Journal Home > Volume 16 , Issue 4

The development of cost-effective, robust, and durable electrocatalysts to replace the expensive Pt-based catalysts towards oxygen reduction reaction (ORR) is the trending frontier research topic in renewable energy and electrocatalysis. Particular attention has been paid to metal-nitrogen-carbon (M-N-C) single atom catalysts (SACs) due to their maximized atom utilization efficiency, biomimetic active site, and distinct electronic structure. More importantly, their catalytic properties can be further tailored by rationally regulating the microenvironment of active sites (i.e., M–N coordination number, heteroatom doping and substitution. Herein, we present a comprehensive summary of the recent advancement in the microenvironment regulation of M-N-C SACs towards improved ORR performance. The coordination environment manipulation regarding central metal and coordinated atoms is first discussed, focusing on the structure–function relationship. Apart from the near-range coordination, long-range substrate modulation including heteroatom doping, defect engineering is discussed as well. Besides, the synergy mechanism of nanoparticles and single atom sites to tune the electron cloud density at the active sites is summarized. Finally, we provide the challenges and outlook of the development of M-N-C SACs.


menu
Abstract
Full text
Outline
About this article

Microenvironment regulation of M-N-C single-atom catalysts towards oxygen reduction reaction

Show Author's information Li Zhang1,2Qinglei Meng1Ruixue Zheng1,3Liuqing Wang1,3Wei Xing1,3( )Weiwei Cai2( )Meiling Xiao1,3( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China

Abstract

The development of cost-effective, robust, and durable electrocatalysts to replace the expensive Pt-based catalysts towards oxygen reduction reaction (ORR) is the trending frontier research topic in renewable energy and electrocatalysis. Particular attention has been paid to metal-nitrogen-carbon (M-N-C) single atom catalysts (SACs) due to their maximized atom utilization efficiency, biomimetic active site, and distinct electronic structure. More importantly, their catalytic properties can be further tailored by rationally regulating the microenvironment of active sites (i.e., M–N coordination number, heteroatom doping and substitution. Herein, we present a comprehensive summary of the recent advancement in the microenvironment regulation of M-N-C SACs towards improved ORR performance. The coordination environment manipulation regarding central metal and coordinated atoms is first discussed, focusing on the structure–function relationship. Apart from the near-range coordination, long-range substrate modulation including heteroatom doping, defect engineering is discussed as well. Besides, the synergy mechanism of nanoparticles and single atom sites to tune the electron cloud density at the active sites is summarized. Finally, we provide the challenges and outlook of the development of M-N-C SACs.

Keywords: oxygen reduction reaction, single-atom catalyst, electronic structure, microenvironment regulation, active site structure

References(185)

[1]

Pei, Y. F.; Song, H. Q.; Liu, Y.; Cheng, Y. J.; Li, W. D.; Chen, Y. M.; Fan, Y. P.; Liu, B. Z.; Lu, S. Y. Boron-nitrogen-doped carbon dots on multi-walled carbon nanotubes for efficient electrocatalysis of oxygen reduction reactions. J. Colloid Interface Sci. 2021, 600, 865–871.

[2]

Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 2018, 11, 163–173.

[3]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to Sub-5nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2022, 62, e202212653.

[4]

Cheng, Q. Q.; Yang, S.; Fu, C. H.; Zou, L. L.; Zou, Z. Q.; Jiang, Z.; Zhang, J. L.; Yang, H. High-loaded sub-6 nm Pt1Co1 intermetallic compounds with highly efficient performance expression in PEMFCs. Energy Environ. Sci. 2022, 15, 278–286.

[5]

Li, Y. H.; Qu, Y. J.; Liu, C. C.; Cui, J. D.; Xu, K.; Li, Y.; Shen, H. Y.; Lu, Z. G.; Pan, H.; Xu, T. et al. Processing agricultural cornstalks toward high-efficient stable bifunctional ORR/OER electrocatalysts. Adv. Sustainable Syst. 2021, 6, 2100343.

[6]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[7]

Zhuang, Z, C.; Li, Y.; Li, Y, H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[8]

Yang, Q.; Xiao, Z. C.; Kong, D. B.; Zhang, T. L.; Duan, X. G.; Zhou, S. K.; Niu, Y.; Shen, Y. D.; Sun, H. Q.; Wang, S. B. et al. New insight to the role of edges and heteroatoms in nanocarbons for oxygen reduction reaction. Nano Energy 2019, 66, 104096.

[9]

Zhao, S.; Yan, L. T.; Luo, H. M.; Mustain, W.; Xu, H. Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy 2018, 47, 172–198.

[10]

Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.

[11]

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

[12]

Mehmood, A.; Gong, M. J.; Jaouen, F.; Roy, A.; Zitolo, A.; Khan, A.; Sougrati, M. T.; Primbs, M.; Bonastre, A. M.; Fongalland, D. et al. High loading of single atomic iron sites in Fe-N-C oxygen reduction catalysts for proton exchange membrane fuel cells. Nat. Catal. 2022, 5, 311–323.

[13]

Zhang, Z. Y.; Tan, Y. Y.; Zeng, T.; Yu, L. Y.; Chen, R. Z.; Cheng, N. C.; Mu, S. C.; Sun, X. L. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Res. 2020, 14, 2353–2362.

[14]

Xin, S. L.; Liu, Z. Q.; Ma, L.; Sun, Y.; Xiao, C. H.; Li, F.; Du, Y. P. Visualization of the electrocatalytic activity of three-dimensional MoSe2@reduced graphene oxide hybrid nanostructures for oxygen reduction reaction. Nano Res. 2016, 9, 3795–3811.

[15]

Meng, Z. H.; Chen, N.; Cai, S. C.; Wu, J. W.; Wang, R.; Tian, T.; Tang, H. L. Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2021, 14, 4768–4775.

[16]

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

[17]

Gao, R. J.; Wang, J.; Huang, Z. F.; Zhang, R. R.; Wang, W.; Pan, L.; Zhang, J. F.; Zhu, W. K.; Zhang, X. W.; Shi, C. X. et al. Pt/Fe2O3 with Pt-Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy 2021, 6, 614–623.

[18]

Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212–1213.

[19]

Gupta, S.; Tryk, D.; Bae, I.; Aldred, W.; Yeager, E. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J. Appl. Electrochem. 1989, 19, 19–27.

[20]

Luo, E. G.; Chu, Y. Y.; Liu, J.; Shi, Z. P.; Zhu, S. Y.; Gong, L. Y.; Ge, J. J.; Choi, C. H.; Liu, C. P.; Xing, W. Pyrolyzed M–Nx catalysts for oxygen reduction reaction: Progress and prospects. Energy Environ. Sci. 2021, 14, 2158–2185.

[21]

Li, Z. Q.; Jiang, G. P.; Deng, Y. P.; Liu, G. H.; Ren, D. Z.; Zhang, Z.; Zhu, J. B.; Gao, R.; Jiang, Y.; Luo, D. et al. Deep-breathing honeycomb-like Co-Nx-C nanopolyhedron bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. iScience 2020, 23, 101404.

[22]

Qin, J. Y.; Liu, H.; Zou, P. C.; Zhang, R.; Wang, C. Y.; Xin, H. L. Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction. J. Am. Chem. Soc. 2022, 144, 2197–2207.

[23]

Cui, X.; Gao, L. K.; Lei, S.; Liang, S.; Zhang, J. W.; Sewell, C. D.; Xue, W. D.; Liu, Q.; Lin, Z. Q.; Yang, Y. K. Simultaneously crafting single-atomic Fe sites and graphitic layer-wrapped Fe3C nanoparticles encapsulated within mesoporous carbon tubes for oxygen reduction. Adv. Funct. Mater. 2021, 31, 2009197.

[24]

Xiao, M. L.; Zhu, J. B.; Li, G. R.; Li, N.; Li, S.; Cano, Z. P.; Ma, L.; Cui, P. X.; Xu, P.; Jiang, G. P. et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 9640–9645.

[25]

Liu, S. W.; Li, C. Z.; Zachman, M. J.; Zeng, Y. C.; Yu, H. R.; Li, B. Y.; Wang, M. Y.; Braaten, J.; Liu, J. W.; Meyer, H. M. et al. Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 2022, 7, 652–663.

[26]

Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

[27]

Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

[28]

Marshall-Roth, T.; Libretto, N. J.; Wrobel, A. T.; Anderton, K. J.; Pegis, M. L.; Ricke, N. D.; Voorhis, T. V.; Miller, J. T.; Surendranath, Y. A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nat. Commun. 2020, 11, 5283.

[29]

Liu, K.; Fu, J. W.; Lin, Y. Y.; Luo, T.; Ni, G. H.; Li, H. M.; Lin, Z.; Liu, M. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.

[30]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[31]

Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479–484.

[32]

Sun, Y. L.; Wang, J.; Liu, Q.; Xia, M. R.; Tang, Y. F.; Gao, F. M.; Hou, Y. L.; Tse, J.; Zhao, Y. F. Itinerant ferromagnetic half metallic cobalt-iron couples: Promising bifunctional electrocatalysts for ORR and OER. J. Mater. Chem. A 2019, 7, 27175–27185.

[33]

Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu, W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.

[34]

Xie, X. H.; He, C.; Li, B. Y.; He, Y. H.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y. W.; Engelhard, M. H. et al. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells. Nat. Catal. 2020, 3, 1044–1054.

[35]

Tian, H.; Cui, X. Z.; Dong, H. L.; Meng, G.; Kong, F. T.; Chen, Y. F.; Peng, L. X.; Chen, C.; Chang, Z. W.; Shi, J. L. Engineering single MnN4 atomic active sites on polydopamine-modified helical carbon tubes towards efficient oxygen reduction. Energy Storage Mater. 2021, 37, 274–282.

[36]

Liu, S.; Li, Z. D.; Wang, C. L.; Tao, W. W.; Huang, M. X.; Zuo, M.; Yang, Y.; Yang, K.; Zhang, L. J.; Chen, S. et al. Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 2020, 11, 938.

[37]

Zhu, M. Z.; Zhao, C.; Liu, X. K.; Wang, X. L.; Zhou, F. Y.; Wang, J.; Hu, Y. M.; Zhao, Y. F.; Yao, T.; Yang, L. M. et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catal. 2021, 11, 3923–3929.

[38]

Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

[39]

Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

[40]

Li, L. F.; Wen, Y. D.; Han, G. K.; Liu, Y. X.; Song, Y. J.; Zhang, W.; Sun, J.; Du, L.; Kong, F. P.; Ma, Y. L. et al. Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction. Chem. Eng. J. 2022, 437, 135320.

[41]

Wang, R. G.; Zhang, L. F.; Shan, J. Q.; Yang, Y. Y.; Lee, J. F.; Chen, T. Y.; Mao, J.; Zhao, Y.; Yang, L. J.; Hu, Z. P. et al. Tuning Fe spin moment in Fe-N-C catalysts to climb the activity volcano via a local geometric distortion strategy. Adv. Sci. 2022, 9, e2203917.

[42]

Haile, A. S.; Hansen, H. A.; Yohannes, W.; Mekonnen, Y. S. The role of nitrogen and sulfur dual coordination of cobalt in Co-N4−xSx/C single atom catalysts in the oxygen reduction reaction. Sustainable Energy Fuels 2022, 6, 179–187.

[43]

Li, L. B.; Huang, S. H.; Cao, R.; Yuan, K.; Lu, C. B.; Huang, B. Y.; Tang, X. N.; Hu, T.; Zhuang, X. D.; Chen, Y. W. Optimizing microenvironment of asymmetric N, S-coordinated single-atom Fe via axial fifth coordination toward efficient oxygen electroreduction. Small 2022, 18, 2105387.

[44]

Wang, X.; Jia, Y.; Mao, X.; Liu, D. B.; He, W. X.; Li, J.; Liu, J. G.; Yan, X. C.; Chen, J.; Song, L. et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv. Mater. 2020, 32, 2000966.

[45]

Jiang, T.; Luan, W. L.; Turyanska, L.; Feng, Q. Enhanced electrocatalytic oxygen reduction reaction for Fe-N4-C by the incorporation of Co nanoparticles. Nanoscale 2021, 13, 6521–6530.

[46]

Xia, D. S.; Yang, X.; Xie, L.; Wei, Y. P.; Jiang, W. L.; Dou, M.; Li, X. N.; Li, J.; Gan, L.; Kang, F. Y. Direct growth of carbon nanotubes doped with single atomic Fe-N4 active sites and neighboring graphitic nitrogen for efficient and stable oxygen reduction electrocatalysis. Adv. Funct. Mater. 2019, 29, 1906174.

[47]

Yang, X.; Xia, D. S.; Kang, Y. Q.; Du, H. D.; Kang, F. Y.; Gan, L.; Li, J. Unveiling the axial hydroxyl ligand on Fe-N4-C electrocatalysts and its impact on the pH-dependent oxygen reduction activities and poisoning kinetics. Adv. Sci. 2020, 7, 2000176.

[48]

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

[49]

Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 4448–4463.

[50]

Lin, Y. Y.; Liu, K.; Chen, K. J.; Xu, Y.; Li, H. M.; Hu, J. H.; Lu, Y. R.; Chan, T. S.; Qiu, X. Q.; Fu, J. W. et al. Tuning charge distribution of FeN4 via external N for enhanced oxygen reduction reaction. ACS Catal. 2021, 11, 6304–6315.

[51]

Wang, X. X.; Wang, B.; Zhong, J.; Zhao, F. P.; Han, N.; Huang, W. J.; Zeng, M.; Fan, J.; Li, Y. G. Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Res. 2016, 9, 1497–1506.

[52]

Fu, X. G.; Li, N.; Ren, B. H.; Jiang, G. P.; Liu, Y. R.; Hassan, F. M.; Su, D.; Zhu, J. B.; Yang, L.; Bai, Z. Y. et al. Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell. Adv. Energy Mater. 2019, 9, 1803737.

[53]

Jin, X. X.; Xie, Y.; Fu, J. H.; Zhao, C. Y.; Xu, Y. H.; Lv, Y.; Zhang, B. S.; Sun, K. J.; Si, R.; Huang, J. H. A highly efficient Fe-N-C electrocatalyst with atomically dispersed FeN4 sites for the oxygen reduction reaction. ChemCatChem 2021, 13, 2683–2690.

[54]

Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang, S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 2688–2694.

[55]

Yin, H. B.; Yuan, P. F.; Lu, B. A.; Xia, H. C.; Guo, K.; Yang, G. G.; Qu, G.; Xue, D. P.; Hu, Y. F.; Cheng, J. Q. et al. Phosphorus-driven electron delocalization on edge-type FeN4 active sites for oxygen reduction in acid medium. ACS Catal. 2021, 11, 12754–12762.

[56]

Su, P. P.; Huang, W. J.; Zhang, J. W.; Guharoy, U.; Du, Q. G.; Sun, Q.; Jiang, Q. K.; Cheng, Y.; Yang, J.; Zhang, X. L. et al. Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction. Nano Res. 2021, 14, 1069–1077.

[57]

Adabi, H.; Shakouri, A.; Hassan, N. U.; Varcoe, J. R.; Zulevi, B.; Serov, A.; Regalbuto, J. R.; Mustain, W. E. High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells. Nat. Energy 2021, 6, 834–843.

[58]

Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

[59]

Snitkoff-Sol, R. Z.; Friedman, A.; Honig, H. C.; Yurko, Y.; Kozhushner, A.; Zachman, M. J.; Zelenay, P.; Bond, A. M.; Elbaz, L. Quantifying the electrochemical active site density of precious metal-free catalysts in situ in fuel cells. Nat. Catal. 2022, 5, 163–170.

[60]

Jiao, L.; Li, J. K.; Richard, L. L.; Sun, Q.; Stracensky, T.; Liu, E. S.; Sougrati, M. T.; Zhao, Z. P.; Yang, F.; Zhong, S. C. et al. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat. Mater. 2021, 20, 1385–1391.

[61]

Ding, R.; Liu, Y. D.; Rui, Z. Y.; Li, J.; Liu, J. G.; Zou, Z. G. Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Res. 2020, 13, 1519–1526.

[62]

Xiao, M. L.; Xing, Z. H.; Jin, Z.; Liu, C. P.; Ge, J. J.; Zhu, J. B.; Wang, Y.; Zhao, X.; Chen, Z. W. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 2020, 32, e2004900.

[63]

Xiao, M. L.; Zhu, J. B.; Ma, L.; Jin, Z.; Ge, J. J.; Deng, X.; Hou, Y.; He, Q. G.; Li, J. K.; Jia, Q. Y. et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 2018, 8, 2824–2832.

[64]

Cai, H. Z.; Chen, B. B.; Zhang, X.; Deng, Y. C.; Xiao, D. Q.; Ma, D.; Shi, C. Highly active sites of low spin FeIIN4 species: The identification and the ORR performance. Nano Res. 2021, 14, 122–130.

[65]

Li, J. K.; Sougrati, M. T.; Zitolo, A.; Ablett, J. M.; Oğuz, I. C.; Mineva, T.; Matanovic, I.; Atanassov, P.; Huang, Y.; Zenyuk, I. et al. Identification of durable and non-durable FeNx sites in Fe-N-C materials for proton exchange membrane fuel cells. Nat. Catal. 2020, 4, 10–19.

[66]

Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

[67]

Xu, X. L.; Zhang, X. M.; Kuang, Z. C.; Xia, Z. X.; Rykov, A. I.; Yu, S. S.; Wang, J. H.; Wang, S. L.; Sun, G. Q. Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: The influence of structure and structural evolution of active site. Appl. Catal. B: Environ. 2022, 309, 121290.

[68]

Du, L.; Prabhakaran, V.; Xie, X. H.; Park, S.; Wang, Y.; Shao, Y. Y. Low-PGM and PGM-free catalysts for proton exchange membrane fuel cells: Stability challenges and material solutions. Adv. Mater. 2021, 33, e1908232.

[69]

Xie, H.; Xie, X. H.; Hu, G. X.; Prabhakaran, V.; Saha, S.; Gonzalez-Lopez, L.; Phakatkar, A. H.; Hong, M.; Wu, M. L.; Shahbazian-Yassar, R. et al. Ta-TiOx nanoparticles as radical scavengers to improve the durability of Fe-N-C oxygen reduction catalysts. Nat. Energy 2022, 7, 281–289.

[70]

Li, X. H.; Yang, X. X.; Liu, L. T.; Zhao, H.; Li, Y. W.; Zhu, H. Y.; Chen, Y. Z.; Guo, S. W.; Liu, Y. N.; Tan, Q. et al. Chemical vapor deposition for N/S-doped single fe site catalysts for the oxygen reduction in direct methanol fuel cells. ACS Catal. 2021, 11, 7450–7459.

[71]

Yu, L.; Li, Y. C.; Ruan, Y. F. Dynamic control of sacrificial bond transformation in the Fe-N-C single-atom catalyst for molecular oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 25296–25301.

[72]

Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

[73]

Jin, Z. Y.; Li, P. P.; Meng, Y.; Fang, Z. W.; Xiao, D.; Yu, G. H. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 2021, 4, 615–622.

[74]

Li, X. L.; Xiang, Z. H. Identifying the impact of the covalent-bonded carbon matrix to FeN4 sites for acidic oxygen reduction. Nat. Commun. 2022, 13, 57.

[75]

Chen, K. J.; Liu, K.; An, P. D.; Li, H. J. W.; Lin, Y. Y.; Hu, J. H.; Jia, C. K.; Fu, J. W.; Li, H. M.; Liu, H. et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173.

[76]

Wang, J.; Li, L. Q.; Chen, X.; Lu, Y. L.; Yang, W. S.; Duan, X. A Co-N/C hollow-sphere electrocatalyst derived from a metanilic CoAl layered double hydroxide for the oxygen reduction reaction, and its active sites in various pH media. Nano Res. 2017, 10, 2508–2518.

[77]

He, Y. H.; Shi, Q. R.; Shan, W. T.; Li, X.; Kropf, A. J.; Wegener, E. C.; Wright, J.; Karakalos, S.; Su, D.; Cullen, D. A. et al. Dynamically unveiling metal–nitrogen coordination during thermal activation to design high-efficient atomically dispersed CoN4 active sites. Angew. Chem., Int. Ed. 2021, 60, 9516–9526.

[78]

Chen, L. Y.; Liu, X. F.; Zheng, L. R.; Li, Y. C.; Guo, X.; Wan, X.; Liu, Q. T.; Shang, J. X.; Shui, J. L. Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts. Appl. Catal. B: Environ. 2019, 256, 117849.

[79]

Xiao, G. F.; Lu, R. H.; Liu, J. F.; Liao, X. B.; Wang, Z. Y.; Zhao, Y. Coordination environments tune the activity of oxygen catalysis on single atom catalysts: A computational study. Nano Res. 2022, 15, 3073–3081.

[80]

Mahsud, A.; Chen, J. N.; Yuan, X. L.; Lyu, F. L.; Zhong, Q. X.; Chen, J. X.; Yin, Y. D.; Zhang, Q. Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction. Nano Res. 2021, 14, 2819–2825.

[81]

Guo, L.; Hwang, S.; Li, B. Y.; Yang, F.; Wang, M. Y.; Chen, M. J.; Yang, X. X.; Karakalos, S. G.; Cullen, D. A.; Feng, Z. X. et al. Promoting atomically dispersed MnN4 sites via sulfur doping for oxygen reduction: Unveiling intrinsic activity and degradation in fuel cells. ACS Nano 2021, 15, 6886–6899.

[82]

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

[83]

Bai, L.; Duan, Z. Y.; Wen, X. D.; Si, R.; Guan, J. Q. Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. Appl. Catal. B: Environ. 2019, 257, 117930.

[84]

Chen, M. J.; Li, X.; Yang, F.; Li, B. Y.; Stracensky, T.; Karakalos, S.; Mukerjee, S.; Jia, Q. Y.; Su, D.; Wang, G. F. et al. Atomically dispersed MnN4 catalysts via environmentally benign aqueous synthesis for oxygen reduction: Mechanistic understanding of activity and stability improvements. ACS Catal. 2020, 10, 10523–10534.

[85]

Vashistha, V. K.; Kumar, A. Design and synthesis of MnN4 macrocyclic complex for efficient oxygen reduction reaction electrocatalysis. Inorg. Chem. Commun. 2020, 112, 107700.

[86]

Yang, Y.; Mao, K. T.; Gao, S. Q.; Huang, H.; Xia, G. L.; Lin, Z. Y.; Jiang, P.; Wang, C. L; Wang, H.; Chen, Q. W. O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 2018, 30, 1801732.

[87]

Li, J.; Chen, S. G.; Yang, N.; Deng, M. M.; Ibraheem, S.; Deng, J. H.; Li, J.; Li, L.; Wei, Z. D. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem., Int. Ed. 2019, 58, 7035–7039.

[88]

Luo, E. G.; Zhang, H.; Wang, X.; Gao, L. Q.; Gong, L. Y.; Zhao, T.; Jin, Z.; Ge, J. J.; Jiang, Z.; Liu, C. P. et al. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media. Angew. Chem., Int. Ed. 2019, 58, 12469–12475.

[89]

Hu, J. W.; Cai, X. B.; Wu, J.; Xin, C. C.; Guo, J. Y.; Liu, Z. R.; Wei, J. Z.; Cheng, X. S.; Hao, C.; Dong, H. P. et al. Boosting oxygen-reduction catalysis over mononuclear CuN2+2 moiety for rechargeable Zn-air battery. Chem. Eng. J. 2022, 430, 133105.

[90]

Lin, Z. Y.; Huang, H.; Cheng, L.; Hu, W.; Xu, P. P.; Yang, Y.; Li, J. M.; Gao, F. Y.; Yang, K.; Liu, S. et al. Tuning the p-orbital electron structure of s-block metal Ca enables a high-performance electrocatalyst for oxygen reduction. Adv. Mater. 2021, 33, 2107103.

[91]

Luo, F.; Roy, A.; Silvioli, L.; Cullen, D. A.; Zitolo, A.; Sougrati, M. T.; Oguz, I. C.; Mineva, T.; Teschner, D.; Wagner, S. et al. P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nat. Mater. 2020, 19, 1215–1223.

[92]

Gu, Y.; Xi, B. J.; Zhang, H.; Ma, Y. C.; Xiong, S. L. Activation of main-group antimony atomic sites for oxygen reduction catalysis. Angew. Chem., Int. Ed. 2022, 61, e202202200.

[93]

Zhang, D.; Xie, X.; Sun, P. P.; Wei, Y. A.; Gong, T.; Huang, N.; Lv, X. W.; Fang, L.; Sun, X. H. Atomically dispersed antimony on N-doped carbon for highly efficient oxygen reduction reaction. Chem. Eng. J. 2022, 439, 135700.

[94]

Hu, H.; Wang, J. J.; Cui, B. F.; Zheng, X. R.; Lin, J. G.; Deng, Y. D.; Han, X. P. Atomically dispersed selenium sites on nitrogen-doped carbon for efficient electrocatalytic oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202114441.

[95]

Xiao, M. L.; Gao, L. Q.; Wang, Y.; Wang, X.; Zhu, J. B.; Jin, Z.; Liu, C. P.; Chen, H. Q.; Li, G. R.; Ge, J. J. et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis. J. Am. Chem. Soc. 2019, 141, 19800–19806.

[96]

Wang, T. Z.; Cao, X. J.; Qin, H. Y.; Shang, L.; Zheng, S. Y.; Fang, F.; Jiao, L. F. P-block atomically dispersed antimony catalyst for highly efficient oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 21237–21241.

[97]

Deng, C. F.; Su, Y.; Li, F. H.; Shen, W. F.; Chen, Z. F.; Tang, Q. Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning. J. Mater. Chem. A 2020, 8, 24563–24571.

[98]

Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

[99]

Xiao, M. L.; Zhang, H.; Chen, Y. T.; Zhu, J. B.; Gao, L. Q.; Jin, Z.; Ge, J. J.; Jiang, Z.; Chen, S. L.; Liu, C. P. et al. Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site. Nano Energy 2018, 46, 396–403.

[100]

Xiao, M. L.; Zhu, J. B.; Li, S.; Li, G. R.; Liu, W. W.; Deng, Y. P.; Bai, Z. Y.; Ma, L.; Feng, M.; Wu, T. P. et al. 3d-Orbital occupancy regulated Ir-Co atomic pair toward superior bifunctional oxygen electrocatalysis. ACS Catal. 2021, 11, 8837–8846.

[101]

Xiao, M. L.; Chen, Y. T.; Zhu, J. B.; Zhang, H.; Zhao, X.; Gao, L. Q.; Wang, X.; Zhao, J.; Ge, J. J.; Jiang, Z. et al. Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering. J. Am. Chem. Soc. 2019, 141, 17763–17770.

[102]

Li, L.; Li, Y. M.; Huang, R.; Cao, X. R.; Wen, Y. H. Boosting the electrocatalytic activity of Fe-Co dual-atom catalysts for oxygen reduction reaction by ligand-modification engineering. ChemCatChem 2021, 13, 4645–4651.

[103]

Zhou, Y. D.; Yang, W.; Utetiwabo, W.; Lian, Y. M.; Yin, X.; Zhou, L.; Yu, P. W.; Chen, R. J.; Sun, S. R. Revealing of active sites and catalytic mechanism in N-coordinated Fe, Ni dual-doped carbon with superior acidic oxygen reduction than single-atom catalyst. J. Phys. Chem. Lett. 2020, 11, 1404–1410.

[104]

Yang, G. G.; Zhu, J. W.; Yuan, P. F.; Hu, Y. F.; Qu, G.; Lu, B. A.; Xue, X. Y.; Yin, H. B.; Cheng, W. Z.; Cheng, J. Q. et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.

[105]

Zhang, N.; Zhou, T. P.; Ge, J. K.; Lin, Y.; Du, Z. Y.; Zhong, C. A.; Wang, W. J.; Jiao, Q. Y.; Yuan, R. L.; Tian, Y. C. et al. High-density planar-like Fe2N6 structure catalyzes efficient oxygen reduction. Matter 2020, 3, 509–521.

[106]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[107]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[108]

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[109]

Fang, X. Z.; Jiao, L.; Yu, S. H.; Jiang, H. L. Metal-organic framework-derived feco-n-doped hollow porous carbon nanocubes for electrocatalysis in acidic and alkaline media. ChemSusChem 2017, 10, 3019–3024.

[110]

Liu, M.; Li, N.; Cao, S. F.; Wang, X. M.; Lu, X. Q.; Kong, L. J.; Xu, Y. H.; Bu, X. H. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater. 2022, 34, e2107421.

[111]

Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; Xing, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, e2004670.

[112]

Luo, F.; Zhu, J. B.; Ma, S. X.; Li, M.; Xu, R. Z.; Zhang, Q.; Yang, Z. H.; Qu, K. G.; Cai, W. W.; Chen, Z. W. Regulated coordination environment of Ni single atom catalyst toward high-efficiency oxygen electrocatalysis for rechargeable Zinc-air batteries. Energy Storage Mater. 2021, 35, 723–730.

[113]

Cai, H. Z.; Zhang, G. H.; Zhang, X.; Chen, B. B.; Lu, Z.; Xu, H. J.; Gao, R.; Shi, C. Engineering the local coordination environment and density of FeN4 sites by mn cooperation for electrocatalytic oxygen reduction. Small 2022, 18, e2200911.

[114]

Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.

[115]

Sui, R.; Zhang, X. J.; Wang, X. D.; Wang, X. Y.; Pei, J. J.; Zhang, Y. F.; Liu, X. R.; Chen, W. X.; Zhu, W.; Zhuang, Z. B. Silver based single atom catalyst with heteroatom coordination environment as high performance oxygen reduction reaction catalyst. Nano Res. 2022, 15, 7968–7975.

[116]

Wei, X.; Zheng, D.; Zhao, M.; Chen, H. Z.; Fan, X.; Gao, B.; Gu, L.; Guo, Y.; Qin, J. B.; Wei, J. et al. Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 14639–14646.

[117]

Saputro, A. G.; Kasai, H.; Asazawa, K.; Kishi, H.; Tanaka, H. Comparative study on the catalytic activity of the TM-N2 active sites (TM = Mn, Fe, Co, Ni) in the oxygen reduction reaction: Density functional theory study. J. Phys. Soc. Japan 2013, 82, 114704.

[118]

Cai, Z. H.; Lin, S. X.; Xiao, J. J.; Muhmood, T.; Chen, Y. H.; Wang, Y. F.; Hu, X. B.; Zheng, L. R. Efficient bifunctional catalytic electrodes with uniformly distributed NiN2 active sites and channels for long-lasting rechargeable zinc-air batteries. Small 2020, 16, e2002518.

[119]

Zhang, M. T.; Li, H.; Chen, J. X.; Ma, F. X.; Zhen, L.; Wen, Z. H.; Xu, C. Y. Transition metal (Co, Ni, Fe, Cu) single-atom catalysts anchored on 3D nitrogen-doped porous carbon nanosheets as efficient oxygen reduction electrocatalysts for Zn-air battery. Small 2022, 18, e2202476.

[120]

Sun, X. X.; Li, K.; Yin, C.; Wang, Y.; He, F.; Tang, H.; Wu, Z. J. CoN3 embedded graphene, a potential catalyst for the oxygen reduction reaction from a theoretical perspective. Phys. Chem. Chem. Phys. 2017, 19, 17670–17676.

[121]

Lai, S. J.; Xu, L.; Liu, H. L.; Chen, S.; Cai, R. S.; Zhang, L. J.; Theis, W.; Sun, J.; Yang, D. J.; Zhao, X. L. Controllable synthesis of CoN3 catalysts derived from Co/Zn-ZIF-67 for electrocatalytic oxygen reduction in acidic electrolytes. J. Mater. Chem. A 2019, 7, 21884–21891.

[122]

Mohammadi-Rad, N.; Esrafili, M. D.; Sardroodi, J. J. CuN3 doped graphene as an active electrocatalyst for oxygen reduction reaction in fuel cells: A DFT study. J. Mol. Graph. Model. 2020, 96, 107537.

[123]

Li, Y. C.; Liu, X. F.; Zheng, L. R.; Shang, J. X.; Wan, X.; Hu, R. M.; Guo, X.; Hong, S.; Shui, J. L. Preparation of Fe-N-C catalysts with FeNx (x = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. J. Mater. Chem. A 2019, 7, 26147–26153.

[124]

Han, Y. L.; Li, Q. K.; Ye, K.; Luo, Y.; Jiang, J.; Zhang, G. Z. Impact of active site density on oxygen reduction reactions using monodispersed Fe-N-C single-atom catalysts. ACS Appl. Mater. Interfaces 2020, 12, 15271–15278.

[125]

Liang, X.; Li, Z. Y.; Xiao, H.; Zhang, T. F.; Xu, P.; Zhang, H.; Gao, Q. M.; Zheng, L. R. Two types of single-atom FeN4 and FeN5 electrocatalytic active centers on n-doped carbon driving high performance of the SA-Fe-NC oxygen reduction reaction catalyst. Chem. Mater. 2021, 33, 5542–5554.

[126]

Zhang, H. N.; Jia, S. P.; Shi, X. L.; Li, Z. Y.; Liu, B.; Li, N.; Li, Y.; Hu, S. L.; Wang, H. Q. Atomic Fe-N5 catalytic sites embedded in N-doped carbon as a highly efficient oxygen electrocatalyst for zinc-air batteries. Mater. Chem. Front. 2021, 5, 8127–8137.

[127]

Huang, J. S.; Lu, Q. Q.; Ma, X.; Yang, X. R. Bio-inspired FeN5 moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. J. Mater. Chem. A 2018, 6, 18488–18497.

[128]

Li, L.; Chen, Y. J.; Xing, H. R.; Li, N.; Xia, J. W.; Qian, X. Y.; Xu, H.; Li, W. Z.; Yin, F. X.; He, G. Y. et al. Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Res. 2022, 15, 8056–8064.

[129]

Zhu, Y. S.; Zhang, B. S.; Liu, X.; Wang, D. W.; Su, D. S. Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2014, 53, 10673–10677.

[130]

Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. L.; Xiang, Z. H.; Cao, D. P. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 6626–6631.

[131]

Liu, K. X.; Wu, G.; Wang, G. F. Role of local carbon structure surrounding FeN4 sites in boosting the catalytic activity for oxygen reduction. J. Phys. Chem. C 2017, 121, 11319–11324.

[132]

Ha, Y.; Fei, B.; Yan, X. X.; Xu, H. B.; Chen, Z. L.; Shi, L. X.; Fu, M. S.; Xu, W.; Wu, R. B. Atomically dispersed Co-pyridinic N-C for superior oxygen reduction reaction. Adv. Energy Mater. 2020, 10, 2002592.

[133]

Zhang, J.; Yang, J. Y.; Wang, Y.; Lu, H. Q.; Zhang, M. G. Catalytic mechanism of oxygen reduction on two types of CoN4-graphene: A density functional study. Int. J. Energy Res. 2021, 45, 10858–10868.

[134]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[135]

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

[136]

Wang, J.; Li, H. G.; Liu, S. H.; Hu, Y. F.; Zhang, J.; Xia, M. R.; Hou, Y. L.; Tse, J.; Zhang, J. J.; Zhao, Y. F. Turning on Zn 4s electrons in a N2-Zn-B2 configuration to stimulate remarkable ORR performance. Angew. Chem., Int. Ed. 2021, 60, 181–185.

[137]

Zhang, H.; Sun, Q. D.; He, Q.; Zhang, Y.; He, X. H.; Gan, T.; Ji, H. B. Single Cu atom dispersed on S, N-codoped nanocarbon derived from shrimp shells for highly-efficient oxygen reduction reaction. Nano Res. 2022, 15, 5995–6000.

[138]

Zhi, Q. J.; Jiang, R.; Liu, W. P.; Sun, T. T.; Wang, K.; Jiang, J. Z. Atomic CoN3S1 sites for boosting oxygen reduction reaction via an atomic exchange strategy. Nano Res. 2022, 15, 1803–1808.

[139]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification. Angew. Chem., Int. Ed. 2023, 135, e202212335.

[140]

Zhou, X. Y.; Xu, C.; Guo, P. P.; Sun, W. L.; Wei, P. J.; Liu, J. G. Axial ligand coordination tuning of the electrocatalytic activity of iron porphyrin electrografted onto carbon nanotubes for the oxygen reduction reaction. Chem. —Eur. J. 2021, 27, 9898–9904.

[141]

Zhang, W. L.; Meeus, E. J.; Wang, L.; Zhang, L. H.; Yang, S. C.; de Bruin, B.; Reek, J. N. H.; Yu, F. S. Boosting electrochemical oxygen reduction performance of iron phthalocyanine through axial coordination sphere interaction. ChemSusChem 2022, 15, e202102379.

[142]

Zhao, K. M.; Liu, S. Q.; Li, Y. Y.; Wei, X. L.; Ye, G. Y.; Zhu, W. W.; Su, Y. K.; Wang, J.; Liu, H. T.; He, Z. et al. Insight into the mechanism of axial ligands regulating the catalytic activity of Fe-N4 sites for oxygen reduction reaction. Adv. Energy Mater. 2022, 12, 2103588.

[143]

Liu, Y. R.; Liu, X. J.; Lv, Z. H.; Liu, R.; Li, L. H.; Wang, J. M.; Yang, W. X.; Jiang, X.; Feng, X.; Wang, B. Tuning the spin state of the iron center by bridge-bonded Fe-O-Ti ligands for enhanced oxygen reduction. Angew. Chem., Int. Ed. 2022, 134, e202117617.

[144]

Chen, C.; Yang, X. D.; Zhou, Z. Y.; Lai, Y. J.; Rauf, M.; Wang, Y.; Pan, J.; Zhuang, L.; Wang, Q.; Wang, Y. C. et al. Aminothiazole-derived N, S, Fe-doped graphene nanosheets as high performance electrocatalysts for oxygen reduction. Chem. Commun. 2015, 51, 17092–17095.

[145]

Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.

[146]

Kwak, D. H.; Han, S. B.; Lee, Y. W.; Park, H. S.; Choi, I. A.; Ma, K. B.; Kim, M. C.; Kim, S. J.; Kim, D. H.; Sohn, J. I. et al. Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Appl. Catal. B: Environ. 2017, 203, 889–898.

[147]

Li, Y. H.; Chen, B. X.; Duan, X. Z.; Chen, S. M.; Liu, D. B.; Zang, K. T.; Si, R.; Lou, F. L.; Wang, X. H.; Rønning, M. et al. Atomically dispersed Fe-N-P-C complex electrocatalysts for superior oxygen reduction. Appl. Catal. B: Environ. 2019, 249, 306–315.

[148]

Liu, S. Y.; Yang, H. T.; Yao, L.; Peng, H. L.; Huang, P. R.; Lin, X. C.; Liu, L. H.; Zhang, H. Z.; Cai, P.; Wen, X. et al. Design of Fe and Cu bimetallic integration on N and F co-doped porous carbon material for oxygen reduction reaction. Int. J. Hydrogen Energy 2022, 47, 7751–7760.

[149]

Fu, S. F.; Zhu, C. Z.; Song, J. H.; Engelhard, M. H.; Li, X. L.; Zhang, P. N.; Xia, H. B.; Du, D.; Lin, Y. H. Template-directed synthesis of nitrogen- and sulfur-codoped carbon nanowire aerogels with enhanced electrocatalytic performance for oxygen reduction. Nano Res. 2017, 10, 1888–1895.

[150]

Yang, L. P.; Zhang, X.; Yu, L. X.; Hou, J. H.; Zhou, Z.; Lv, R. T. Atomic Fe-N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-air batteries with stable cycling over 1000 h. Adv. Mater. 2022, 34, e2105410.

[151]

Chen, Z. Y.; Niu, H.; Ding, J.; Liu, H.; Chen, P. H.; Lu, Y. H.; Lu, Y. R.; Zuo, W. B.; Han, L.; Guo, Y. Z. et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: Effect of iron spin-state tuning. Angew. Chem., Int. Ed. 2021, 60, 25404–25410.

[152]

Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254–6262.

[153]

Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Zang, K. T.; Luo, J.; Wang, L.; Gao, S. S.; Mamat, X.; Hu, G. Z.; Wagberg, T. et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media. Angew. Chem., Int. Ed. 2017, 56, 13800–13804.

[154]

Jin, H. H.; Zhou, H.; Li, W. Q.; Wang, Z. H.; Yang, J. L.; Xiong, Y. L.; He, D. P.; Chen, L.; Mu, S. C. In situ derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A 2018, 6, 20093–20099.

[155]

Wang, J.; Wang, Q. J.; She, W. X.; Xie, C. Y.; Zhang, X. Y.; Sun, M. C.; Xiao, J. W.; Wang, S. Tuning the electron density distribution of the Co-N-C catalysts through guest molecules and heteroatom doping to boost oxygen reduction activity. J. Power Sources 2019, 418, 50–60.

[156]

Jin, H. H.; Zhou, H.; Ji, P. X.; Zhang, C. T.; Luo, J. H.; Zeng, W. H.; Hu, C. X.; He, D. P.; Mu, S. C. ZIF-8/LiFePO4 derived Fe-N-P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. Nano Res 2020, 13, 818–823.

[157]

Li, J. C.; Zhong, H.; Xu, M. J.; Li, T.; Wang, L. G.; Shi, Q. R.; Feng, S.; Lyu, Z. Y.; Liu, D.; Du, D. et al. Boosting the activity of Fe-Nx moieties in Fe-N-C electrocatalysts via phosphorus doping for oxygen reduction reaction. Sci. China Mater. 2020, 63, 965–971.

[158]

Sun, H.; Liu, S. S.; Wang, M. F.; Qian, T.; Xiong, J.; Yan, C. L. Updating the intrinsic activity of a single-atom site with a P–O bond for a rechargeable Zn-air battery. ACS Appl. Mater. Interfaces 2019, 11, 33054–33061.

[159]

Diao, Y. X.; Liu, H. M.; Yao, Z. X.; Liu, Y. S.; Hu, G. X.; Zhang, Q. F.; Li, Z. Tri-(Fe/F/N)-doped porous carbons as electrocatalysts for the oxygen reduction reaction in both alkaline and acidic media. Nanoscale 2020, 12, 18826–18833.

[160]

Lee, Y. G.; Ahn, H. J. Tri(Fe/N/F)-doped mesoporous carbons as efficient electrocatalysts for the oxygen reduction reaction. Appl. Surf. Sci. 2019, 487, 389–397.

[161]

Tao, X. F.; Lu, R. H.; Ni, L. M.; Gridin, V.; Al-Hilfi, S. H.; Qiu, Z. J.; Zhao, Y.; Kramm, U. I.; Zhou, Y. Z.; Mullen, K. Facilitating the acidic oxygen reduction of Fe-N-C catalysts by fluorine-doping. Mater. Horiz. 2022, 9, 417–424.

[162]

Zhao, Y. M.; Liao, L. M.; Yu, G. Q.; Wei, P. J.; Liu, J. G. B-doped Fe/N/C porous catalyst for high-performance oxygen reduction in anion-exchange membrane fuel cells. ChemElectroChem 2019, 6, 1754–1760.

[163]

Zhao, X.; Li, X.; Bi, Z. H.; Wang, Y. W.; Zhang, H. B.; Zhou, X. H.; Wang, Q.; Zhou, Y. T.; Wang, H. S.; Hu, G. Z. Boron modulating electronic structure of FeN4C to initiate high-efficiency oxygen reduction reaction and high-performance zinc-air battery. J. Energy Chem. 2022, 66, 514–524.

[164]

Sun, H.; Wang, M. F.; Du, X. C.; Jiao, Y.; Liu, S. S.; Qian, T.; Yan, Y. C.; Liu, C.; Liao, M.; Zhang, Q. H. et al. Modulating the d-band center of boron doped single-atom sites to boost the oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 20952–20957.

[165]

Zhang, W.; Mao, K. K.; Zeng, X. C. B-doped MnN4-G nanosheets as bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions. ACS Sustainable Chem. Eng. 2019, 7, 18711–18717.

[166]

Yuan, K.; Sfaelou, S.; Qiu, M.; Lützenkirchen-Hecht, D.; Zhuang, X. D.; Chen, Y. W.; Yuan, C.; Feng, X. L.; Scherf, U. Synergetic contribution of Boron and Fe-Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett. 2018, 3, 252–260.

[167]

Chen, Z. Y.; Su, X. Z.; Ding, J.; Yang, N.; Zuo, W. B.; He, Q. Y.; Wei, Z. M.; Zhang, Q.; Huang, J.; Zhai, Y. M. Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon. Appl. Catal. B: Environ. 2022, 308, 121206.

[168]

Ni, W. P.; Gao, Y.; Zhang, Y.; Younus, H. A.; Guo, X. G.; Ma, C.; Zhang, Y.; Duan, J. F.; Zhang, J. H.; Zhang, S. G. O-doping boosts the electrochemical oxygen reduction activity of a single fe site in hydrophilic carbon with deep mesopores. ACS Appl. Mater. Interfaces 2019, 11, 45825–45831.

[169]

Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

[170]

Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352.

[171]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[172]

Zong, L. B.; Fan, K. C.; Wu, W. C.; Cui, L. X.; Zhang, L. L.; Johannessen, B.; Qi, D. C.; Yin, H. J.; Wang, Y.; Liu, P. R. et al. Anchoring single copper atoms to microporous carbon spheres as high-performance electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2104864.

[173]

Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

[174]

Yuan, S.; Zhang, J. W.; Hu, L. Y.; Li, J. N.; Li, S. W.; Gao, Y. N.; Zhang, Q. H.; Gu, L.; Yang, W. X.; Feng, X. et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 21685–21690.

[175]

Ma, L. G.; Li, J. L.; Zhang, Z. W.; Yang, H.; Mu, X. Q.; Gu, X. Y.; Jin, H. H.; Chen, D.; Yan, S. L.; Liu, S. L. et al. Atomically dispersed dual Fe centers on nitrogen-doped bamboo-like carbon nanotubes for efficient oxygen reduction. Nano Res. 2022, 15, 1966–1972.

[176]

Liu, X.; Liu, H.; Chen, C.; Zou, L. L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651–1657.

[177]

Wan, X.; Liu, Q. T.; Liu, J. Y.; Liu, S. Y.; Liu, X. F.; Zheng, L. R.; Shang, J. X.; Yu, R. H.; Shui, J. L. Iron atom-cluster interactions increase activity and improve durability in Fe-N-C fuel cells. Nat. Commun. 2022, 13, 2963.

[178]

Zheng, H. Z.; Ma, F.; Yang, H. C.; Wu, X. G.; Wang, R.; Jia, D. L.; Wang, Z. X.; Lu, N. D.; Ran, F.; Peng, S. L. Mn, N co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries. Nano Res. 2022, 15, 1942–1948.

[179]

Pan, Y.; Li, M.; Mi, W. L.; Wang, M. M.; Li, J. X.; Zhao, Y. L.; Ma, X. L.; Wang, B.; Zhu, W.; Cui, Z. M. et al. Single-atomic Mn sites coupled with Fe3C nanoparticles encapsulated in carbon matrixes derived from bimetallic Mn/Fe polyphthalocyanine conjugated polymer networks for accelerating electrocatalytic oxygen reduction. Nano Res. 2022, 15, 7976–7985.

[180]

Cheng, Q. Q.; Han, S. B.; Mao, K.; Chen, C.; Yang, L. J.; Zou, Z. Q.; Gu, M.; Hu, Z.; Yang, H. Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 2018, 52, 485–493.

[181]

Wang, Z.; Zhu, C.; Tan, H.; Liu, J.; Xu, L. L.; Zhang, Y. Q.; Liu, Y. P.; Zou, X. X.; Liu, Z.; Lu, X. H. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc-air batteries. Adv. Funct. Mater. 2021, 31, 2104735.

[182]

Ao, X.; Zhang, W.; Li, Z. S.; Li, J. G.; Soule, L.; Huang, X.; Chiang, W. H.; Chen, H. M.; Wang, C. D.; Liu, M. L. et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 2019, 13, 11853–11862.

[183]

Huang, H. J.; Yu, D. S.; Hu, F.; Huang, S. C.; Song, J. N.; Chen, H. Y.; Li, L. L.; Peng, S. J. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202116068.

[184]

Sun, X. P.; Wei, P.; Gu, S. Q.; Zhang, J. X.; Jiang, Z.; Wan, J.; Chen, Z. Y.; Huang, L.; Xu, Y.; Fang, C. et al. Atomic-level Fe-N-C coupled with Fe3C-Fe nanocomposites in carbon matrixes as high-efficiency bifunctional oxygen catalysts. Small 2020, 16, e1906057.

[185]

Cheng, X. Y.; Yang, J.; Yan, W.; Han, Y.; Qu, X. M.; Yin, S. H.; Chen, C.; Ji, R. Y.; Li, Y. R.; Li, G. et al. Nano-geometric deformation and synergistic Co nanoparticles Co-N4 composite sites for proton exchange membrane fuel cells. Energy Environ. Sci. 2021, 14, 5958–5967.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 November 2022
Revised: 23 December 2022
Accepted: 24 December 2022
Published: 14 March 2023
Issue date: April 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22272161).

Return