Journal Home > Volume 16 , Issue 7

As intelligent wearable devices, they will inevitably be subjected to various damages and disturbances from the external environment during daily use. Therefore, it is urgent to develop safeguarding materials with multiple protective properties. Herein, this work developed a flexible and breathable three-dimensional (3D) porous shear stiffening elastomer (SSE)/MXene (M-SSE) foam with impact/electromagnetic interference (EMI)/bacteria multiple protection performance for intelligent wearable devices. The continuous conductive MXene network in the 3D SSE porous structure made M-SSE foam exhibit excellent electromagnetic interference shielding property with a high shielding effectiveness of 34 dB. Attributed to the shear stiffening effect of porous SSE matrix, M-SSE foam possessed unique anti-impact and protection properties. The energy dissipation rate reached up to more than 85%, illustrating M-SSE foam could effectively attenuate the external impact force and absorb the impact energy. Inherited from the excellent photothermal performance of MXene, M-SSE foam achieved a considerable saturated temperature of 98 °C under 0.57 W/cm2 laser power. Therefore, M-SSE foam showed extraordinary antimicrobial property for Staphylococcus aureus according to the principle of photothermal sterilization. Finally, for the development of intelligent wearable devices, conductive M-SSE foam could be used as an intelligent sensor to monitor various human movements owing to the highly sensitive property. This work greatly expanded the application prospect of multifunctional protective materials in various complex environments and promoted the development of multifunctional smart wearable devices in protection field.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible and breathable 3D porous SSE/MXene foam towards impact/electromagnetic interference/bacteria multiple protection performance for intelligent wearable devices

Show Author's information Min Sang1Shuai Liu1Jianpeng Wu1Xinyi Wang1Junshuo Zhang1Yunqi Xu1Yu Wang1Jun Li3Ji Li3Shouhu Xuan1,2( )Xinglong Gong1,2( )
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
Anhui Weiwei Rubber Parts Group Co., Ltd., Tongcheng 231460, China

Abstract

As intelligent wearable devices, they will inevitably be subjected to various damages and disturbances from the external environment during daily use. Therefore, it is urgent to develop safeguarding materials with multiple protective properties. Herein, this work developed a flexible and breathable three-dimensional (3D) porous shear stiffening elastomer (SSE)/MXene (M-SSE) foam with impact/electromagnetic interference (EMI)/bacteria multiple protection performance for intelligent wearable devices. The continuous conductive MXene network in the 3D SSE porous structure made M-SSE foam exhibit excellent electromagnetic interference shielding property with a high shielding effectiveness of 34 dB. Attributed to the shear stiffening effect of porous SSE matrix, M-SSE foam possessed unique anti-impact and protection properties. The energy dissipation rate reached up to more than 85%, illustrating M-SSE foam could effectively attenuate the external impact force and absorb the impact energy. Inherited from the excellent photothermal performance of MXene, M-SSE foam achieved a considerable saturated temperature of 98 °C under 0.57 W/cm2 laser power. Therefore, M-SSE foam showed extraordinary antimicrobial property for Staphylococcus aureus according to the principle of photothermal sterilization. Finally, for the development of intelligent wearable devices, conductive M-SSE foam could be used as an intelligent sensor to monitor various human movements owing to the highly sensitive property. This work greatly expanded the application prospect of multifunctional protective materials in various complex environments and promoted the development of multifunctional smart wearable devices in protection field.

Keywords: MXene, electromagnetic interference shielding, antibacterial property, three-dimensional (3D) porous foam, impact resistance, intelligent wearable device

References(36)

[1]

Chen, G. R.; Xiao, X.; Zhao, X.; Tat, T.; Bick, M.; Chen, J. Electronic textiles for wearable point-of-care systems. Chem. Rev. 2022, 122, 3259–3291.

[2]

Zhou, Y. H.; Zhao, X.; Xu, J.; Fang, Y. S.; Chen, G. R.; Song, Y.; Li, S.; Chen, J. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 2021, 20, 1670–1676.

[3]

Libanori, A.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156.

[4]

Ma, M.; Tao, W. T.; Liao, X. J.; Chen, S.; Shi, Y. Q.; He, H. W.; Wang, X. Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding. Chem. Eng. J. 2023, 452, 139471.

[5]

Jiang, X. Y.; Zhao, Z. X.; Zhou, S. T.; Zou, H. W.; Liu, P. B. Anisotropic and lightweight carbon/graphene composite aerogels for efficient thermal insulation and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2022, 14, 45844–45852.

[6]

Zhou, B.; Song, J. Z.; Wang, B.; Feng, Y. Z.; Liu, C. T.; Shen, C. Y. Robust double-layered ANF/MXene-PEDOT: PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties. Nano Res. 2022, 15, 9520–9530.

[7]

Lee, J. H.; Kim, Y. S.; Ru, H. J.; Lee, S. Y.; Park, S. J. Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for absorption-dominated electromagnetic interference shielding. Nanomicro Lett. 2022, 14, 188.

[8]

Qu, Y. F.; Li, X.; Wang, X.; Dai, H. Q. Multifunctional AgNWs@MXene/AgNFs electromagnetic shielding composites for flexible and highly integrated advanced electronics. Compos. Sci. Technol. 2022, 230, 109753.

[9]

Xie, Z. X.; Cai, Y. F.; Wei, Z. J.; Zhan, Y. H.; Meng, Y. Y.; Li, Y. C.; Li, Y. K.; Xie, Q.; Xia, H. S. Robust and self-healing polydimethylsiloxane/carbon nanotube foams for electromagnetic interference shielding and thermal insulation. Compos. Commun. 2022, 35, 101323.

[10]

Zhang, Y.; Xu, M. K.; Wang, Z. G.; Zhao, T. Y.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 2022, 15, 4916–4924.

[11]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[12]

Cheng, M. L.; Ying, M. F.; Zhao, R. Z.; Ji, L. Z.; Li, H. X.; Liu, X. G.; Zhang, J.; Li, Y. X.; Dong, X. L.; Zhang, X. F. Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 2022, 16, 16996–17007.

[13]

Zhao, B.; Ma, Z. L.; Sun, Y. Y.; Han, Y. X.; Gu, J. W. Flexible and robust Ti3C2Tx/(ANF@FeNi) composite films with outstanding electromagnetic interference shielding and electrothermal conversion performances. Small Struct. 2022, 3, 2200162.

[14]

Zong, H.; Liu, Z. P.; Wei, R. B.; Dong, B.; Yang, X. J.; Zhai, W. Shear thicking and impact resistance properties of STG in flexible protection application. J. Phys. Conf. Ser. 2021, 1855, 012022.

[15]

Wang, S.; Gong, L. P.; Shang, Z. J.; Ding, L.; Yin, G. S.; Jiang, W. Q.; Gong, X. L.; Xuan, S. H. Novel safeguarding tactile e-skins for monitoring human motion based on SST/PDMS-AgNW-PET hybrid structures. Adv. Funct. Mater. 2018, 28, 1707538.

[16]

Yuan, F.; Wang, S.; Zhang, S. S.; Wang, Y.; Xuan, S. H.; Gong, X. L. A flexible viscoelastic coupling cable with self-adapted electrical properties and anti-impact performance toward shapeable electronic devices. J. Mater. Chem. C 2019, 7, 8412–8422.

[17]

Katiyar, A.; Nandi, T.; Prasad, N. E. Impact behavior of aminosilane functionalized nanosilica based shear thickening fluid impregnated Kevlar fabrics. J. Appl. Polym. Sci. 2021, 138, 50862.

[18]

Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z. L.; Ferreira, M. S.; Möbius, M. E. et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 2016, 354, 1257–1260.

[19]

Wang, S.; Ding, L.; Wang, Y.; Gong, X. L. Multifunctional triboelectric nanogenerator towards impact energy harvesting and safeguards. Nano Energy 2019, 59, 434–442.

[20]

Gao, Y. J.; Dong, Y. H.; Yang, S. T.; Mo, A. C.; Zeng, X.; Chen, Q. M.; Peng, Q. Size-dependent photothermal antibacterial activity of Ti3C2Tx MXene nanosheets against methicillin-resistant Staphylococcus aureus. J. Colloid Interface Sci. 2022, 617, 533–541.

[21]

Yan, B. B.; Zhou, M.; Liao, X. T.; Wang, P.; Yu, Y. Y.; Yuan, J. G.; Wang, Q. Developing a multifunctional silk fabric with dual-driven heating and rapid photothermal antibacterial abilities using high-yield MXene dispersions. ACS Appl. Mater. Interfaces 2021, 13, 43414–43425.

[22]

Chao, M. Y.; He, L. Z.; Gong, M.; Li, N.; Li, X. B.; Peng, L. F.; Shi, F.; Zhang, L. Q.; Wan, P. B. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 2021, 15, 9746–9758.

[23]

Wang, Y. G.; Chao, M. Y.; Wan, P. B.; Zhang, L. Q. A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring. Nano Energy 2020, 70, 104560.

[24]

Sang, M.; Wu, Y. X.; Liu, S.; Bai, L. F.; Wang, S.; Jiang, W. Q.; Gong, X. L.; Xuan, S. H. Flexible and lightweight melamine sponge/MXene/polyborosiloxane (MSMP) hybrid structure for high-performance electromagnetic interference shielding and anti-impact safe-guarding. Compos. B: Eng. 2021, 211, 108669.

[25]

Yang, J. M.; Liao, X.; Wang, G.; Chen, J.; Song, P. W.; Tang, W. Y.; Guo, F. M.; Liu, F.; Li, G. X. Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding. Compos. Sci. Technol. 2021, 206, 108663.

[26]

Fan, Z. M.; He, H. Q.; Yu, J. X.; Liu, L.; Liu, Y. Y.; Xie, Z. M. Lightweight three-dimensional cellular MXene film for superior energy storage and electromagnetic interference shielding. ACS Appl. Energy Mater. 2020, 3, 8171–8178.

[27]

Yao, D. J.; Tang, Z. H.; Liang, Z. H.; Zhang, L.; Sun, Q. J.; Fan, J. M.; Zhong, G. K.; Liu, Q. X.; Jiang, Y. P.; Tang, X. G. et al. Adhesive, multifunctional, and wearable electronics based on Mxene-coated textile for personal heating systems, electromagnetic interference shielding, and pressure sensing. J. Colloid Interface Sci. 2023, 630, 23–33.

[28]

Yang, W.; Bai, H. X.; Jiang, B.; Wang, C. N.; Ye, W. M.; Li, Z. X.; Xu, C.; Wang, X. B.; Li, Y. F. Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res. 2022, 15, 9926–9935.

[29]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[30]

Sang, M.; Zhang, J. S.; Liu, S.; Zhou, J. Y.; Wang, Y.; Deng, H. X.; Li, J.; Li, J.; Xuan, S. H.; Gong, X. L. Advanced MXene/shear stiffening composite-based sensor with high-performance electromagnetic interference shielding and anti-impacting Bi-protection properties for smart wearable device. Chem. Eng. J. 2022, 440, 135869.

[31]

Szuplewska, A.; Kulpińska, D.; Dybko, A.; Jastrzębska, A. M.; Wojciechowski, T.; Rozmysłowska, A.; Chudy, M.; Grabowska-Jadach, I.; Ziemkowska, W.; Brzózka, Z. et al. 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Mater. Sci. Eng. C 2019, 98, 874–886.

[32]

Liu, G. H.; Xiong, Q. S.; Xu, Y. Q.; Fang, Q. L.; Leung, K. C. F.; Sang, M.; Xuan, S. H.; Hao, L. Y. Magnetically separable MXene@Fe3O4/Au/PDA nanosheets with photothermal-magnetolytic coupling antibacterial performance. Appl. Surf. Sci. 2022, 590, 153125.

[33]

Xu, D. X.; Li, Z. D.; Li, L. S.; Wang, J. Insights into the photothermal conversion of 2D MXene nanomaterials: Synthesis, mechanism, and applications. Adv. Funct. Mater. 2020, 30, 2000712.

[34]

Zhang, B. P.; Gu, Q. F.; Wang, C.; Gao, Q. L.; Guo, J. X.; Wong, P. W.; Liu, C. T.; An, A. K. Self-assembled hydrophobic/hydrophilic porphyrin-Ti3C2Tx MXene Janus membrane for dual-functional enabled photothermal desalination. ACS Appl. Mater. Interfaces 2021, 13, 3762–3770.

[35]

Zhao, J. Y.; Li, Y. C.; Zhu, H. T.; Li, G. F.; Kang, L. L.; Liu, J.; He, J.; Lei, J. D.; Wang, L. Y.; Yan, Q. A smart MXene-copolymeric molecularly imprinted hydrogel with dual-response and photothermal conversion performance for specific recognition of cis-diol compounds. Nano Res. 2022, 15, 2764–2772.

[36]

Wang, Y. L.; Jiang, B.; Sun, T.; Wang, S.; Jin, Y. C. A bio-inspired MXene/quaternary chitosan membrane with a “brick-and-mortar” structure towards high-performance photothermal conversion. J. Mater. Chem. C 2022, 10, 8043–8049.

File
12274_2023_5523_MOESM1_ESM.pdf (869.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 November 2022
Revised: 18 January 2023
Accepted: 20 January 2023
Published: 20 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

Financial supports from the National Natural Science Foundation of China (Nos. 12202435, 12132016, 11972032, and 12072338), the Fundamental Research Funds for the Central Universities (Nos. WK2480000007 and WK5290000003), and China Postdoctoral Science Foundation (No. 2021M703086) are gratefully acknowledged.

Return