Journal Home > Volume 16 , Issue 7

Al nanoparticles (NPs) exhibit excellent localized surface plasmon resonance (LSPR) properties and have been considered a promising alternative to plasmonic Au or Ag NPs. However, it remains difficult to fabricate Al NPs with uniform size and controllable morphology over a large area on substrates, which seriously hinders the in-depth exploration of their properties and applications. Herein, we have developed a self-assembly nanoparticle template method to realize the controllable preparation of bowl-shaped Al NPs (Al nanobowls (Al NBs)) with tunable sizes from 36 to 131 nm on the substrate surface, accompanied by tunable LSPR spectral responses from 272 to 480 nm. Among them, 131 nm Al NBs exhibit superior fluorescence enhancement ability (1932.2-fold) and a low detection limit (78.6 pM) towards 5-carboxyfluorescein, exceeding comparable Ag NBs and Au nanospheres (NSs). This can be attributed to the strong electromagnetic enhancement induced by the LSPR effect and the effective inhibition of fluorescence quenching caused by the self-passivated oxide layer. Therefore, the successful fabrication of Al NBs on substrates is of vital significance for their promising applications, including surface-enhanced spectroscopy, sensitive fluorescence detection, light-harvesting devices, biosensing, and ultraviolet (UV) plasmonics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Large-scale controllable fabrication of aluminum nanobowls for surface plasmon-enhanced fluorescence

Show Author's information Yawen Wang1,§Heng Gao1,§Yuanlan Liu1Dong Li1Bo Zhao1Wenkai Liang1Yinghui Sun2( )Lin Jiang1( )
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
College of Energy, Soochow Institute for Energy and Materials Innovations and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China

§ Yawen Wang and Heng Gao contributed equally to this work.

Abstract

Al nanoparticles (NPs) exhibit excellent localized surface plasmon resonance (LSPR) properties and have been considered a promising alternative to plasmonic Au or Ag NPs. However, it remains difficult to fabricate Al NPs with uniform size and controllable morphology over a large area on substrates, which seriously hinders the in-depth exploration of their properties and applications. Herein, we have developed a self-assembly nanoparticle template method to realize the controllable preparation of bowl-shaped Al NPs (Al nanobowls (Al NBs)) with tunable sizes from 36 to 131 nm on the substrate surface, accompanied by tunable LSPR spectral responses from 272 to 480 nm. Among them, 131 nm Al NBs exhibit superior fluorescence enhancement ability (1932.2-fold) and a low detection limit (78.6 pM) towards 5-carboxyfluorescein, exceeding comparable Ag NBs and Au nanospheres (NSs). This can be attributed to the strong electromagnetic enhancement induced by the LSPR effect and the effective inhibition of fluorescence quenching caused by the self-passivated oxide layer. Therefore, the successful fabrication of Al NBs on substrates is of vital significance for their promising applications, including surface-enhanced spectroscopy, sensitive fluorescence detection, light-harvesting devices, biosensing, and ultraviolet (UV) plasmonics.

Keywords: localized surface plasmon resonance (LSPR), fluorescence enhancement, Al nanoparticles, controllable size, large-area fabrication

References(55)

[1]

Fusella, M. A.; Saramak, R.; Bushati, R.; Menon, V. M.; Weaver, M. S.; Thompson, N. J.; Brown, J. J. Plasmonic enhancement of stability and brightness in organic light-emitting devices. Nature 2020, 585, 379–382.

[2]

Zhou, L. N.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M. H.; Dong, L. L.; Henderson, L. et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 2020, 5, 61–70.

[3]

Zhu, X. L.; Vannahme, C.; Højlund-Nielsen, E.; Mortensen, N. A.; Kristensen, A. Plasmonic colour laser printing. Nat. Nanotechnol. 2016, 11, 325–329.

[4]

Gan, X. R.; Lei, D. Y. Plasmonic-metal/2D-semiconductor hybrids for photodetection and photocatalysis in energy-related and environmental processes. Coord. Chem. Rev. 2022, 469, 214665.

[5]

Philip, A.; Kumar, A. R. The performance enhancement of surface plasmon resonance optical sensors using nanomaterials: A review. Coord. Chem. Rev. 2022, 458, 214424.

[6]

Zheng, J. P.; Cheng, X. Z.; Zhang, H.; Bai, X. P.; Ai, R. Q.; Shao, L.; Wang, J. F. Gold nanorods: The most versatile plasmonic nanoparticles. Chem. Rev. 2021, 121, 13342–13453.

[7]

Gellé, A.; Jin, T.; de la Garza, L.; Price, G. D.; Besteiro, L. V.; Moores, A. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem. Rev. 2020, 120, 986–1041.

[8]

Jacobson, C. R.; Solti, D.; Renard, D.; Yuan, L.; Lou, M. H.; Halas, N. J. Shining light on aluminum nanoparticle synthesis. Acc. Chem. Res. 2020, 53, 2020–2030.

[9]

Lee, S.; Sim, K.; Moon, S. Y.; Choi, J.; Jeon, Y.; Nam, J. M.; Park, S. J. Controlled assembly of plasmonic nanoparticles: From static to dynamic nanostructures. Adv. Mater. 2021, 33, e2007668.

[10]

Luan, J. Y.; Seth, A.; Gupta, R.; Wang, Z. Y.; Rathi, P.; Cao, S. S.; Gholami Derami, H.; Tang, R.; Xu, B. G.; Achilefu, S. et al. Ultrabright fluorescent nanoscale labels for the femtomolar detection of analytes with standard bioassays. Nat. Biomed. Eng. 2020, 4, 518–530.

[11]

Li, S. W.; Miao, P.; Zhang, Y. Y.; Wu, J.; Zhang, B.; Du, Y. J.; Han, X. J.; Sun, J. M.; Xu, P. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 2020, 33, 2000086.

[12]

Liu, D.; Xue, C. Plasmonic coupling architectures for enhanced photocatalysis. Adv. Mater. 2021, 33, e2005738.

[13]

Zhang, N. N.; Shen, X. X.; Liu, K.; Nie, Z. H.; Kumacheva, E. Polymer-tethered nanoparticles: From surface engineering to directional self-assembly. Acc. Chem. Res. 2022, 55, 1503–1513.

[14]

Hwang, J. H.; Park, S.; Son, J.; Park, J. W.; Nam, J. M. DNA-engineerable ultraflat-faceted core–shell nanocuboids with strong, quantitative plasmon-enhanced fluorescence signals for sensitive, reliable MicroRNA detection. Nano Lett. 2021, 21, 2132–2140.

[15]

Abdulhalim, I. Coupling configurations between extended surface electromagnetic waves and localized surface plasmons for ultrahigh field enhancement. Nanophotonics 2018, 7, 1891–1916.

[16]

Li, A. R.; Srivastava, S. K.; Abdulhalim, I.; Li, S. Z. Engineering the hot spots in squared arrays of gold nanoparticles on a silver film. Nanoscale 2016, 8, 15658–15664.

[17]

Olson, J.; Manjavacas, A.; Liu, L. F.; Chang, W. S.; Foerster, B.; King, N. S.; Knight, M. W.; Nordlander, P.; Halas, N. J.; Link, S. Vivid, full-color aluminum plasmonic pixels. Proc. Natl. Acad. Sci. USA 2014, 111, 14348–14353.

[18]

Yokogawa, S.; Burgos, S. P.; Atwater, H. A. Plasmonic color filters for CMOS image sensor applications. Nano Lett. 2012, 12, 4349–4354.

[19]

Zhou, J. H.; Wang, Y. Y.; Zhang, L.; Li, X. M. Plasmonic biosensing based on non-noble-metal materials. Chin. Chem. Lett. 2018, 29, 54–60.

[20]

Castilla, M.; Schuermans, S.; Gérard, D.; Martin, J.; Maurer, T.; Hananel, U.; Markovich, G.; Plain, J.; Proust, J. Colloidal synthesis of crystalline aluminum nanoparticles for UV plasmonics. ACS Photonics 2022, 9, 880–887.

[21]

Lecarme, O.; Sun, Q.; Ueno, K.; Misawa, H. Robust and versatile light absorption at near-infrared wavelengths by plasmonic aluminum nanorods. ACS Photonics 2014, 1, 538–546.

[22]

Liu, J. J.; Yang, L.; Zhang, H.; Wang, J. F.; Huang, Z. F. Ultraviolet-visible chiroptical activity of aluminum nanostructures. Small 2017, 13, 1701112.

[23]

Siddique, R. H.; Kumar, S.; Narasimhan, V.; Kwon, H.; Choo, H. Aluminum metasurface with hybrid multipolar plasmons for 1000-fold broadband visible fluorescence enhancement and multiplexed biosensing. ACS Nano 2019, 13, 13775–13783.

[24]

Sharma, B.; Cardinal, M. F.; Ross, M. B.; Zrimsek, A. B.; Bykov, S. V.; Punihaole, D.; Asher, S. A.; Schatz, G. C.; Van Duyne, R. P. Aluminum film-over-nanosphere substrates for deep-UV surface-enhanced resonance Raman spectroscopy. Nano Lett. 2016, 16, 7968–7973.

[25]

Lay, C. L.; Koh, C. S. L.; Wang, J.; Lee, Y. H.; Jiang, R. B.; Yang, Y. J.; Yang, Z.; Phang, I. Y.; Ling, X. Y. Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels. Nanoscale 2018, 10, 575–581.

[26]

Raja, S. S.; Cheng, C. W.; Sang, Y. G.; Chen, C. A.; Zhang, X. Q.; Dubey, A.; Yen, T. J.; Chang, Y. M.; Lee, Y. H.; Gwo, S. Epitaxial aluminum surface-enhanced Raman spectroscopy substrates for large-scale 2D material characterization. ACS Nano 2020, 14, 8838–8845.

[27]

Tseng, M. L.; Yang, J.; Semmlinger, M.; Zhang, C.; Nordlander, P.; Halas, N. J. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Lett. 2017, 17, 6034–6039.

[28]

Tan, S. J.; Zhang, L.; Zhu, D.; Goh, X. M.; Wang, Y. M.; Kumar, K.; Qiu, C. W.; Yang, J. K. W. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 2014, 14, 4023–4029.

[29]

Lee, C. H.; Kim, Y.; Song, J. H.; Ee, H. S.; Hwang, M. S.; Jeong, K. Y.; Park, H. G.; Lee, T.; Seo, M. K. Near-ultraviolet structural colors generated by aluminum nanodisk array for bright image printing. Adv. Opt. Mater. 2018, 6, 1800231.

[30]

Renard, D.; Tian, S.; Lou, M. H.; Neumann, O.; Yang, J.; Bayles, A.; Solti, D.; Nordlander, P.; Halas, N. J. UV-resonant Al nanocrystals: Synthesis, silica coating, and broadband photothermal response. Nano Lett. 2021, 21, 536–542.

[31]

Yang, S.; Lu, S. Y.; Li, Y.; Yu, H.; He, L. X.; Sun, T. M.; Yang, B.; Liu, K. Poly(ethylene oxide) mediated synthesis of sub-100-nm aluminum nanocrystals for deep ultraviolet plasmonic nanomaterials. CCS Chem. 2020, 2, 516–526.

[32]

Liang, Z. Q.; Liang, W. K.; Shao, W. J.; Huang, J.; Guan, T. F.; Wen, P.; Cao, G. Z.; Jiang, L. Fabrication of tunable aluminum nanodisk arrays via a self-assembly nanoparticle template method and their applications for performance enhancement in organic photovoltaics. J. Mater. Chem. A 2018, 6, 3649–3658.

[33]

Sygletou, M.; Kakavelakis, G.; Paci, B.; Generosi, A.; Kymakis, E.; Stratakis, E. Enhanced stability of aluminum nanoparticle-doped organic solar cells. ACS Appl. Mater. Interfaces 2015, 7, 17756–17764.

[34]

Yi, L. C.; Ci, S.; Luo, S. L.; Shao, P.; Hou, Y.; Wen, Z. H. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy 2017, 41, 600–608.

[35]

Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

[36]

Yu, H.; Zhang, P.; Lu, S. Y.; Yang, S.; Peng, F.; Chang, W. S.; Liu, K. Synthesis and multipole plasmon resonances of spherical aluminum nanoparticles. J. Phys. Chem. Lett. 2020, 11, 5836–5843.

[37]

Zhang, H. Y.; Kinnear, C.; Mulvaney, P. Fabrication of single-nanocrystal arrays. Adv. Mater. 2020, 32, e1904551.

[38]

Liu, Y. L.; Wang, Y. W.; Sun, Y. H.; Li, D.; Liang, Z. Q.; Liang, W. K.; Gao, H.; Qin, W.; Qian, H. Q.; Jiang, L. Programmable assembly of colloidal nanoparticles controlled by electrostatic potential well. Small Struct. 2022, 3, 2200066.

[39]

Yu, H.; Lu, S. Y.; Gao, H. M.; Lu, Z. Y.; Liu, K. General criteria for evaluating suitable polymer ligands for the synthesis of aluminum nanocrystals. Chem. Comm. 2020, 56, 217–220.

[40]

Lu, S. Y.; Yu, H.; Gottheim, S.; Gao, H. M.; DeSantis, C. J.; Clark, B. D.; Yang, J.; Jacobson, C. R.; Lu, Z. Y.; Nordlander, P. et al. Polymer-directed growth of plasmonic aluminum nanocrystals. J. Am. Chem. Soc. 2018, 140, 15412–15418.

[41]

Clark, B. D.; DeSantis, C. J.; Wu, G.; Renard, D.; McClain, M. J.; Bursi, L.; Tsai, A. L.; Nordlander, P.; Halas, N. J. Ligand-dependent colloidal stability controls the growth of aluminum nanocrystals. J. Am. Chem. Soc. 2019, 141, 1716–1724.

[42]

Najem, M.; Carcenac, F.; Taliercio, T.; Gonzalez-Posada, F. Aluminum bowties for plasmonic-enhanced infrared sensing. Adv. Opt. Mater. 2022, 10, 2201025.

[43]

Schade, M.; Fuhrmann, B.; Bohley, C.; Schlenker, S.; Sardana, N.; Schilling, J.; Leipner, H. S. Regular arrays of Al nanoparticles for plasmonic applications. J. Appl. Phys. 2014, 115, 084309.

[44]

Ruan, Q. F.; Shao, L.; Shu, Y. W.; Wang, J. F.; Wu, H. K. Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater. 2014, 2, 65–73.

[45]

Wang, Y. W.; Li, D.; Sun, Y. H.; Zhong, L. B.; Liang, W. K.; Qin, W.; Guo, W.; Liang, Z. Q.; Jiang, L. Multiplexed assembly of plasmonic nanostructures through charge inversion on substrate for surface encoding. ACS Appl. Mater. Interfaces 2020, 12, 6176–6182.

[46]

Zheng, Y. Q.; Zhong, X. L.; Li, Z. Y.; Xia, Y. N. Successive, seed-mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5–150 nm. Part. Part. Syst. Charact. 2014, 31, 266–273.

[47]

Li, D.; Sun, Y. H.; Wang, Z. S.; Huang, J.; Lü, N.; Jiang, L. Large-scale multiplexed surface plasmonic gold nanostructures based on nanoimprint and self-assembly. Chem. J. Chin. Univ. 2020, 41, 221–227.

[48]

Wang, Y. W.; Li, D.; Liang, W. K.; Sun, Y. H.; Jiang L. Multiplex structures of plasmonic metal nanoparticles and their applications. Chem. J. Chin. Univ. 2021, 42, 1213–1224.

[49]

Liang, C.; Luan, J. Y.; Wang, Z. Y.; Jiang, Q. S.; Gupta, R.; Cao, S. S.; Liu, K. K.; Morrissey, J. J.; Kharasch, E. D.; Naik, R. R. et al. Gold nanorod size-dependent fluorescence enhancement for ultrasensitive fluoroimmunoassays. ACS Appl. Mater. Interfaces 2021, 13, 11414–11423.

[50]

Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

[51]

Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.

[52]

Park, Y.; Yoon, H. J.; Lee, S. E.; Lee, L. P. Multifunctional cellular targeting, molecular delivery, and imaging by integrated mesoporous-silica with optical nanocrescent antenna: MONA. ACS Nano 2022, 16, 2013–2023.

[53]

Li, D.; Sun, Y. H.; Wang, Y. W.; Liu, Y. L.; Zhao, B.; Liang, W. K.; Gao, H.; Jiang, L. Facile fabrication of a single-particle platform with high throughput via substrate surface potential regulated large-spacing nanoparticle assembly. Nano Res. 2022, 15, 6713–6720.

[54]

Zhang, L.; Li, Y.; Li, D. W.; Jing, C.; Chen, X. Y.; Lv, M.; Huang, Q.; Long, Y. T.; Willner, I. Single gold nanoparticles as real-time optical probes for the detection of NADH-dependent intracellular metabolic enzymatic pathways. Angew. Chem., Int. Ed. 2011, 50, 6789–6792.

[55]

Liu, S.; Arce, A. S.; Nilsson, S.; Albinsson, D.; Hellberg, L.; Alekseeva, S.; Langhammer, C. In situ plasmonic nanospectroscopy of the CO oxidation reaction over single Pt nanoparticles. ACS Nano 2019, 13, 6090–6100.

File
12274_2023_5492_MOESM1_ESM.pdf (874.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 November 2022
Revised: 10 January 2023
Accepted: 11 January 2023
Published: 13 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22072104 and 21822202) and Suzhou Key Laboratory of Surface and Interface Intelligent Matter (No. SZS2022011). This is also a project funded by Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Return