Journal Home > Volume 16 , Issue 5

Pesticides refer to the chemicals to regulate plant growth and control pests used in agriculture. However, the extensive use of pesticides causes serious pollution that threatens the ecological environment and human health. Photocatalytic degradation of pesticides has become a promising way to deal with pesticide pollution. In this review, pesticides are classified according to the different targets and chemical structures. The recent developments on semiconductor-based photocatalysts including metal oxides, metal oxyhalides, carbon nitrides, and metal sulfides were reviewed for degradation of pesticides. Importantly, several modification strategies to improve the photocatalytic performance are described such as doping, heterojunction construction, and defect engineering, with special emphasis on anchoring single atom catalyst. Moreover, extensive efforts should be made to in-depth understand the photodegradation mechanism by monitoring key intermediates. Our perspectives on the key challenges and future directions of developing high-performance semiconductor-based photocatalysts for pesticide degradation are elaborated.


menu
Abstract
Full text
Outline
About this article

A comprehensive review on semiconductor-based photocatalysts toward the degradation of persistent pesticides

Show Author's information Jing Zhu1,§Min Liao1,§Chen Zhao1,§Mengmeng Liu1Ali Han2( )Chunna Zhu1Yujia Sun1Meng Zhao1Sheng Ye1( )Haiqun Cao1( )
College of Science & School of Plant Protection, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

§ Jing Zhu, Min Liao, and Chen Zhao contributed equally to this work.

Abstract

Pesticides refer to the chemicals to regulate plant growth and control pests used in agriculture. However, the extensive use of pesticides causes serious pollution that threatens the ecological environment and human health. Photocatalytic degradation of pesticides has become a promising way to deal with pesticide pollution. In this review, pesticides are classified according to the different targets and chemical structures. The recent developments on semiconductor-based photocatalysts including metal oxides, metal oxyhalides, carbon nitrides, and metal sulfides were reviewed for degradation of pesticides. Importantly, several modification strategies to improve the photocatalytic performance are described such as doping, heterojunction construction, and defect engineering, with special emphasis on anchoring single atom catalyst. Moreover, extensive efforts should be made to in-depth understand the photodegradation mechanism by monitoring key intermediates. Our perspectives on the key challenges and future directions of developing high-performance semiconductor-based photocatalysts for pesticide degradation are elaborated.

Keywords: photocatalysis, degradation, semiconductor, pesticide

References(210)

[1]

Ajiboye, T. O.; Oyewo, O. A.; Onwudiwe, D. C. Simultaneous removal of organics and heavy metals from industrial wastewater: A review. Chemosphere 2021, 262, 128379.

[2]

Cao, L. D.; Ma, D. K.; Zhou, Z. L.; Xu, C. L.; Cao, C.; Zhao, P. Y.; Huang, Q. L. Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation. Chem. Eng. J. 2019, 368, 212–222.

[3]

Yeganeh, M.; Charkhloo, E.; Sobhi, H. R.; Esrafili, A.; Gholami, M. Photocatalytic processes associated with degradation of pesticides in aqueous solutions: Systematic review and meta-analysis. Chem. Eng. J. 2022, 428, 130081.

[4]

Bano, K.; Kaushal, S.; Singh, P. P. A review on photocatalytic degradation of hazardous pesticides using heterojunctions. Polyhedron 2021, 209, 115465.

[5]

Veerakumar, P.; Sangili, A.; Saranya, K.; Pandikumar, A.; Lin, K. C. Palladium and silver nanoparticles embedded on zinc oxide nanostars for photocatalytic degradation of pesticides and herbicides. Chem. Eng. J. 2021, 410, 128434.

[6]

Luna-Sanguino, G.; Ruíz-Delgado, A.; Tolosana-Moranchel, A.; Pascual, L.; Malato, S.; Bahamonde, A.; Faraldos, M. Solar photocatalytic degradation of pesticides over TiO2-rGO nanocomposites at pilot plant scale. Sci. Total Environ. 2020, 737, 140286.

[7]

Wu, H.; Sun, Q.; Chen, J. Y.; Wang, G. Y.; Wang, D.; Zeng, X. F.; Wang, J. X. Citric acid-assisted ultrasmall CeO2 nanoparticles for efficient photocatalytic degradation of glyphosate. Chem. Eng. J. 2021, 425, 130640.

[8]

Mishra, S.; Pang, S. M.; Zhang, W. P.; Lin, Z. Q.; Bhatt, P.; Chen, S. H. Insights into the microbial degradation and biochemical mechanisms of carbamates. Chemosphere 2021, 279, 130500.

[9]

Brillas, E. Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation. J. Clean. Prod. 2021, 290, 125841.

[10]

Diel, J. C.; da Boit Martinello, K.; da Silveira, C. L.; Pereira, H. A.; Franco, D. S. P.; Silva, L. F. O.; Dotto, G. L. New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: Statistical physical modeling and steric and energetic interpretations. Chem. Eng. J. 2022, 431, 134095.

[11]

Yang, Y.; Deng, Q. Z.; Zhang, Y. L. Comparative study of low-index {101}-TiO2, {001}-TiO2, {100}-TiO2 and high-index {201}-TiO2 on glyphosate adsorption and photo-degradation. Chem. Eng. J. 2019, 360, 1247–1254.

[12]

Chinnappa, K.; Ananthai, P. K.; Srinivasan, P. P.; Glorybai, C. D. Green synthesis of rGO-AgNP composite using curcubita maxima extract for enhanced photocatalytic degradation of the organophosphate pesticide chlorpyrifos. Environ. Sci. Pollut. Res. 2022, 29, 58121–58132.

[13]

Kanan, S.; Moyet, M. A.; Arthur, R. B.; Patterson, H. H. Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catal. Rev. 2020, 62, 1–65.

[14]

Ye, S.; Ding, C. M.; Chen, R. T.; Fan, F. T.; Fu, P.; Yin, H.; Wang, X. L.; Wang, Z. L.; Du, P. W.; Li, C. Mimicking the key functions of photosystem II in artificial photosynthesis for photoelectrocatalytic water splitting. J. Am. Chem. Soc. 2018, 140, 3250–3256.

[15]

Zhu, J.; Hou, R.; Liu, M.; Wang, L.; Chen, W.; Sun, Y.; Wei, W.; Ye, S. A novel wound dressing based on epigallocatechin-3-gallate self-assemble hydrogels promotes effects on wound healing. Mater. Today Sustain. 2022, 18, 100125.

[16]

Liu, M. M.; Zhu, J.; Liu, Y. H.; Gong, F. L.; Li, R.; Chen, H.; Zhao, M.; Jiang, Q. K.; Liu, J.; Ye, S. Modulating the electronic structures of layer-expanded MoS2 nanoreactor via cobalt doping and carbon intercalation for enhanced electrocatalytic hydrogen evolution. Chem. Eng. J. 2022, 446, 137080.

[17]

Ye, S.; Zhang, F. X. Floating artificial leaves buoy the promise of solar fuels. Joule 2022, 6, 2246–2247.

[18]

Dhenadhayalan, N.; Chauhan, A.; Lin, K. C.; AlFantazi, A. Architecting 3D prism shaped carbon dots/germanium/germanium oxide nanohybrid for photocatalytic degradation of pendimethalin and dinotefuran pesticides. Mater. Today Chem. 2022, 24, 100913.

[19]

Ye, S.; Shi, W. W.; Liu, Y.; Li, D. F.; Yin, H.; Chi, H. B.; Luo, Y. L.; Ta, N.; Fan, F. T.; Wang, X. L. et al. Unassisted photoelectrochemical cell with multimediator modulation for solar water splitting exceeding 4% solar-to-hydrogen efficiency. J. Am. Chem. Soc. 2021, 143, 12499–12508.

[20]

Moyet, M. A.; Arthur, R. B.; Lueders, E. E.; Breeding, W. P.; Patterson, H. H. The role of copper(II) ions in Cu-BiOCl for use in the photocatalytic degradation of atrazine. J. Environ. Chem. Eng. 2018, 6, 5595–5601.

[21]

Liu, X.; Li, C. S.; Zhang, B. J.; Yuan, M.; Ma, Y. Q.; Kong, F. Y. A facile strategy for photocatalytic degradation of seven neonicotinoids over sulfur and oxygen co-doped carbon nitride. Chemosphere 2020, 253, 126672.

[22]

Majhi, D.; Bhoi, Y. P.; Samal, P. K.; Mishra, B. G. Morphology controlled synthesis and photocatalytic study of novel CuS–Bi2O2CO3 heterojunction system for chlorpyrifos degradation under visible light illumination. Appl. Surf. Sci. 2018, 455, 891–902.

[23]

Ye, S.; Ding, C. M.; Liu, M. Y.; Wang, A. Q.; Huang, Q. G.; Li, C. Water oxidation catalysts for artificial photosynthesis. Adv. Mater. 2019, 31, 1902069.

[24]

Wei, Z. D.; Liu, J. Y.; Shangguan, W. F. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chin. J. Catal. 2020, 41, 1440–1450.

[25]

Ye, S.; Ding, C. M.; Li, C. Artificial photosynthesis systems for catalytic water oxidation. Adv. Inorg. Chem. 2019, 74, 3–59.

[26]

Yu, X. H.; Su, H. W.; Zou, J. P.; Liu, Q. Q.; Wang, L. L.; Tang, H. Doping-induced metal–N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance. Chin. J. Catal. 2022, 43, 421–432.

[27]

Bai, J. X.; Shen, R. C.; Jiang, Z. M.; Zhang, P.; Li, Y. J.; Li, X. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based ohmic junctions for effective photocatalytic H2 generation. Chin. J. Catal. 2022, 43, 359–369.

[28]

Liang, L.; Li, X. D.; Sun, Y. F.; Tan, Y. L.; Jiao, X. C.; Ju, H. X.; Qi, Z. M.; Zhu, J. F.; Xie, Y. Infrared light-driven CO2 overall splitting at room temperature. Joule 2018, 2, 1004–1016.

[29]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

[30]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

[31]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution Reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[32]

Khan, S. H.; Pathak, B. Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environ. Nanotechnol. Monit. Manage. 2020, 13, 100290.

[33]

Liu, H. X.; Chen, J.; Wu, N. N.; Xu, X. X.; Qi, Y. M.; Jiang, L. J.; Wang, X. H.; Wang, Z. Y. Oxidative degradation of chlorpyrifos using ferrate(VI): Kinetics and reaction mechanism. Ecotoxicol. Environ. Saf. 2019, 170, 259–266.

[34]

Athanasopoulos, P. E.; Pappas, C.; Kyriakidis, N. V.; Thanos, A. Degradation of methamidophos on soultanina grapes on the vines and during refrigerated storage. Food Chem. 2005, 91, 235–240.

[35]

Philippidis, N.; Sotiropoulos, S.; Efstathiou, A.; Poulios, I. Photoelectrocatalytic degradation of the insecticide imidacloprid using TiO2/Ti electrodes. J. Photochem. Photobiol. A Chem. 2009, 204, 129–136.

[36]

Huang, Y. P.; Li, Z. L.; Yao, K.; Chen, C. C.; Deng, C. Y.; Fang, Y. F.; Li, R. P.; Tian, H. L. Suppressing toxic intermediates during photocatalytic degradation of glyphosate by controlling adsorption modes. Appli. Catal. B Environ. 2021, 299, 120671.

[37]

Ouyang, W.; Cai, G. Q.; Tysklind, M.; Yang, W. Y.; Hao, F. H.; Liu, H. B. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed. Water Res. 2017, 122, 377–386.

[38]

Khan, J. A.; He, X. X.; Khan, H. M.; Shah, N. S.; Dionysiou, D. D. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O82−/Fe2+ and UV/HSO5/Fe2+ processes: A comparative study. Chem. Eng. J. 2013, 218, 376–383.

[39]

Souissi, Y.; Bouchonnet, S.; Bourcier, S.; Kusk, K. O.; Sablier, M.; Andersen, H. R. Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water. Sci. Total Environ. 2013, 458–460, 527–534.

[40]

Orge, C. A.; Pereira, M. F. R.; Faria, J. L. Photocatalytic-assisted ozone degradation of metolachlor aqueous solution. Chem. Eng. J. 2017, 318, 247–253.

[41]

He, L. M.; Cui, K. D.; Li, T. T.; Song, Y. F.; Liu, N.; Mu, W.; Liu, F. Evolution of the resistance of botrytis cinerea to carbendazim and the current efficacy of carbendazim against gray mold after long-term discontinuation. Plant Dis. 2020, 104, 1647–1653.

[42]

Xu, D. D.; Yu, G.; Xi, P. G.; Kong, X. Y.; Wang, Q.; Gao, L. W.; Jiang, Z. D. Synergistic effects of resveratrol and pyrimethanil against botrytis cinerea on grape. Molecules 2018, 23, 1455.

[43]

Climent, M. J.; Herrero-Hernández, E.; Sánchez-Martín, M. J.; Rodríguez-Cruz, M. S.; Pedreros, P.; Urrutia, R. Residues of pesticides and some metabolites in dissolved and particulate phase in surface stream water of Cachapoal river basin, central Chile. Environ. Pollut. 2019, 251, 90–101.

[44]

Bernabò, I.; Guardia, A.; Macirella, R.; Tripepi, S.; Brunelli, E. Chronic exposures to fungicide pyrimethanil: Multi-organ effects on Italian tree frog (hyla intermedia). Sci. Rep. 2017, 7, 6869.

[45]

Wang, F. Y.; Yao, S. J.; Cao, D. T.; Ju, C.; Yu, S. M.; Xu, S. J.; Fang, H.; Yu, Y. L. Increased triazole-resistance and cyp51A mutations in aspergillus fumigatus after selection with a combination of the triazole fungicides difenoconazole and propiconazole. J. Hazard. Mater. 2020, 400, 123200.

[46]

Kinley, C. M.; Rodgers, J. H. Jr.; Iwinski, K. J.; McQueen, A. D.; Calomeni, A. J. Analysis of algaecide exposures: An evaluation of the I3 method to measure sodium carbonate peroxyhydrate algaecides. Water Air Soil Pollut. 2015, 226, 170.

[47]

Bishop, W. M.; Willis, B. E.; Richardson, R. J.; Cope, W. G. The presence of algae mitigates the toxicity of copper-based algaecides to a nontarget organism. Environ. Toxicol. Chem. 2018, 37, 2132–2142.

[48]

Zhou, S. Q.; Shao, Y. S.; Gao, N. Y.; Deng, Y.; Qiao, J. L.; Ou, H. S.; Deng, J. Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of microcystis aeruginosa. Sci. Total Environ. 2013, 463–464, 111–119.

[49]

Ali, S. J. Monocrotophos, an organophosphorus insecticide, induces cortical and trabecular bone loss in Swiss albino mice. Chem. Biol. Interact. 2020, 329, 109112.

[50]

Alex, A. V.; Mukherjee, A. Review of recent developments (2018–2020) on acetylcholinesterase inhibition based biosensors for organophosphorus pesticides detection. Microchem. J. 2021, 161, 105779.

[51]

Duan, X. R.; Yang, Y. L.; Wang, S. H.; Feng, X. L.; Wang, T. W.; Wang, P. P.; Liu, S. X.; Li, L.; Li, G. Y.; Yao, W. et al. Cross-sectional associations between genetic polymorphisms in metabolic enzymes and longer leukocyte telomere length induced by omethoate. Oncotarget 2017, 8, 80638–80644.

[52]

Mohamed, A. S.; Abukkhadra, M. R.; Abdallah, E. A.; El-Sherbeeny, A. M.; Mahmoud, R. K. The photocatalytic performance of silica fume based Co3O4/MCM-41 green nanocomposite for instantaneous degradation of Omethoate pesticide under visible light. J. Photochem. Photobiol. A Chem. 2020, 392, 112434.

[53]

Peinado, F. M.; Artacho-Cordón, F.; Barrios-Rodríguez, R.; Arrebola, J. P. Influence of polychlorinated biphenyls and organochlorine pesticides on the inflammatory milieu. A systematic review of in vitro, in vivo and epidemiological studies. Environ. Res. 2020, 186, 109561.

[54]

Taiwo, A. M. A review of environmental and health effects of organochlorine pesticide residues in Africa. Chemosphere 2019, 220, 1126–1140.

[55]

Vagi, M. C.; Petsas, A. S. Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by directive 2013/39/EU from environmental matrices by using advanced oxidation processes: An overview (2007–2018). J. Environ. Chem. Eng. 2020, 8, 102940.

[56]

Kaushal, J.; Khatri, M.; Arya, S. K. A treatise on organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination. Ecotoxicol. Environ. Saf. 2021, 207, 111483.

[57]

Zhou, Y. Q.; Trestip, S.; Li, X. Z.; Truu, M.; Truu, J.; Mander, Ü. Dechlorination of hexachlorobenzene in treatment microcosm wetlands. Ecol. Eng. 2012, 42, 249–255.

[58]

Tyagi, V.; Garg, N.; Mustafa, M. D.; Banerjee, B. D.; Guleria, K. Organochlorine pesticide levels in maternal blood and placental tissue with reference to preterm birth: A recent trend in North Indian population. Environ. Monit. Assess. 2015, 187, 471.

[59]

Martyniuk, C. J.; Mehinto, A. C.; Denslow, N. D. Organochlorine pesticides: Agrochemicals with potent endocrine-disrupting properties in fish. Mol. Cell. Endocrinol. 2020, 507, 110764.

[60]

St. Clair, C. R.; Norris, E. J.; Masloski, K. E.; Coats, J. R.; Gassmann, A. J. Evaluation of pyrethroids and organophosphates in insecticide mixtures for management of western corn rootworm larvae. Pest Manage. Sci. 2020, 76, 3871–3878.

[61]

Zhan, H.; Huang, Y. H.; Lin, Z. Q.; Bhatt, P.; Chen, S. H. New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids. Environ. Res. 2020, 182, 109138.

[62]

Zhu, Q. Y.; Yang, Y.; Zhong, Y. Y.; Lao, Z. T.; O'Neill, P.; Hong, D.; Zhang, K.; Zhao, S. Q. Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (a review). Chemosphere 2020, 254, 126779.

[63]

Chrustek, A.; Holynska-Iwan, I.; Dziembowska, I.; Bogusiewicz, J.; Wroblewski, M.; Cwynar, A.; Olszewska-Slonina, D. Current research on the safety of pyrethroids used as insecticides. Medicina 2018, 54, 61.

[64]

Jardim, A. N. O.; Brito, A. P.; van Donkersgoed, G.; Boon, P. E.; Caldas, E. D. Dietary cumulative acute risk assessment of organophosphorus, carbamates and pyrethroids insecticides for the Brazilian population. Food Chem. Toxicol. 2018, 112, 108–117.

[65]

Roy, P. P.; Banjare, P.; Verma, S.; Singh, J. Acute rat and mouse oral toxicity determination of anticholinesterase inhibitor carbamate pesticides: A QSTR approach. Mol. Inform. 2019, 38, 1800151.

[66]

Oliveira, T. M. B. F.; Ribeiro, F. W. P.; Sousa, C. P.; Salazar-Banda, G. R.; de Lima-Neto, P.; Correia, A. N.; Morais, S. Current overview and perspectives on carbon-based (bio)sensors for carbamate pesticides electroanalysis. TrAC Trend. Anal. Chem. 2020, 124, 115779.

[67]

Pham, B.; Miranda, A.; Allinson, G.; Nugegoda, D. Assessing interactive mixture toxicity of carbamate and organophosphorus insecticides in the yabby (cherax destructor). Ecotoxicology 2018, 27, 1217–1224.

[68]

Malhotra, H.; Kaur, S.; Phale, P. S. Conserved metabolic and evolutionary themes in microbial degradation of carbamate pesticides. Front. Microbiol. 2021, 12, 648868.

[69]

Pujar, N. K.; Laad, S.; Premakshi, H. G.; Pattar, S. V.; Mirjankar, M.; Kamanavalli, C. M. Biodegradation of phenmedipham by novel ochrobactrum anthropi NC-1. 3 Biotech 2019, 9, 52.

[70]

Yuan, X. C.; Liu, C.; Zhao, J.; Zhao, P. F.; Zhao, L. S. A novel magnetic multi-walled carbon nanotube-based magnetic solid-phase extraction combined with dispersive liquid-liquid microextraction method for the determination of four phenoxy carboxylic acid herbicides in food crops by using ultra-high performance liquid chromatography-tandem mass spectrometry. Anal. Methods 2018, 10, 3263–3272.

[71]

Yu, L. H.; Huang, D.; Zhu, X.; Zhang, M.; Yao, Z. L.; Wu, Q. L.; Xu, Z. H.; Li, J. K. Design, synthesis, phloem mobility, and bioactivities of a series of phenazine-1-carboxylic acid-amino acid conjugates. Molecules 2018, 23, 2139.

[72]

Freitas, M. R.; Freitas, M. P.; Macedo, R. L. G. Aug-MIA-QSPR modeling of the soil sorption of carboxylic acid herbicides. Bull. Environ. Contam. Toxicol. 2014, 93, 489–492.

[73]

Ma, J. Q.; Liu, L.; Wang, X.; Chen, L. Z.; Lin, J. M.; Zhao, R. S. Development of dispersive solid-phase extraction with polyphenylene conjugated microporous polymers for sensitive determination of phenoxycarboxylic acids in environmental water samples. J. Hazard. Mater. 2019, 371, 433–439.

[74]

Chen, H. X.; Luo, S. Y.; Huang, X. J. Development of monolith/aminated carbon nanotubes composite-based solid-phase microextraction of phenoxycarboxylic acids herbicides in water and soil samples. J. Sep. Sci. 2021, 44, 4284–4294.

[75]

Zhang, H.; Kong, F. F.; Wang, X. N.; Liang, L. S.; Schoen, C. D.; Feng, J.; Wang, Z. Y. Tetra-primer ARMS PCR for rapid detection and characterisation of plasmopara viticola phenotypes resistant to carboxylic acid amide fungicides. Pest Manage. Sci. 2017, 73, 1655–1660.

[76]

Cai, M.; Li, T. J.; Lu, X. H.; Chen, L.; Wang, Q.; Liu, X. L. Multiple mutations in the predicted transmembrane domains of the cellulose synthase 3 (CesA3) of phytophthora capsici can confer semi-dominant resistance to carboxylic acid amide fungicides. Int. J. Biol. Macromol. 2021, 193, 2343–2351.

[77]

Xu, S.; Pan, X. Y.; Luo, J. Y.; Wu, J.; Zhou, Z. H.; Liang, X. Y.; He, Y. W.; Zhou, M. G. Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium xanthomonas oryzae pv. oryzae. Pestic. Biochem. Physiol. 2015, 117, 39–46.

[78]

Zhu, X.; Yu, L. H.; Hsiang, T.; Huang, D.; Xu, Z. H.; Wu, Q. L.; Du, X. Y.; Li, J. K. The influence of steric configuration of phenazine-1-carboxylic acid-amino acid conjugates on fungicidal activity and systemicity. Pest Manage. Sci. 2019, 75, 3323–3330.

[79]

Yang, J. H.; Wang, D. E.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

[80]

Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.

[81]

Wang, X. N.; Wang, F. L.; Sang, Y. H.; Liu, H. Full-spectrum solar-light-activated photocatalysts for light-chemical energy conversion. Adv. Energy Mater. 2017, 7, 1700473.

[82]

Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 1830–1834.

[83]

Meng, A. Y.; Teng, Z. Y.; Zhang, Q. T.; Su, C. L. Intrinsic defects in polymeric carbon nitride for photocatalysis applications. Chem. Asian J. 2020, 15, 3405–3415.

[84]

Li, X.; Yu, J. G.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636.

[85]

Kim, J. W.; Jang, D. Y.; Kim, M.; Choi, H. J.; Shim, J. H. Nano-granulization of gadolinia-doped ceria electrolyte surface by aerosol-assisted chemical vapor deposition for low-temperature solid oxide fuel cells. J. Power Sources 2016, 301, 72–77.

[86]

Kong, J. J.; Xiang, Z. W.; Li, G. Y.; An, T. C. Introduce oxygen vacancies into CeO2 catalyst for enhanced coke resistance during photothermocatalytic oxidation of typical VOCs. Appl. Catal. B Environ. 2020, 269, 118755.

[87]

Radić, N.; Grbić, B.; Stojadinović, S.; Ilić, M.; Došen, O.; Stefanov, P. TiO2-CeO2 composite coatings for photocatalytic degradation of chloropesticide and organic dye. J. Mater. Sci. Mater. Electron. 2022, 33, 5073–5086.

[88]

Mansourian, R.; Mousavi, S. M.; Alizadeh, S.; Sabbaghi, S. CeO2/TiO2/SiO2 nanocatalyst for the photocatalytic and sonophotocatalytic degradation of chlorpyrifos. Can. J. Chem. Eng. 2022, 100, 451–464.

[89]

Sharma, M. V. P.; Lalitha, K.; Durgakumari, V.; Subrahmanyam, M. Solar photocatalytic mineralization of isoproturon over TiO2/HY composite systems. Solar Energy Mater. Solar Cell. 2008, 92, 332–342.

[90]

Echavia, G. R. M.; Matzusawa, F.; Negishi, N. Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel. Chemosphere 2009, 76, 595–600.

[91]

Jiménez, M.; Maldonado, M. I.; Rodríguez, E. M.; Hernández-Ramírez, A.; Saggioro, E.; Carra, I.; Pérez, J. A. S. Supported TiO2 solar photocatalysis at semi-pilot scale: Degradation of pesticides found in citrus processing industry wastewater, reactivity and influence of photogenerated species. J. Chem. Technol. Biotechnol. 2015, 90, 149–157.

[92]

Sorolla II, M. G.; Dalida, M. L.; Khemthong, P.; Grisdanurak, N. Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light. J. Environ. Sci. 2012, 24, 1125–1132.

[93]

Liu, W.; Chen, S. F.; Zhao, W.; Zhang, S. J. Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase. J. Hazard. Mater. 2009, 164, 154–160.

[94]

Chen, S. F.; Liu, Y. Z. Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere 2007, 67, 1010–1017.

[95]

Maddila, S.; Lavanya, P.; Jonnalagadda, S. B. Degradation, mineralization of bromoxynil pesticide by heterogeneous photocatalytic ozonation. J. Ind. Eng. Chem. 2015, 24, 333–341.

[96]

Li, T.; Abdelhaleem, A.; Chu, W.; Pu, S. Y.; Qi, F.; Zou, J. S-doped TiO2 photocatalyst for visible LED mediated oxone activation: Kinetics and mechanism study for the photocatalytic degradation of pyrimethanil fungicide. Chem. Eng. J. 2021, 411, 128450.

[97]

Khavar, A. H. C.; Moussavi, G.; Mahjoub, A. R.; Satari, M.; Abdolmaleki, P. Synthesis and visible-light photocatalytic activity of In,S-TiO2@rGO nanocomposite for degradation and detoxification of pesticide atrazine in water. Chem. Eng. J. 2018, 345, 300–311.

[98]

Zhang, Y. L.; Han, C.; Zhang, G. S.; Dionysiou, D. D.; Nadagouda, M. N. PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine. Chem. Eng. J. 2015, 268, 170–179.

[99]

Liu, Z. S.; Zhang, Y.; Kong, L. W.; Liu, L.; Luo, J.; Liu, B. Y.; Zhou, Q. H.; He, F.; Xu, D.; Wu, Z. B. Preparation and preferential photocatalytic degradation of acephate by using the composite photocatalyst Sr/TiO2-PCFM. Chem. Eng. J. 2019, 374, 852–862.

[100]

Zheng, L. L.; Pi, F. W.; Wang, Y. F.; Xu, H.; Zhang, Y. Z.; Sun, X. L. Photocatalytic degradation of acephate, omethoate, and methyl parathion by Fe3O4@SiO2@mTiO2 nanomicrospheres. J. Hazard. Mater. 2016, 315, 11–22.

[101]

Islam, J. B.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Kaneco, S. Photocatalytic degradation of a typical neonicotinoid insecticide: Nitenpyrum by ZnO nanoparticles under solar irradiation. Environ. Sci. Pollut. Res. 2020, 27, 20446–20456.

[102]

Navarro, S.; Fenoll, J.; Vela, N.; Ruiz, E.; Navarro, G. Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. J. Hazard. Mater. 2009, 172, 1303–1310.

[103]

Hanh, N. T.; Le Minh Tri, N.; van Thuan, D.; Tung, M. H. T.; Pham, T. D.; Minh, T. D.; Trang, H. T.; Binh, M. T.; Nguyen, M. V. Monocrotophos pesticide effectively removed by novel visible light driven Cu doped ZnO photocatalyst. J. Photochem. Photobiol. A Chem. 2019, 382, 111923.

[104]

Macías-Sánchez, J. J.; Hinojosa-Reyes, L.; Caballero-Quintero, A.; de la Cruz, W.; Ruiz-Ruiz, E.; Hernández-Ramírez, A.; Guzmán-Mar, J. L. Synthesis of nitrogen-doped ZnO by sol–gel method: Characterization and its application on visible photocatalytic degradation of 2,4-D and picloram herbicides. Photochem. Photobiol. Sci. 2015, 14, 536–542.

[105]

Adabavazeh, H.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. Synthesis of polyaniline decorated with ZnO and CoMoO4 nanoparticles for enhanced photocatalytic degradation of imidacloprid pesticide under visible light. Polyhedron 2021, 198, 115058.

[106]

Saljooqi, A.; Shamspur, T.; Mostafavi, A. Synthesis and photocatalytic activity of porous ZnO stabilized by TiO2 and Fe3O4 nanoparticles: Investigation of pesticide degradation reaction in water treatment. Environ. Sci. Pollut. Res. 2021, 28, 9146–9156.

[107]

Anirudhan, T. S.; Shainy, F.; Sekhar, V. C.; Athira, V. S. Highly efficient photocatalytic degradation of chlorpyrifos in aqueous solutions by nano hydroxyapatite modified CFGO/ZnO nanorod composite. J. Photochem. Photobiol. A Chem. 2021, 418, 113333.

[108]

Zhu, Z. H.; Guo, F.; Xu, Z. H.; Di, X. X.; Zhang, Q. Photocatalytic degradation of an organophosphorus pesticide using a ZnO/rGO composite. RSC Adv. 2020, 10, 11929–11938.

[109]

Pathania, D.; Sharma, A.; Kumar, S.; Srivastava, A. K.; Kumar, A.; Singh, L. Bio-synthesized Cu–ZnO hetro-nanostructure for catalytic degradation of organophosphate chlorpyrifos under solar illumination. Chemosphere 2021, 277, 130315.

[110]

Naghizadeh, M.; Taher, M. A.; Tamaddon, A. M. Facile synthesis and characterization of magnetic nanocomposite ZnO/CoFe2O4 hetero-structure for rapid photocatalytic degradation of imidacloprid. Heliyon 2019, 5, E02870.

[111]

Tariq, S. R.; Chotana, G. A.; Rashid, A. Photocatalytic degradation of paraquat dichloride in the presence of ZnO. WO3 composite. Int. J. Environ. Sci. Technol. 2022, 19, 2583–2598.

[112]

Lam, S. M.; Sin, J. C.; Abdullah, A. Z.; Mohamed, A. R. Sunlight responsive WO3/ZnO nanorods for photocatalytic degradation and mineralization of chlorinated phenoxyacetic acid herbicides in water. J. Colloid Interface Sci. 2015, 450, 34–44.

[113]

Chu, W.; Rao, Y. F. Photocatalytic oxidation of monuron in the suspension of WO3 under the irradiation of UV–visible light. Chemosphere 2012, 86, 1079–1086.

[114]

Oladipo, A. A. MIL-53 (Fe)-based photo-sensitive composite for degradation of organochlorinated herbicide and enhanced reduction of Cr(VI). Process Saf. Environ. Prot. 2018, 116, 413–423.

[115]

Mohagheghian, A.; Ayagh, K.; Godini, K.; Shirzad-Siboni, M. Using amino-functionalized Fe3O4-WO3 nanoparticles for diazinon removal from synthetic and real water samples in presence of UV irradiation. J. Adv. Oxid. Technol. 2017, 20, 20160153.

[116]

Park, Y.; McDonald, K. J.; Choi, K. S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321–2337.

[117]

Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Enhanced adsorption of anionic dyes by surface fluorination of zinc oxide: A straightforward method for numerical solving of the ideal adsorbed solution theory (IAST). Chem. Eng. J. 2017, 330, 407–418.

[118]

Chen, Y. L.; Huang, Y. P.; Tian, H. L.; Ye, L. Q.; Li, R. P.; Chen, C. C.; Dai, Z. X.; Huang, D. Fluorine-doped BiVO4 photocatalyst: Preferential cleavage of C–N bond for green degradation of glyphosate. J. Environ. Sci. 2023, 127, 60–68.

[119]

Bento, C. P. M.; Yang, X. M.; Gort, G.; Xue, S.; van Dam, R.; Zomer, P.; Mol, H. G. J.; Ritsema, C. J.; Geissen, V. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Sci. Total Environ. 2016, 572, 301–311.

[120]

Li, H.; Joshi, S. R.; Jaisi, D. P. Degradation and isotope source tracking of glyphosate and aminomethylphosphonic acid. J. Agric. Food Chem. 2016, 64, 529–538.

[121]

Wu, Y. X.; Xu, M. Q.; Chen, X.; Yang, S. L.; Wu, H. S.; Pan, J.; Xiong, X. CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light. Nanoscale 2016, 8, 440–450.

[122]

Luo, X. L.; Chen, Z. Y.; Yang, S. Y.; Xu, Y. H. Two-step hydrothermal synthesis of peanut-shaped molybdenum diselenide/bismuth vanadate (MoSe2/BiVO4) with enhanced visible-light photocatalytic activity for the degradation of glyphosate. J. Colloid Interface Sci. 2018, 532, 456–463.

[123]

Van, N. D.; Thuy, N. P.; Hanh, V. N.; Loan, D. T.; Vuong, D. B.; Thao, T. T.; Khuyen, H. T. Low-temperature designing of BiVO4 nanocubes with coexposed {010}/{110} facets for solar light photocatalytic degradation of methyl orange and diazinon. Inorg. Chem. Commun. 2022, 136, 109136.

[124]

Chen, Z. Y.; Li, Y. F.; Tian, F.; Chen, X.; Wu, Z. S. Synthesis of BiVO4/g-C3N4 S-scheme heterojunction via a rapid and green microwave route for efficient removal of glyphosate. Sep. Purif. Technol. 2022, 287, 120507.

[125]

Tang, Q. Y.; Luo, X. L.; Yang, S. Y.; Xu, Y. H. Novel Z-scheme In2S3/BiVO4 composites with improved visible-light photocatalytic performance and stability for glyphosate degradation. Sep. Purif. Technol. 2020, 248, 117039.

[126]

Yang, B.; Zheng, J. L.; Li, W.; Wang, R. J.; Li, D. Y.; Guo, X. H.; Rodriguez, R. D.; Jia, X. Engineering Z-scheme TiO2-OV-BiOCl via oxygen vacancy for enhanced photocatalytic degradation of imidacloprid. Dalton Trans. 2020, 49, 11010–11018.

[127]

Peng, Y. Z.; Ma, W. H.; Jia, M. K.; Zhao, X. R.; Johnson, D. M.; Huang, Y. P. Comparing the degradation of acetochlor to RhB using BiOBr under visible light: A significantly different rate-catalyst dose relationship. Appl. Catal. B Environ. 2016, 181, 517–523.

[128]

Friedman, C. L.; Lemley, A. T.; Hay, A. Degradation of chloroacetanilide herbicides by anodic fenton treatment. J. Agric. Food Chem. 2006, 54, 2640–2651.

[129]

Xue, Y.; Wang, P. F.; Wang, C.; Ao, Y. H. Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: Environmental factors, mechanisms and degradation pathways. Chemosphere 2018, 203, 497–505.

[130]

Deng, X. Y.; Chen, R.; Zhao, Z. W.; Cui, F. Y.; Xu, X. Graphene oxide-supported graphitic carbon nitride microflowers decorated by sliver nanoparticles for enhanced photocatalytic degradation of dimethoate via addition of sulfite: Mechanism and toxicity evolution. Chem. Eng. J. 2021, 425, 131683.

[131]

Liu, X.; Zhou, Y.; Ma, Y. Q.; Fang, S.; Kong, F. Y.; Pang, X. L. Photocatalytic degradation of dinotefuran by layered phosphorus-doped carbon nitride and its mechanism. J. Photochem. Photobiol. A Chem. 2021, 414, 113287.

[132]

Deng, Y. C.; Tang, L.; Zeng, G. M.; Zhu, Z. J.; Yan, M.; Zhou, Y. Y.; Wang, J. J.; Liu, Y. N.; Wang, J. J. Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: Performance and reaction mechanism. Appl. Catal. B Environ. 2017, 203, 343–354.

[133]

Lei, H.; Zhang, H. H.; Zou, Y.; Dong, X. P.; Jia, Y. M.; Wang, F. F. Synergetic photocatalysis/piezocatalysis of bismuth oxybromide for degradation of organic pollutants. J. Alloys Compd. 2019, 809, 151840.

[134]

Wu, Z. S.; He, X. F.; Xue, Y. T.; Yang, X.; Li, Y. F.; Li, Q. B.; Yu, B. Cyclodextrins grafted MoS2/g-C3N4 as high-performance photocatalysts for the removal of glyphosate and Cr(VI) from simulated agricultural runoff. Chem. Eng. J. 2020, 399, 125747.

[135]

Sheikhpoor, H.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. Co-Al layered double hydroxides decorated with CoFe2O4 nanoparticles and g-C3N4 nanosheets for efficient photocatalytic pesticide degradation. Environ. Technol. Inno. 2021, 23, 101649.

[136]

Zhao, L.; Deng, C.; Xue, S.; Liu, H. B.; Hao, L. M.; Zhu, M. F. Multifunctional g-C3N4/Ag NPs intercalated GO composite membrane for SERS detection and photocatalytic degradation of paraoxon-ethyl. Chem. Engin. J. 2020, 402, 126223.

[137]

Song, S. Q.; Cheng, B.; Wu, N. S.; Meng, A. Y.; Cao, S. W.; Yu, J. G. Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3-rGO for photocatalytic elimination of pollutants. Appl. Catal. B Environ. 2016, 181, 71–78.

[138]

Xiu, Z. Y.; Cao, Y.; Xing, Z. P.; Zhao, T. Y.; Li, Z. Z.; Zhou, W. Wide spectral response photothermal catalysis-fenton coupling systems with 3D hierarchical Fe3O4/Ag/Bi2MoO6 ternary hetero-superstructural magnetic microspheres for efficient high-toxic organic pollutants removal. J. Colloid Interface Sci. 2019, 533, 24–33.

[139]

Ayodhya, D.; Veerabhadram, G. Fabrication of Schiff base coordinated ZnS nanoparticles for enhanced photocatalytic degradation of chlorpyrifos pesticide and detection of heavy metal ions. J. Materiomics 2019, 5, 446–454.

[140]

Ahamad, T.; Naushad, M.; Al-Saeedi, S. I.; Almotairi, S.; Alshehri, S. M. Fabrication of MoS2/ZnS embedded in N/S doped carbon for the photocatalytic degradation of pesticide. Mater. Lett. 2020, 263, 127271.

[141]

Yadav, J.; Rani, M.; Shanker, U. An integrated hybrid nanoplatform with polymer coating: Zinc based green nanocomposites with improved photoactivity under sunlight irradiation. J. Environ. Chem. Eng. 2022, 10, 107452.

[142]

Ayodhya, D.; Veerabhadram, G. Ternary semiconductor ZnxAg1−xS nanocomposites for efficient photocatalytic degradation of organophosphorus pesticides. Photochem. Photobiol. Sci. 2018, 17, 1429–1442.

[143]

Soltani-Nezhad, F.; Saljooqi, A.; Mostafavi, A.; Shamspur, T. Synthesis of Fe3O4/CdS-ZnS nanostructure and its application for photocatalytic degradation of chlorpyrifos pesticide and brilliant green dye from aqueous solutions. Ecotoxicol. Environ. Saf. 2020, 189, 109886.

[144]

Mohanta, D.; Ahmaruzzaman, M. Au–SnO2–CdS ternary nanoheterojunction composite for enhanced visible light-induced photodegradation of imidacloprid. Environ. Res. 2021, 201, 111586.

[145]

Rani, M.; Yadav, J.; Keshu; Shanker, U. Green synthesis of sunlight responsive zinc oxide coupled cadmium sulfide nanostructures for efficient photodegradation of pesticides. J. Colloid Interface Sci. 2021, 601, 689–703.

[146]

Alhaddad, M.; Shawky, A. CuS assembled rGO heterojunctions for superior photooxidation of atrazine under visible light. J. Mol. Liq. 2020, 318, 114377.

[147]

Valadez-Renteria, E.; Barrera-Rendon, E.; Oliva, J.; Rodriguez-Gonzalez, V. Flexible CuS/TiO2 based composites made with recycled bags and polystyrene for the efficient removal of the 4-CP pesticide from drinking water. Sep. Purif. Technol. 2021, 270, 118821.

[148]

Das, K.; Majhi, D.; Bhoi, Y. P.; Mishra, B. G. Combustion synthesis, characterization and photocatalytic application of CuS/Bi4Ti3O12 p–n heterojunction materials towards efficient degradation of 2-methyl-4-chlorophenoxyacetic acid herbicide under visible light. Chem. Eng. J. 2019, 362, 588–599.

[149]

Lv, Y. R.; He, R. K.; Chen, Z. Y.; Li, X.; Xu, Y. H. Fabrication of hierarchical copper sulfide/bismuth tungstate p–n heterojunction with two-dimensional (2D) interfacial coupling for enhanced visible-light photocatalytic degradation of glyphosate. J. Colloid Interface Sci. 2020, 560, 293–302.

[150]

Zhu, F. Y.; Lv, Y. Z.; Li, J. J.; Ding, J.; Xia, X. H.; Wei, L. L.; Jiang, J. Q.; Zhang, G. S.; Zhao, Q. L. Enhanced visible light photocatalytic performance with metal-doped Bi2WO6 for typical fluoroquinolones degradation: Efficiencies, pathways and mechanisms. Chemosphere 2020, 252, 126577.

[151]

Truc, N. T. T.; Duc, D. S.; van Thuan, D.; Al Tahtamouni, T.; Pham, T. D.; Hanh, N. T.; Tran, D. T.; Nguyen, M. V.; Dang, N. M.; Le Chi, N. T. P. et al. The advanced photocatalytic degradation of atrazine by direct Z-scheme Cu doped ZnO/g-C3N4. Appl. Surf. Sci. 2019, 489, 875–882.

[152]

Shah, N. S.; Iqbal, J.; Sayed, M.; Ghfar, A. A.; Khan, J. A.; Khan, Z. U. H.; Murtaza, B.; Boczkaj, G.; Jamil, F. Enhanced solar light photocatalytic performance of Fe-ZnO in the presence of H2O2, S2O82−, and HSO5 for degradation of chlorpyrifos from agricultural wastes: Toxicities investigation. Chemosphere 2022, 287, 132331.

[153]

Phuong, N. M.; Chu, N. C.; van Thuan, D.; Ha, M. N.; Hanh, N. T.; Viet, H. D. T.; Thu, N. T. M.; van Quan, P.; Truc, N. T. T. Novel removal of diazinon pesticide by adsorption and photocatalytic degradation of visible light-driven Fe-TiO2/bent-Fe photocatalyst. J. Chem. 2019, 2019, 2678927.

[154]

Cao, Y. S.; Tan, H. H.; Shi, T. Y.; Tang, T.; Li, J. Q. Preparation of Ag-doped TiO2 nanoparticles for photocatalytic degradation of acetamiprid in water. J. Chem. Technol. Biotechnol. 2008, 83, 546–552.

[155]

Tan, J.; Li, Z. F.; Li, J.; Meng, Y.; Yao, X. L.; Wang, Y. H.; Lu, Y.; Zhang, T. T. Visible-light-assisted peroxymonosulfate activation by metal-free bifunctional oxygen-doped graphitic carbon nitride for enhanced degradation of imidacloprid: Role of non-photochemical and photocatalytic activation pathway. J. Hazard. Mater. 2022, 423, 127048.

[156]

Sraw, A.; Kaur, T.; Pandey, Y.; Verma, A.; Sobti, A.; Wanchoo, R. K.; Toor, A. P. Photocatalytic degradation of monocrotophos and quinalphos using solar-activated S-doped TiO2. Int. J. Environ. Sci. Technol. 2020, 17, 4895–4908.

[157]

Samsudin, E. M.; Hamid, S. B. A.; Juan, J. C.; Basirun, W. J.; Centi, G. Enhancement of the intrinsic photocatalytic activity of TiO2 in the degradation of 1,3,5-triazine herbicides by doping with N, F. Chem. Eng. J. 2015, 280, 330–343.

[158]

Gong, F. L.; Liu, M. M.; Ye, S.; Gong, L. H.; Zeng, G.; Xu, L.; Zhang, X. L.; Zhang, Y. H.; Zhou, L. M.; Fang, S. M. et al. All-pH stable sandwich-structured MoO2/MoS2/C hollow nanoreactors for enhanced electrochemical hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2101715.

[159]

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

[160]

Bhoi, Y. P.; Nayak, A. K.; Gouda, S. K.; Mishra, B. G. Photocatalytic mineralization of carbendazim pesticide by a visible light active novel type-II Bi2S3/BiFeO3 heterojunction photocatalyst. Catal. Commun. 2018, 114, 114–119.

[161]

Bhoi, Y. P.; Behera, C.; Majhi, D.; Equeenuddin, S. M.; Mishra, B. G. Visible light-assisted photocatalytic mineralization of diuron pesticide using novel type II CuS/Bi2W2O9 heterojunctions with a hierarchical microspherical structure. New J. Chem. 2018, 42, 281–292.

[162]

Bard, A. J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 1979, 10, 59–75.

[163]

Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782–786.

[164]

Yu, J. G.; Wang, S. H.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890.

[165]

Jo, W. K.; Selvam, N. C. S. Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation. Chem. Eng. J. 2017, 317, 913–924.

[166]

Xu, X. M.; Meng, L. J.; Luo, J.; Zhang, M.; Wang, Y. T.; Dai, Y. X.; Sun, C.; Wang, Z. Y.; Yang, S. G.; He, H. et al. Self-assembled ultrathin CoO/Bi quantum dots/defective Bi2MoO6 hollow Z-scheme heterojunction for visible light-driven degradation of diazinon in water matrix: Intermediate toxicity and photocatalytic mechanism. Appl. Catal. B Environ. 2021, 293, 120231.

[167]

Zhang, M. J.; Zhang, Y.; Tang, L.; Zhu, Y.; Wang, J. J.; Feng, C. Y.; Fu, S. S.; Qiao, L.; Zhang, Y. Y. Synergetic utilization of 3D materials merits and unidirectional electrons transfer of Schottky junction for optimizing optical absorption and charge kinetics. Appl. Catal. B Environ. 2021, 295, 120278.

[168]

Carr, L. D.; Lusk, M. T. Graphene gets designer defects. Nat. Nanotechnol. 2010, 5, 316–317.

[169]

Liu, Y. W.; Liang, L.; Xiao, C.; Hua, X. M.; Li, Z.; Pan, B. C.; Xie, Y. Promoting photogenerated holes utilization in pore-rich WO3 ultrathin nanosheets for efficient oxygen-evolving photoanode. Adv. Energy Mater. 2016, 6, 1600437.

[170]

Lin, L. X.; Huang, J. T.; Li, X. F.; Abass, M. A.; Zhang, S. W. Effective surface disorder engineering of metal oxide nanocrystals for improved photocatalysis. Appl. Catal. B Environ. 2017, 203, 615–624.

[171]

Cao, Y.; Huang, L.; Bai, Y.; Jermsittiparsert, K.; Hosseinzadeh, R.; Rasoulnezhad, H.; Hosseinzadeh, G. Synergic effect of oxygen vacancy defect and shape on the photocatalytic performance of nanostructured TiO2 coating. Polyhedron 2020, 175, 114214.

[172]

Serrano-Lázaro, A.; Verdín-Betancourt, F. A.; Jayaraman, V. K.; de Lourdes López-González, M.; Hernández-Gordillo, A.; Sierra-Santoyo, A.; Bizarro, M. Efficient photocatalytic elimination of temephos pesticide using ZnO nanoflowers. J. Photochem. Photobiol. A Chem. 2020, 393, 112414.

[173]

Wu, J. X.; Qiao, P. Z.; Li, H. Z.; Ren, L. P.; Xu, Y. C.; Tian, G. H.; Li, M. X.; Pan, K.; Zhou, W. Surface-oxygen vacancy defect-promoted electron–hole separation of defective tungsten trioxide ultrathin nanosheets and their enhanced solar-driven photocatalytic performance. J. Colloid Interface Sci. 2019, 557, 18–27.

[174]

Gong, F. L.; Liu, M. M.; Gong, L. H.; Ye, S.; Jiang, Q. K.; Zeng, G.; Zhang, X. L.; Peng, Z. K.; Zhang, Y. H.; Fang, S. M. et al. Modulation of Mo-Fe-C sites over mesoscale diffusion-enhanced hollow sub-micro reactors toward boosted electrochemical water oxidation. Adv. Funct. Mater. 2022, 32, 2202141.

[175]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[176]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[177]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[178]

Hou, Z. Q.; Dai, L. Y.; Deng, J. G.; Zhao, G. F.; Jing, L.; Wang, Y. S.; Yu, X. H.; Gao, R. Y.; Tian, X. R.; Dai, H. X. et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst. Angew. Chem., Int. Ed. 2022, 61, e202201655.

[179]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[180]

Wang, Y. Y.; Qu, Y.; Qu, B. H.; Bai, L. L.; Liu, Y.; Yang, Z. D.; Zhang, W.; Jing, L. Q.; Fu, H. G. Construction of six-oxygen-coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv. Mater. 2021, 33, 2105482.

[181]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

[182]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[183]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[184]

Liu, X.; Wang, S. J.; Yu, W. S.; Zhang, J. Q.; Fang, S.; Zhang, J. G.; Qiu, J.; Kong, F. Y.; Duan, X. G. Single platinum atoms anchored on holy carbon nitride for efficient photodegradation of sulfonylurea herbicide. Chem. Eng. J. 2022, 446, 137426.

[185]

Chen, F.; Liu, L. L.; Wu, J. H.; Rui, X. H.; Chen, J. J.; Yu, Y. Single-atom iron anchored tubular g-C3N4 catalysts for ultrafast Fenton-like reaction: Roles of high-valency iron-oxo species and organic radicals. Adv. Mater. 2022, 34, 2202891.

[186]

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

[187]

Jin, X. X.; Wang, R. Y.; Zhang, L. X.; Si, R.; Shen, M.; Wang, M.; Tian, J. J.; Shi, J. L. Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 6827–6831.

[188]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[189]

Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

[190]

Xiong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. S. et al. Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.

[191]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[192]

Peng, H. P.; Yang, T.; Lin, H. P.; Xu, Y.; Wang, Z. H.; Zhang, Q. H.; Liu, S. H.; Geng, H. B.; Gu, L.; Wang, C. et al. Ru/In dual-single atoms modulated charge separation for significantly accelerated photocatalytic H2 evolution in pure water. Adv. Energy Mater. 2022, 12, 2201688.

[193]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p–d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[194]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[195]

Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

[196]

Garcia-Muñoz, P.; Dachtler, W.; Altmayer, B.; Schulz, R.; Robert, D.; Seitz, F.; Rosenfeldt, R.; Keller, N. Reaction pathways, kinetics and toxicity assessment during the photocatalytic degradation of glyphosate and myclobutanil pesticides: Influence of the aqueous matrix. Chem. Eng. J. 2020, 384, 123315.

[197]

Premalatha, N.; Miranda, L. R. Surfactant modified ZnO-Bi2O3 nanocomposite for degradation of lambda-cyhalothrin pesticide in visible light: A study of reaction kinetics and intermediates. J. Environ. Manage. 2019, 246, 259–266.

[198]

Amiri, H.; Nabizadeh, R.; Martinez, S. S.; Shahtaheri, S. J.; Yaghmaeian, K.; Badiei, A.; Nazmara, S.; Naddafi, K. Response surface methodology modeling to improve degradation of chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor. Ecotoxicol. Environ. Saf. 2018, 147, 919–925.

[199]

Hossaini, H.; Moussavi, G.; Farrokhi, M. The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water. Water Res. 2014, 59, 130–144.

[200]

Šojić, D. V.; Despotović, V. N.; Abazović, N. D.; Čomor, M. I.; Abramović, B. F. Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation. J. Hazard. Mater. 2010, 179, 49–56.

[201]

Hasanin, M.; Abdelhameed, R. M.; Dacrory, S.; Abou-Yousef, H.; Kamel, S. Photocatalytic degradation of pesticide intermediate using green eco-friendly amino functionalized cellulose nanocomposites. Mater. Sci. Eng. B 2021, 270, 115231.

[202]

Nekooie, R.; Shamspur, T.; Mostafavi, A. Novel CuO/TiO2/PANI nanocomposite: Preparation and photocatalytic investigation for chlorpyrifos degradation in water under visible light irradiation. J. Photochem. Photobiol. A Chem. 2021, 407, 113038.

[203]

Shirzad-Siboni, M.; Jonidi-Jafari, A.; Farzadkia, M.; Esrafili, A.; Gholami, M. Enhancement of photocatalytic activity of Cu-doped ZnO nanorods for the degradation of an insecticide: Kinetics and reaction pathways. J. Environ. Manage. 2017, 186, 1–11.

[204]

Kanwal, M.; Tariq, S. R.; Chotana, G. A. Photocatalytic degradation of imidacloprid by Ag-ZnO composite. Environ. Sci. Pollut. Res. 2018, 25, 27307–27320.

[205]

Flores, K.; Valdes, C.; Ramirez, D.; Eubanks, T. M.; Lopez, J.; Hernandez, C.; Alcoutlabi, M.; Parsons, J. G. The effect of hybrid zinc oxide/graphene oxide (ZnO/GO) nano-catalysts on the photocatalytic degradation of simazine. Chemosphere 2020, 259, 127414.

[206]

Topkaya, E.; Konyar, M.; Yatmaz, H. C.; Öztürk, K. Pure ZnO and composite ZnO/TiO2 catalyst plates: A comparative study for the degradation of azo dye, pesticide and antibiotic in aqueous solutions. J. Colloid Interface. Sci. 2014, 430, 6–11.

[207]

Dikdim, J. M. D.; Gong, Y.; Noumi, G. B.; Sieliechi, J. M.; Zhao, X.; Ma, N.; Yang, M.; Tchatchueng, J. B. Peroxymonosulfate improved photocatalytic degradation of atrazine by activated carbon/graphitic carbon nitride composite under visible light irradiation. Chemosphere 2019, 217, 833–842.

[208]

Liu, X.; Zong, H.; Tan, X. L.; Wang, X. Y.; Qiu, J.; Kong, F. Y.; Zhang, J. G.; Fang, S. Facile synthesis of modified carbon nitride with enhanced activity for photocatalytic degradation of atrazine. J. Environ. Chem. Engin. 2021, 9, 105807.

[209]

Bhoi, Y. P.; Mishra, B. G. Photocatalytic degradation of alachlor using type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation. Chem. Eng. J. 2018, 344, 391–401.

[210]

Merci, S.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. WO3 nanoplates decorated with polyaniline and CdS nanoparticles as a new photocatalyst for degradation of imidacloprid pesticide from water. Environ. Sci. Pollut. Res. 2021, 28, 35764–35776.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 November 2022
Revised: 15 December 2022
Accepted: 17 December 2022
Published: 21 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21902157 and 51702004), Starting Fund for Scientific Research of High-Level Talents, Anhui Agricultural University (No. rc382108), the Open Fund of the State Key Laboratory of Catalysis in Dalian Institute of Chemical Physics, Chinese Academy of Sciences (DICP, CAS) (No. N-21-12), the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in DICP, CAS (No. SKLMRD-K202223), Key Research and Development Plan of Anhui Province (No. 2022e07020037), Health Research Project of Anhui Province (No. AHWJ2022b014), Shen-Nong Scholar Program of Anhui Agricultural University (No. rc382101), and Innovation and Entrepreneurship Plan for College Students (Nos. X202210364252, X202210364274, and X202210364532).

Return