Y.; Di, Z. C.; Xie, M. S.; Dai, F. F.; Zhan, S. Q.; Zhang, Z. Confining metal-organic framework in the pore of covalent organic framework: A microscale Z-scheme system for boosting photocatalytic performance. Small Methods 2022, 6, 2200265.

[3]

Kim, H. W.; Yoon, H. W.; Yoon, S. M.; Yoo, B. M.; Ahn, B. K.; Cho, Y. H.; Shin, H. J.; Yang, H.; Paik, U.; Kwon, S. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 2013, 342, 91–95.

[4]

Liu, G. P.; Jin, W. Q.; Xu, N. P. Two-dimensional-material membranes: A new family of high-performance separation membranes. Angew. Chem., Int. Ed. 2016, 55, 13384–13397.

[5]

Wan, S. J.; Li, X.; Wang, Y. L.; Chen, Y.; Xie, X.; Yang, R.; Tomsia, A. P.; Jiang, L.; Cheng, Q. F. Strong sequentially bridged MXene sheets. Proc. Natl. Acad. Sci. USA 2020, 117, 27154–27161.

[6]

Mi, B. Graphene oxide membranes for ionic and molecular sieving. Science 2014, 343, 740–742.

[7]

Li, Y. H.; Jiao, J.; Wu, Q. D.; Song, Q.; Xie, W. C.; Liu, B. C. Environmental applications of graphene oxide composite membranes. Chin. Chem. Lett. 2022, 33, 5001–5012.

[8]

Yeh, C. N.; Raidongia, K.; Shao, J. J.; Yang, Q. H.; Huang, J. X. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 2015, 7, 166–170.

[9]

Zhang, M. C.; Mao, Y. Y.; Liu, G. Z.; Liu, G. P.; Fan, Y. Q.; Jin, W. Q. Molecular bridges stabilize graphene oxide membranes in water. Angew. Chem., Int. Ed. 2020, 59, 1689–1695.

[10]

Wang, Y.; Li, T.; Ma, P. M.; Zhang, S. W.; Zhang, H. J.; Du, M. L.; Xie, Y.; Chen, M. Q.; Dong, W. F.; Ming, W. H. Artificial nacre from supramolecular assembly of graphene oxide. ACS Nano 2018, 12, 6228–6235.

[11]

Wan, S. J.; Li, X.; Chen, Y.; Liu, N. N.; Du, Y.; Dou, S. X.; Jiang, L.; Cheng, Q. F. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99.

[12]

Tu, W. W.; Liu, Y. C.; Chen, M. Y.; Ma, L. L.; Li, L. L.; Yang, B. A mussel-induced approach to secondary functional cross-linking 3-aminopropytriethoxysilane to modify the graphene oxide membrane for wastewater purification. Chin. Chem. Lett. 2023, 34, 107322.

[13]

Lan, Q. Q.; Feng, C.; Wang, Z. C.; Li, L.; Wang, Y.; Liu, T. X. Chemically laminating graphene oxide nanosheets with phenolic nanomeshes for robust membranes with fast desalination. Nano Lett. 2021, 21, 8236–8243.

[14]

Long, Q. W.; Zhao, S. F.; Chen, J. X.; Zhang, Z.; Qi, G. X.; Liu, Z. Q. Self-assembly enabled nano-intercalation for stable high-performance MXene membranes. J. Membr. Sci. 2021, 635, 119464.

[15]

Zhong, W. M.; Zhang, Y. Y.; Zhao, L.; Li, W. B. Highly stable and antifouling graphene oxide membranes prepared by bio-inspired modification for water purification. Chin. Chem. Lett. 2020, 31, 2651–2656.

[16]

Liu, T. Q.; Li, Z.; Zhang, X.; Tan, H. X.; Chen, Z.; Wu, J. S.; Chen, J.; Qiu, H. D. Metal-organic framework-intercalated graphene oxide membranes for selective separation of uranium. Anal. Chem. 2021, 93, 16175–16183.

[17]

Zhu, L. S.; Guo, X. X.; Chen, Y. Q.; Chen, Z.; Lan, Y. H.; Hong, Y. B.; Lan, W. G. Graphene oxide composite membranes for water purification. ACS Appl. Nano Mater. 2022, 5, 3643–3653.

[18]

Zhang, Y. F.; Xu, Z. H.; Zhang, T. T.; Meng, Q.; Zhang, X.; Shen, C.; Lu, Y. H.; Zhang, G. L.; Gao, C. J. Self-assembly of robust graphene oxide membranes with chirality for highly stable and selective molecular separation. J. Mater. Chem. A 2020, 8, 16985–16993.

[19]

Liu, W.; Li, Y.; Xu, L. L.; Wang, G.; Ma, X. F.; Wang, Y. Biomimic heterostructured graphene oxide membranes via supramolecular-mediated intercalation assembly for efficient water transport. Small 2022, 18, 2200461.

[20]

Shen, G. Z.; Xing, R. R.; Zhang, N.; Chen, C. J.; Ma, G. H.; Yan, X. H. Interfacial cohesion and assembly of bioadhesive molecules for design of long-term stable hydrophobic nanodrugs toward effective anticancer therapy. ACS Nano 2016, 10, 5720–5729.

[21]

Lei, Y. D.; Tang, Z. H.; Liao, R. J.; Guo, B. C. Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide. Green Chem. 2011, 13, 1655–1658.

[22]

Zeng, T.; Zhang, X. L.; Guo, Y. Y.; Niu, H. Y.; Cai, Y. Q. Enhanced catalytic application of Au@polyphenol-metal nanocomposites synthesized by a facile and green method. J. Mater. Chem. A 2014, 2, 14807–14811.

[23]

Guan, K. C.; Jia, Y. D.; Lin, Y. Q.; Wang, S. Y.; Matsuyama, H. Chemically converted graphene nanosheets for the construction of ion-exclusion nanochannel membranes. Nano Lett. 2021, 21, 3495–3502.

[24]

Li, Q. J.; Wang, D. D.; Fang, X.; Wang, X. Y.; Mao, S.; Ostrikov, K. Function-targeted lanthanide-anchored polyoxometalate-cyclodextrin assembly: Discriminative sensing of inorganic phosphate and organophosphate. Adv. Funct. Mater. 2021, 31, 2104572.

[25]

Wan, J.; Fan, B.; Putera, K.; Kim, J.; Banaszak Holl, M. M.; Thang, S. H. Polymerization-induced hierarchical self-assembly: From monomer to complex colloidal molecules and beyond. ACS Nano 2021, 15, 13721–13731.

[26]

Zhang, Z. M.; Wu, H.; Li, Y.; Liu, Y.; Cao, C. L.; Wang, H. J.; Wang, M. D.; Pan, F. S.; Jiang, Z. Y. Heterostructured graphene oxide membranes with tunable water-capture coatings for highly selective water permeation. J. Mater. Chem. A 2021, 9, 7903–7912.

[27]

Thebo, K. H.; Qian, X. T.; Zhang, Q.; Chen, L.; Cheng, H. M.; Ren, W. C. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 2018, 9, 1486.

[28]

Wu, H. Q.; Sun, H. Z.; Hong, W. J.; Mao, L.; Liu, Y. J. Improvement of polyamide thin film nanocomposite membrane assisted by tannic acid-FeIII functionalized multiwall carbon nanotubes. ACS Appl. Mater. Interfaces 2017, 9, 32255–32263.

[29]

Luo, J.; Lai, J. P.; Zhang, N.; Liu, Y. B.; Liu, R.; Liu, X. Y. Tannic acid induced self-assembly of three-dimensional graphene with good adsorption and antibacterial properties. ACS Sustainable Chem. Eng. 2016, 4, 1404–1413.

[30]

Tang, C. Y.; Yu, P.; Tang, L. S.; Wang, Q. Y.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Tannic acid functionalized graphene hydrogel for organic dye adsorption. Ecotoxicol. Environ. Safe. 2018, 165, 299–306.

[31]

Liu, J. C.; Wang, N.; Yu, L. J.; Karton, A.; Li, W.; Zhang, W. X.; Guo, F. Y.; Hou, L. L.; Cheng, Q. F.; Jiang, L. et al. Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nat. Commun. 2017, 8, 2011.

[32]

Tu, W. W.; Liu, Y. C.; Chen, M. Y.; Ma, L. L.; Li, L. L.; Yang, B. Photocatalytic self-cleaning graphene oxide membrane coupled with carbon nitride and Ti3C2-MXene for enhanced wastewater purification. Sep. Purif. Technol. 2022, 296, 121398.

[33]

Zhang, W. B.; Shi, M. Q.; Heng, Z. X.; Zhang, W. M.; Pan, B. C. Soft particles enable fast and selective water transport through graphene oxide membranes. Nano Lett. 2020, 20, 7327–7332.

[34]

Liu, W.; Li, R. J.; Liu, J.; Ma, X. F.; Xiao, Y.; Wang, Y. Nacre-like ultra-robust supramolecular-functionalized graphene oxide membrane for bifunctional separation. Carbon. 2021, 184, 618–626.

[35]

Zheng, J. X.; Wang, R.; Ye, Q. S.; Chen, B. L.; Zhu, X. Y. Multilayered graphene oxide membrane with precisely controlled interlayer spacing for separation of molecules with very close molecular weights. J. Membr. Sci. 2022, 657, 120678.

[36]

Tian, L.; Graham, N.; Liu, T.; Sun, K. N.; Yu, W. Z. Dual-site supported graphene oxide membrane with enhanced permeability and selectivity. J. Membr. Sci. 2022, 646, 120223.

[37]

Zhang, W. H.; Yin, M. J.; Jin, C. G.; Liu, Z. J.; Wang, N. X.; An, Q. F. Ice-crystal templating approach for tailoring mass transfer channels in graphene oxide membranes for high-performance dye/salt separation. Carbon 2021, 183, 119–127.

[38]

Yu, H.; He, Y.; Xiao, G. Q.; Li, H. J.; Mei, X.; Cheng, Y. F.; Zhong, F.; Zhou, L.; Ou, J. Z. Intercalation of soft PPy polymeric nanoparticles in graphene oxide membrane for enhancing nanofiltration performances. Sep. Purif. Technol. 2021, 272, 118933.

[39]

Hu, J. Y.; Li, M.; Wang, L. J.; Zhang, X. Polymer brush-modified graphene oxide membrane with excellent structural stability for effective fractionation of textile wastewater. J. Membr. Sci. 2021, 618, 118698.

[40]

El Meragawi, S.; Akbari, A.; Hernandez, S.; Mirshekarloo, M. S.; Bhattacharyya, D.; Tanksale, A.; Majumder, M. Enhanced permselective separation of per-fluorooctanoic acid in graphene oxide membranes by a simple PEI modification. J. Mater. Chem. A 2020, 8, 24800–24811.

File
12274_2023_5524_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 November 2022
Revised: 13 January 2023
Accepted: 22 January 2023
Published: 02 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially funded by the National Key Research and Development Program of China (No. 2019YFC1905500) and the National Natural Science Foundation of China (Nos. 21922409 and 22274109).

Return